

NANOGrav

Status of Pulsar Timing Arrays

Xavier Siemens

NANOGrav Physics Frontiers Center

_____ The Leonard E. Parker _____ Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

The North American Nanohertz Observatory for Gravitational Waves: about 120 students and scientists in the US and Canada working to characterize the gravitational wave universe at low frequencies using pulsar timing. Part of a world-wide effort including European and Australian partners.

NANOGrav became an NSF Physics Frontiers Center in 2015 (for \$14.5M)

The Arecibo Observatory and the Green Bank Telescope

Our measurements are made with the two most sensitive radio telescopes in the world

Arecibo Observatory

Green Bank Telescope

Both face budget challenges

The International Pulsar Timing Array (IPTA)

Relationship between PTAs is one of cooperative competition. Data are shared six months after they are taken and analyzed through organized IPTA-wide projects.

The spectrum of gravitational wave astronomy

Gravitational wave sources

The most promising sources are supermassive binary black holes (SMBBHs):

Other sources at nanohertz frequencies include cosmic strings, inflation, and phase transitions in the early universe.

Effect of a gravitational wave on radio pulses

 Ω

Gravitational waves red (blue)shift the train of pulses from a pulsar according to:

$$z \equiv \frac{1}{2} \frac{\hat{p}_i \hat{p}_j}{1 + \hat{\Omega} \cdot \hat{p}} \left[h_{ij}^P - h_{ij}^E \right]$$

Sazhin (1978) Detweiler (1979) Anholm+ (2009)

Effect of a gravitational wave on radio pulses

By keeping track of every rotation of the pulsar over the course of years, we can predict when a particular pulse from a pulsar will arrive at our radio telescope. The error in our prediction is called the pulsar timing residual.

Timing residual = Actual arrival - Predicted arrival

Gravitational waves change the time of arrival of pulses so we can look for gravitational waves in the timing residual data

A galactic-scale GW detector: the Pulsar Timing Array

Pular timing experiments

 Can do these measurements very accurately, a few times a month for a few years

- Lowest frequency GW we're sensitive to set by observation length T
- Highest frequency by Nyquist theorem
- Data is irregularly sampled, has different size error bars... time domain methods better suited to analyze this type of data

Sensitivity

 $\phi = \phi_0 + 2\pi\nu(t - t_0) + \pi\dot{\nu}(t - t_0)^2 +$ Sky location terms + binary terms (if appropriate) + ...

Where does $h \sim 10^{-15} {\rm come}$ from?

• Pulsar timing experiments measure residuals not redshifts. Residuals induced by GWs are the integral of the redshift:

$$R(t) \equiv \int_0^t dt' \, z(t')$$

- In the frequency domain $R \sim \frac{n}{f}$
- Current RMS of timing residuals $R \sim 100 \, {\rm ns}$
- At GW frequencies $f \sim 10^{-8} \,\mathrm{Hz} \rightarrow h \sim Rf \sim 10^{-15}$

NANOGrav Observing Strategy

We currently observe 67 MSPs at the GBT and Arecibo, roughly every three weeks, at two radio frequencies. High cadence program for 5-6 MSPs. Add ~4 MSPs per year.

We use roughly 10%-20% of the time on each telescope.

GW data analysis is a challenging astrostatistics problem.

Haven't you found all the pulsars already?

Radio searches (aided by Fermi gamma-ray identifications) have more than doubled the Galactic MSP population since 2010. Ongoing searches with the world's largest telescopes should reveal an additional 100 over the next several years.

Many bright and nearby MSPs remain to be found, meaning increases in our sensitivity are still possible.

NANOGrav Activities/Goals

- GW detector construction and characterization
- Find additional MSPs to increase our sensitivity
- More efficient/sensitive pulsar searches
- Fully characterized lowfrequency GW detector

- Regular (18 month) open data releases
- New pulsar timing packages
- Cyber-I data curation system

GW detection and characterization

- First detection of lowfrequency GWs or tightest constraints to date
- Comprehensive open-source GW data analysis suite

About our work

Work is truly interdisciplinary. Requires detailed understanding of:

- GW signals and their sources
- properties of neutron stars, our celestial clocks
- propagation of pulses through the interstellar medium
- characteristics of the radio telescopes
- software designed to make the measurements
- algorithms for GW searches
- searching for additional pulsars
- the long term curation of the data products

This makes the work a lot of fun!

work **requires** close collaboration of:

- theorists
- data analysts
- cosmologists
- SMBBH astrophysicists
- NS astrophysicists
- radio astronomers
- cyber-I experts

Data analysis

For a Gaussian (noise) process y

$$p(y) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp(-\frac{1}{2}y^T \Sigma^{-1} y)$$

If we make a measurement r = s + y

The probability obtaining r given a signal s is present in our data is

$$p(\mathbf{r}|\mathbf{s}) = \frac{1}{\sqrt{\det 2\pi\Sigma}} \exp\left(-\frac{1}{2}(\mathbf{r}-\mathbf{s})^T \Sigma^{-1}(\mathbf{r}-\mathbf{s})\right) \quad (y=r-s)$$

I.e. the probability that there's a signal in the data, is the probability that what you're left with when you've subtracted the signal off is consistent with the noise process \mathcal{Y}

Data analysis

In pulsar timing experiments we use pulsars as clocks, keeping track of the rotational phase for many years. Residuals are generated by starting with times of arrival TOA (the phase of the pulsar) of pulses and subtracting out a model

$$\phi = \phi_0 + 2\pi\nu(t - t_0) + \pi\dot{\nu}(t - t_0)^2 + \text{Sky location terms + binary terms (if appropriate) + .}$$

$$TOA = model + y$$
Gaussian process: Intrinsic red and white noise + GWs +...

This model subtraction can be performed by projecting out the model piece of the TOA with a linear operator R (see Numerical Recipes -- least squares fitting chapter)

$$r = R \operatorname{TOA} = R(\operatorname{model} + y) = Ry$$

Data analysis

The projector is constructed from the basis functions of the model being fitted out:

$$R = I - A(A^T A)^{-1} A^T$$

 $R = I - A(A^{I}A)^{-1}A^{I}$ For example for quadratic subtraction (fitting for initial phase, $A = \begin{bmatrix} 1 & t_0 & t_0^2 \\ 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_N & t_N^2 \end{bmatrix}$

Since y is a Gaussian process we can write the standard likelihood for a Gaussian:

$$p(y) = \frac{1}{\sqrt{\det(2\pi\Sigma_y)}} \exp(-\frac{1}{2}y^T \Sigma_y^{-1} y)$$

Can perform the transformation $y \rightarrow r = Ry$

$$p(r) = \frac{1}{\sqrt{\det(2\pi\Sigma_r)}} \exp(-\frac{1}{2}r^T\Sigma_r^{-1}r) \qquad \Sigma_r = R^T\Sigma_y R$$

Continuous wave (or other templated) searches

$$p(\mathbf{r}|\mathbf{s}) = \frac{1}{\sqrt{\det 2\pi\Sigma}} \exp\left(-\frac{1}{2}(\mathbf{r}-\mathbf{s})^T \mathbf{\Sigma}^{-1}(\mathbf{r}-\mathbf{s})\right)$$
We ctor of vectors: $\mathbf{r} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_l \end{bmatrix}$ Matrix of matrices: $\mathbf{\Sigma} = \begin{bmatrix} \mathbf{P}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{P}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{P}_l \end{bmatrix}$
Effects of fitting on the template are important:

Continuous wave (or other templated) searches

Exciting multimessenger astronomy potential

Stochastic backgrounds $p(\mathbf{r}|\vec{\theta}) = \frac{1}{\sqrt{\det 2\pi \boldsymbol{\Sigma}(\vec{\theta})}} \exp\left(-\frac{1}{2}\mathbf{r}^T \boldsymbol{\Sigma}^{-1}(\vec{\theta})\mathbf{r}\right) \quad \text{Residuals} \quad \mathbf{r} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \vdots \end{bmatrix}$ The signal in this case is in the covariance matrix $\, {f \Sigma}(heta) \,$ Covariance matrix for residuals $\Sigma(\vec{\theta}) = \langle \mathbf{r}\mathbf{r}^T \rangle = \begin{bmatrix} \mathbf{P}_1 & \mathbf{S}_{12} & \cdots & \mathbf{S}_{1l} \\ \mathbf{S}_{21} & \mathbf{P}_2 & \cdots & \mathbf{S}_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{S}_{l1} & \mathbf{S}_{l2} & \cdots & \mathbf{P}_l \end{bmatrix}$ 0.5 Arrival-time deviation correlation 0.4 0.3 0.2 0.1 0 -0.1 -0.2 20 0 40 80 60 100 120 140 160 180

Pulsar separation / deg

Stochastic backgrounds

Latest observational results

NANOGrav data releases

5-yr: 2005-2010

17 pulsars

RMSs between 40 ns and I us

No significant GW signal. Set upper limit:

 $h_c < 7 \times 10^{-15}$

1 1			1	1	1	
നത്തറന്നാററ	ററത്താ				AQ/430	10020 + 0451
00 0000 0 0000 0 0	0 0 0000				AO/1400	30030 - 0431
8 6666666666666666666666666666666666666	88 833 338 838				GBT/800 GBT/1400	J0613 - 0200
°° of 2					GBT/800 GBT/1400	J1012 + 5307
88 88 8 66 866 86 8					GBT/800 GBT/1400	J1455 - 3330
					GB1/1400	J1600 - 3053
6 8888 8 8888 888	888 88 88 8				AQ/430 AQ/1400	J1640 + 2224
886688 & & 30008338	88888	_			GBT/800 GBT/1400	J1643 - 1224
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ø			AD/1400 GBT/1400 AD/2100	J1713 + 0747
	(11) (11) (11) (11) (11) (11) (11) (11)				GBD/800_	11744 - 1134
	(011111110(110)(111111010)				GB1/1400	31744 1154
000000000000000000000000000000000000000	000 0 0000 0				AQ(430_	$B1855 \pm 00$
					AD/1400	B1055   07
88 888 888 88	88 888888888888888888888888888888888888				GBT/800 GBT/1400	J1909 - 3744
					A0/1400 A0/2100	J1910+1256
0.000000 o 8008 8000000					GBT/800 GBT/1400	J1918 - 0642
						P1052 + 20
CERTERD	@ 0000 0000				AQ/1400	B1955 + 29
	88 8 8 8 8				GBT/800	J2145 - 0750
<b>9000 900000</b> 90000000	8888 88 <b>88</b> 8				AQ/327 AD/430	J2317+1439
004 2006	2008 20	10 20	012 20	014 20	16	
		Date [yr	r]			

#### 9-yr: 2005-2014

37 pulsars

Improved instrumentation, RMS improvement a factor of 2–3 for most pulsars.

New upper limit:

 $h_c < 1.5 \times 10^{-15}$ 

20	00	2008 2010 2012	2014 2010	Cre	dit David	Nice
1 20	06	2008 2010 2012	2014 2016			N 1.
	o annanao	9000 000000000000000000000000000000000	GET 800 49327	J2302 + 4442 $I2317 \pm 1439$		
		30 444	AC/2105			
000		000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	281/1400	J22145 = 0750 J2214 + 3000		
<b>8</b> 9. 9			725740 SET.990.	$J_{2045} + 1711$ $J_{2145} - 0750$		
			1013	12042 + 1711		
		1988 (March 1988)	A0(43) A0(140) A0(210)	J2017 + 0603		
			GBT/1400	J2010 - 1323		
	CERTIFIC	മോതാതാര നടി 🎟 🗮	A0430 A0140	B1953 + 29		
		8	A0430 A01400	J1944 + 0907		
			40/140 GB(7)40 AQ210	B1937 + 21		
			A0430 A01400	J1923 + 2515		
868		80008 000000000000000000000000000000000	GBT/1400	J1918-0642		
			40150	J1910 + 1256		
88	888 8888 8		GBT/900 GBT/400	J1909 - 3744		
000000			A21460 A21460	$J1903 \pm 0327$		
0000000			A01300 A0430	$J1855 \pm 1303$ B1855 $\pm 00$		
			GET/900 GET/1400	J1832 - 0836		
			GBT/800 GBT/1400	J1747 - 4036		
88 8		88 8 8 <b>6</b> 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	GBT/900 GBT/1400	J1744 - 1134		
		0000 0000 00000	AQ430 AQ1400	J1741 + 1351		
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AQ1400 AQ2100	J1738 + 0333		
0000000 0000000			681/1400 GBT/1400 AQ2100	J1713 + 0747		
88888			GBT/900 GBT/1400 GBT/900	J1643 - 1224		
800088	<b>888 888</b>	8 88 88 88 88 88 88 88 88 88 88 88 88 8	AQ1430 AC11400	J1640 + 2224		
		8 88	GBT/900 GBT/1400	J1614 - 2230		
			GBT/900 GBT/1400	J1600 - 3053		
8 8 88	888888	## #88# #88## <b>#################</b>	GET/800 GET/1400	J1455 - 3330		
		o and a state of the	GBT/1400	31024 -0719		
<b>30 88 30</b>			GB1/1400 GB1/900	1012 + 5307 11024 - 0719		
00 00 00		@0000@0000000	GBT/800 GBT/3400 GBT/900	J0931 - 1902 $I1012 \pm 5307$		
			CRTIN	10021 1002		
		•	GBT/1400	J0645 + 5158		
	_					
8 88		888 <b>888888</b> 88	GBT/900 GBT/1400	J0613-0200		
0 00 000			GBT/800 GBT/800	J0030 + 0431 J0340 + 4130		
0 000	0 0000 0		20140 A0430	$10023 \pm 0923$ $10030 \pm 0451$		
1		· · · · ·	1 1	10022 - 0022	1	

#### **I I-yr: 2005-2016** 45 pulsars (IN PROGRESS)

Preliminary upper limit shows no improvement over the 9year data:

```
h_c < 1.5 \times 10^{-15}
```

What's going on here???

· ·	1 1		AQ(430	$10023 \pm 0923$		
0 0 0000 0000 0	00 0000000 00 0		AQ(430	$10030 \pm 0451$		
			GEDNO.	$10340 \pm 4130$		
	തന്തത്തതാന്ത്ര അത്തിന്ത്രം		GEDNO.	10613 - 0200		
			CEDITAGO	10636 + 5128		
		•	GEI/1400	$10645 \pm 5158$		
			GEI/1400	$10740 \pm 6620$		
			GBT/140	J0931 - 1902		
88 88 88 88 88 88 88 88 88 88 88 88 88			GE1/800	J1012 + 5307		
	8.8		GET/No	J1024 - 0719		
			GB1300	J1125 + 7819		
			A0/430 A0/1400	J1453 + 1902		
8 8 6578 8 68 8	<b>6888 6886 688</b>		CEDNO.	J1455 - 3330		
			GE 1500	J1600 - 3053		
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		GBT/800 GBT/1400	J1614-2230		
6000 8 0000 000	888 88 88 888 888 888		A0/430 A0/1400	J1640 + 2224		
8 88 2000088888	888888888888888888888888888888888888888		GET/140	J1643 - 1224		
		10000101	GET NO0 AUG 400	$11713 \pm 0747$		
@0000@0 ⁰⁰ 0@0			30.2100	11720 + 0222		
	8 88		A0430	J1/38+0335		
	8888 8 8 8		A0/2100 A0/2100	J1741 + 1351		
88 80000000	# ## \$################################		GET/1400	J1744 - 1134		
			GBT/800 GBT/1400	J1747 – 4036		
			GB1/1400	J1832-0836		
			A0/430 A0/1400	J1853 + 1303		
000000000000000000000000000000000000000	888 888 888 888 888		AL1430 AQ/1400	B1855+09		
	888 88		A012100	J1903 + 0327		
8 988 988 988 988 98 98 98 98 98 98 98 9			CB1/1400	J1909 - 3744		
	889888888888888888888888888888888888888		202100	J1910 + 1256		
		• • • •	A071400	J1911 + 1547		
86 8 8000			CE1/1400	J1918 - 0642		
	000000000000000000000000000000000000000		AG/1400 GBT/800	J1925 + 2515		
<b>666 8 6666</b>			A001400 GET/1400 A002100	B1937 + 21		
			A0/430 A0/1400	J1944 + 0907		
		8000 800 800 800 800 800 800 800 800 80	A0/430 A0/1400	B1953 + 29		
	## <b># # # #</b>		GET/140	J2010 - 1323		
			A0/430 A0/1400 A0/2100	J2017 + 0603		
		1 11 41	A0/430 A0/1400	J2033 + 1734		
			A0/430 A0/1400	J2043 + 1711		
<b>868</b> 8 <b>866</b> 8 866	888 8 8 8 888		GE 1/1400	J2145 - 0750		
		88 ************************************	AQ/1400 AQ/2100	J2214 + 3000		
		: :: ::	A0430 A071400	J2229 + 2643		
		** #*	A0/430 A0/1400	J2234 + 0611		
			A0(430 A0(1400 A0(7100	J2234 + 0944		
			GED/800 GED/1400	J2302 + 4442		
	9999 99 <b>99999</b>		40327	J2317 + 1439		
2004 2006	2008 2010	2012 2014	2016			
2004 2000	2006 2010	2012 2014	2016			
Date [yr]						



#### Isotropic stochastic backgrounds (9-yr data set)

Arzoumanian et al. 2015



Cross-correlated power vs. angular separation.

The dashed red curve shows the maximum likelihood amplitude mapped onto the Hellings and Downs coefficients. SNR of cross-correlation is 1.5

Did not make a significant detection, so we set upper limits.

NANOGrav postdocs and students involved:

Sarah Burke-Spolaor Justin Ellis Chiara Mingarelli Laura Sampson Joe Simon Steve Taylor Rutger van Haasteren



#### Stochastic backgrounds—astrophysical inference

Arzoumanian et al. 2015





- High frequencies (when black holes are close) dominated by GW emission so spectrum determined by:
  - Galaxy Merger Rates
  - Stalling fraction
  - Black hole-host correlations (i.e., M-sigma, M-M_bulge)





#### Stochastic backgrounds—astrophysical inference



Arzoumanian et al. 2015

- Low frequency part of spectrum (when black holes are further away) possibly determined by environmental effects (solution to last parsec problem):
  - Stellar Hardening (stellar density in galactic cores)
  - Circumbinary disk interaction (mass accretion rate)
  - Orbital eccentricity (effects of stars/gas)



**Rich astrophysics!** 



#### Stochastic background: <u>preliminary</u> II-yr data release results

$$p(\mathbf{r}|\vec{\theta}) = \frac{1}{\sqrt{\det 2\pi \boldsymbol{\Sigma}(\vec{\theta})}} \exp\left(-\frac{1}{2}\mathbf{r}^T \boldsymbol{\Sigma}^{-1}(\vec{\theta})\mathbf{r}\right)$$

Red = correlatedBlack = uncorrelated

Common red noise parameter posteriors for models (2) and (3) Compare three models:

(1) individual red and white noises, (2) individual red and white noises and uncorrelated common red noise, (3) individual red and white noises and **correlated** common red noise (=GWs)

$$\boldsymbol{\Sigma}(\vec{\theta}) = \begin{bmatrix} \mathbf{P}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{P}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{P}_l \end{bmatrix}$$
(1)

VS





 $\sim$ 



#### Stochastic background: preliminary II-yr data release results



Bayes factor for (2) common uncorrelated vs (1) no common noise ~9

Bayes factor for (3) GWs vs (1) no common noise  $\sim 18$ 

Bayes factor for (3) GWs vs (2) common uncorrelated noise  $\sim 2$ 

[GWs are also preferred relative to monopolar, and dipolar signals]





#### Sensitivity and detection projections

What does the future hold if the signal that we're seeing now is real?





#### But wait a minute... where are we?

Different ephemerides give us different results for the the significance of the red noise process we are seeing.







#### Sensitivity and detection projections





#### Summary

As the low-frequency GW sky comes into focus, it will offer a **novel view** of **unique and groundbreaking astrophysics**.

Individual supermassive black hole inspirals and their collective "chorus": physics of accretion, late inspiral dynamics



Cosmic strings: early universe physics/high energy physics

> Black hole merger "memory": a surprising prediction of strong field general relativity.

New physics: expect to be surprised