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Outline 
•   Discovery of 3 BHB by aLIGO-O1 
   started a new era of GW Astronomy 
•   PBH = Dark Matter 
•   Peaks in Curvature (Quantum orig.) 
•   Higgs = Inflaton  (Critical Higgs Inf.) 
•   Particle Physics Beyond SM 
•   Test PBH with GW interferometers   
•   Conclusions   





Merging Binary BHs @ LIGO 







Gravitational Wave Astronomy 
•   Discovery of binary BHs by AdvLIGO 
•   VIRGO, KAGRA, INDIGO = GW Astron 
•   GW150914 = 36 + 29 Msun BH binary 
•   GW151226 = 14 +  8 Msun  BH binary 
•   LVT151012 = 23 + 13 Msun “candidate” 
•   Expected 50-100 events/yr/Gpc3   
•   AdvLIGO+ can map the mass and spin  
   Massive BH (0.1 Msun  < MBH  < 150 Msun) 
   n.b.  fISCO = 4400 Hz (Msun /MBH) 
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Steven Weinberg 

“our problem is not that we  
take our theories too seriously,  

but that we  
don't take them seriously enough’’ 
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Present Constraints on PBH 
Clesse, JGB (2015) 
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Concrete realization: PBH in 
Critical Higgs Inflation 

Ezquiaga, JGB, Ruiz Morales (2017) 



Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014) 



Froggat, Nielsen (‘70) 

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014) 
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Concrete realization: CHI model 
Ezquiaga, JGB, Ruiz Morales (2017) 



Ezquiaga, JGB, Ruiz Morales (2017) 





Ezquiaga, JGB, Ruiz Morales (2017) 



Ezquiaga, JGB, Ruiz Morales (2017) 
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JGB, Ruiz Morales (2017) 

Mass Spectrum @ MR equality 



Primordial Spectrum for PBH 
JGB, Ruiz Morales (2017) 
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CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 



CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 

Reheating after  CHI 



CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 
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CMB Constraints on CHI 
Ezquiaga, JGB, Ruiz Morales (2017) 
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Ezquiaga, JGB, Ruiz Morales (2017) 

CMB Constraints on CHI 
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Present Constraints on PBH 
Ezquiaga, JGB, Ruiz Morales (2017) 



Massive Primordial Black Holes 
•  These are NOT the (small) PBH with 
   10-24 M< MPBH <10-13 M of Carr et al. 
•  These are black holes with 
   10-12 M< MPBH <10-8 M  which cluster and  
   merge and could resolve some of the most  
   acute problems of ΛCDM paradigm. 
•  ΛCDM N-body simulations never reach the  
  100 M particle resolution, so for them PBH  
  is as good as PDM.  



Distinguish MPBH from Stellar BH 
•   Accretion disks 
•   Distribution of spins 
•   Mass distribution ≠ IMF 
•   SBH kicks at formation vs static PBH 
•   Galaxy formation rate  gal. seeds 
•   Microlensing events of long duration 
•   GAIA anomalous astrometry 
•   CMB distortions with PIXIE/PRISM 
•   Reionization faster in the past 
•   N-body simulations below 102 Msun 
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P. Tisserand (2007) 
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Stochastic Background from MPBH 
Clesse, JGB  arXiv:1610.08479 



Stochastic Background from MPBH 
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Primordial Black Holes as Dark Matter 



Sensitivity of future GW antenas 
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Discussion 



Signatures of  PBH  as  DM 
•   Seeds of galaxies at high-z 
•   Reionization starts early (Kashlinsky) 
•   Larger galaxies form earlier than ΛCDM 
•   Massive BH at centers QSO @ z>6   
•   Growth of structure on small scales 
•   Ultra Luminous X-ray Transients 
•   MPBH  in  Andromeda (Chandra) 
•   GW from inspiraling BH (LIGO) 
•   Substructure and too-big-to-fail probl. 
•   Total integrated mass = ΩM 



Conclusions 
•  Massive Primordial Black Holes are the perfect 
candidates for collisionless CDM, in excellent 
agreement with CMB and LSS observations. 
•  MPBHs could also resolve some of the most 
acute problems of ΛCDM paradigm, like early 
structure formation and substructure problems. 
•  MPBHs open a new window into the Early 
Universe, ~ 20-40 efolds before end inflation. 
•  There are many ways to test this idea in the 
near future from CMB, LSS, X-rays and GW.  
•  LISA/PTA could detect the stoch. background 
from MPBH merging since recombination. 


