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Introduction. Gravitational Wave motivation

In the nice talk of Alicia: both observations consistent with GW
signal produced by the coalescence of two BHs.

Both are compatible with low eccentricity systems.

Most of the binary systems are expected to have circularized by the
time their gravitational wave signals enter the frequency band of the
LIGO and Virgo detectors.
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Introduction. Framework

Eccentricity Reduction → within the phenomenological waveform
modelling efforts presented by Sascha, Geraint and Cecilio in their fine
talks.

BBH simulations are run with BAM code in order to get waveforms.

Imperfections of NR initial data → waveforms with residual
eccentricity.

Main Objective: Establish a systematic procedure to reduce
eccentricity.
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Introduction. Framework

We restrict this talk to non-precessing binaries.

Bowen-York initial data are used in BAM code.

Initial data given by: masses, positions and momenta of the two BHs.

Given a case, defined by fixed masses and positions, we want to
develop a systematic procedure to change the momenta to
reduce the eccentricity.

Main Strategy:
1) Set up a procedure that computes the actual eccentricity.
2) Compute analytically the correction factors of the momenta from
PN formalism.
3) Test the magnitude of the eccentricity reduction in NR simulations.
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Introduction. Eccentricity estimators.

Non-precessing binary with zero eccentricity → orbital variables vary
monotonically.

In numerical simulations, small eccentricity → small residual
oscillations with amplitude proportional to the eccentricity are added
monotonically changing orbital variables.

The determination of these residual oscillations is needed to measure
the eccentricity .

A generic eccentricity estimator for the orbital frequency, εΩ(t) is:

εΩ(t) = D(t) + eΩ cos(Ωr t + Φ) (1)

We define an eccentricity estimator of the form:

eΩ(t) =
Ω(t)− Ωfit

2Ωfit
(2)

Election based on the nearly gauge-independence of the orbital
frequency, Ω.
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Results. Fitting model

A fit to the data (NR or PN) is necessary to compute eΩ(t).
(Mathematica NonlinearModelFit function).

We use an Ansatz based on the TaylorT3 approximant [Buonanno et
al. Phys.Rev.D80,084043(2009)]

θ = [η|Tmerg t0 − t|/5]−1/8

A =
a1θ

3

16π

(
1 + a2θ

2 + a3θ
3 + a5θ

5
)

ansatz = A + a6 cos (Ω0ω1t + t1)

(3)

Tmerg is an scale of the merger time (for NR typically ≈ 3000M).

t0, a1, a2, a3, a5,a6, ω1 and t1 are unknown coefficients to fit.

Ω0 is the 3.5 PN orbital frequency for quasi-circular orbits.
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Results. Fitting model

The ansatz can be identified with the residual between the data and
our model based on 3.5PN approximant.

R(t) = Ω(t)− Ω0 (4)

Once the model is fitted to data, eΩ can be calculated from the
ampitude of the oscillations,

eΩ =
1

2

a6

Ω0
, (5)

and the corresponding error,

δeΩ =
1

2

δa6

Ω0
. (6)
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Results. Eccentricity from NR simulations

Simulations were run in MareNostrum, CESGA and UIB clusters.

Case |eΩ| ×10−3 δeΩ ×10−5

q4. -0.2 0.5 D40D11 T 96 408 7.62 1.09

q4. -0.5 0.5 D40D11 T 96 408 0.96 1.013

q4. -0.8 0.8 D40D11 T 96 384 8.00 1.06

q1.2 -0.8 0. D40D11.8633 T 96 432 5.5 7.5

q1.75 -0.55 0.5 D40D11.2383 T 96 432 1.35 1.409

q1.2 -0.5 -0.8 D40D12.2525 T 96 432 7.014 5.676

q1.2 0.8 0. D40D11.3399 T 96 432 4.097 3.888

q1.75 0.55 -0.5 D40D11.568 T 96 432 1.680 2.349

q1.5 0.85 -0.85 -0.17 T 64 240 2.796 2.211

q1.5 0.85 -0.85 -0.17 T 80 400 2.979 2.136

q2. 0.75 0.75 D11.11 96 5.227 3.602

q2. -0.75 -0.75 D12.6 96 1.364 62.385

q1.2 -0.85 0.85 0.07 T 96 480 8.021 3.790

q1.5 -0.50 0.50 0.1 T 64 400 2.361 1.414

q2 0.85 0 0.283333 T 80 400 it1 2.437 43.065

q2 -0.85 0.85 0.283 T 80 440 it1 2.133 6.418
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Results. Eccentricity from NR simulations

Case: q1.2 -0.85 0.85 0.07 T 96 480
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Results. On reducing the eccentricity

Following [Pürrer et al. Phys.Rev.D85,124051(2012)] an iterative
scheme to reduce the eccentricity is worked out.

An adjustement of (p0
r , p

0
t ) required to reduce eccentricity of

simulations.

Basic Idea:

First iteration:
a) Modify factors (λt , λr ) the initial values (p0

r , p
0
t ) such that:

eM(λrp
0
r , λtp

0
t ) = e0

NR (7)

b) In practice, eccentricity estimators are very noisy.
Better to take the residuals. → RλM(t) ≈ R(t).
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Results. On reducing the eccentricity

Second iteration:
a) Update the parameters of the numerical simulation and perform a
second simulation using:

p1
r = p0

r /λ
0
r

p1
t = p0

t /λ
0
t

(8)

b) The result of the procedure is e1
NR < e0

NR .

Next iterations:
a) Repeat the process iteratively updating the momenta:

pi+1
r = pir/λ

i
r

pi+1
t = pit/λ

i
t

(9)

Antoni Ramos Buades, Sascha Husa (UIB) IGWM2017 16th May, 2017 12 / 22



Results. Limitations of the iterative procedure

For eccentricity reduction purposes only inspiral runs are needed.

The value of the eccentricity cannot be lowered beyond the error of
the eccentricity estimator O

(
10−5

)
.

The GW signal is usable only after junk radiation has passed at
around 200M.

Computational cost of NR runs is high.

PN approximation is accurate enough during inspiral and
computationally cheaper.

Using PN, undesired gauge and numerical effects are avoided.
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Results. Testing iterative procedure using PN

Solve numerically 3.5PN Hamilton equations.

Estimate eΩ and try to reduce it.

Use the 1PN energy and angular momentum to derive a formula to
compute λt .

E = −M

r
+

P2
r

2η2M2
+

P2
t

2η2M2
+ γ

[
(3− 9η)P4

r

8η4M4
+

(3− 9η)P2
r P

2
t

4η4M4

+
3(1− 3η)P4

t

8η4M4
+

M2

2r2
+

(2η+3)P2
r

2η2M
+ (η+3)P2

t
2η2M

r

 ,
J =

rPt

ηM
+ γ

[
(1− 3η)rP3

t

2η3M3
+

(1− 3η)rP2
r Pt

2η3M3
+

(η + 3)Pt

η

]
(10)

Pt = Pφ/r is the tangential momentum and γ = 1/c2.
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Results. Testing iterative procedure using PN

At 1PN and linear order in eccentricity, eΩ can be written as:

eΩ(t) =
Ω(t)− Ω(0)

2Ω(0)
= et

1 + eφ/et
2

(11)

The eccentricities can be written in terms of E and J as:

e2
φ = 1 +

2E
(
γE
(η

2 −
15
2

)
+ 1
) (
J 2 − 6γM2

)
M2

e2
t = 1 +

2E
(
γE
(

17
2 −

7η
2

)
+ 1
) (
γ(2− 2η)M2 + J 2

)
M2

(12)
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Results. Testing iterative procedure using PN

Combining the previous formulae eΩ can be written in terms of Pr

and Pt :

eΩ(t) =
1

4η4r
√
η4 − r2P2

t

(
P2
r + P2

t

)
+ 2η2rP2

t

[
−12γ(η − 2)η6

+ r3P2
t

(
P2
r + P2

t

) [
−4η2 + 5γη

(
P2
r + P2

t

)
+ 13γ

(
P2
r + P2

t

)]
+ 2η2r2P2

t

[
4η2 + γη

(
P2
r + 2P2

t

)
− 40γ

(
P2
r + P2

t

)]
+ 2η4r

(
2η2 − 6γP2

r + γη
(
3P2

r − 4P2
t

)
+ 38γP2

t

)]
(13)

Then we can write Pr = λrP
r
0 and Pt = λtP

t
0, where Pt

0 and P r
0

denote initial values for the momenta.
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Results. Testing iterative procedure using PN

We can deduce a formulae for λt(eΩ,Pr ,Pt) setting λr = 1, and
using QC initial values,

P0
r = 0, P0

t = ηM
√
M/r0, (14)

Newtonian linear eccentricity order:

λNewt
t = 1 + sign

|eΩ|
2
, (15)

1PN linear eccentricity order:

λ1PNLin
t = 1 + sign

|eΩ|

2
[
1 + η+13

r0

] , (16)

1PN quadratic eccentricity ( et and eφ) order:

λ1PNQuad
t =

√
1 + sign

4r0 |eΩ|
21η + 4r0 + 4

, (17)
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Results. Testing iterative procedure using PN

sign is +1 or −1 depending if the eccentricity reaches a minimum or
maximum at the origin.

Qualitative behavior at origin → mixture of Pt and Pr .
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ecc. estimators:Ω /Ω-fit

In that case sign = −1 → Pt has to increase.

Antoni Ramos Buades, Sascha Husa (UIB) IGWM2017 16th May, 2017 18 / 22



Results. Testing iterative procedure using PN

Test to check the validity of the previous formulae.
1) Generate a 1PN simulation with very low eccentricity.

Example case: q4. S1 -0.8 S2 0.8. eΩ = (1.43± 0.01)× 10−5
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0.000015
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)
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Results. Testing iterative procedure using PN

2) Set λr = 1 and change manually λt .
3) Check which formula predicts the best answer.

λtheo
t λNewt

t λ1PN Lin
t λ1PN Quad

t Erel λ
Newt
t Erel λ

1PN Lin
t Erel λ

1PN Quad
t

1.0015 1.00157 1.00118 1.0015 6.66×10−5 3.2×10−4 3.26 ×10−6

1.009 1.00918 1.00691 1.00874 1.77×10−4 2.07 ×10−3 2.60×10−4

1.0025 1.0026 1.00196 1.00248 9.92×10−5 5.43×10−4 1.78×10−5

1.00002 1.00002 1.00002 1.00002 8.62×10−6 2.77×10−6 7.59×10−6

1.00075 1.00079 1.00059 1.00075 3.86 ×10−5 1.56 ×10−4 3.68×10−6

0.9995 0.999486 0.999613 0.999508 1.44 ×10−5 1.13×10−4 8.06×10−6

0.9991 0.999067 0.999298 0.999107 3.33×10−5 1.97×10−4 7.34×10−6

0.999975 0.999982 0.999986 0.999982 6.68×10−6 1.12×10−5 7.48×10−6

0.9915 0.990954 0.993194 0.991314 5.50×10−4 1.70×10−3 1.87 ×10−4

0.9955 0.995261 0.996434 0.995459 2.40×10−4 9.38 ×10−4 4.13 ×10−5
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Results. Testing iterative procedure using PN
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Conclusions

A simple method to compute the eccentricity from simulations has
been set.

New Ansatz based on TaylorT3 approximant → reliable measure of
eccentricity and value at the origin.

Qualitative behavior of eΩ at origin → estimation of the mixture of
Pt and Pr .

Use a general iterative procedure consisting in adjusting (λrP
0
r , λtP

0
t ).

Prohibitive cost of NR simulations → first tests within PN
approximation.

Formulas for λt are computed from 1PN Lagrangian.

A reduction of the eccentricity is observed.

Future Work: Compute analytical correction for P0
r , analyse NR

simulation results, extend to precessing cases,...
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