Improving Aligned Spin Phenomenological Models: Extreme Mass Ratios and Double Spins

Geraint Pratten Universitat de les Illes Balears Iberian GW Meeting 2017

Joint work with: Sascha Husa, Marta Colleoni, X. Jiménez, Cecilio García, Antoni Ramos, Rafel Jaume, Edward Fauchon-Jones, A. Nagar, S. Bernuzzi, E. Harms, M. Hannam, S. Khan, F. Ohme, D. Keitel, M. Pürrer, A. Bohé

Overview Of Current Status

Phenomenological Models:

• Focus here is on aligned spin waveform models

$$\chi_{iL} = \frac{c \, \mathbf{S} \cdot \hat{\mathbf{L}}}{Gm_i^2} \quad \bullet \text{ Spins aligned with orbital angular momentum } \bullet \text{ Orbital plane fixed } \hat{L} = \text{const}$$

- IMRPhenomD calibrated to 19 hybrids (uncalibrated SEOBNRv2)
- Calibrated to mass ratios 1:18
- Calibrated to spins $|a/M| \sim 0.85 (0.98 \text{ for equal mass})$
- Target model mismatch $\lesssim 10^{-2}$
- Accurate aligned spin models *necessary*:
 - Avoid confusion with subdominant effects (e.g. higher modes)
 - Basis for precessing phenomenological models IMRPhenomP
 - Parameterised tests of GR need accurate/low bias waveform models

Model Construction: Frequency Regimes

Signal Amplitude & Phase:

• Waveform is function of binary parameters:

$$\Xi \in \{M, \eta, \chi_1, \chi_2\}$$

• Separately model the amplitude and phase as a function of frequency

$$\tilde{h}_{22}(f;\Xi) = A(f;\Xi) \ e^{-i\phi(f;\Xi)}$$

Frequency Regimes

- Adopt a modular approach
- Identify 3 separate frequency regimes: Inspiral, Intermediate, Ringdown

Model Construction: Inspiral

Hybrids

- NR Waveforms are too short!
- Target model that will be valid down to low frequencies ~ 10Hz
- Overcome by hybridising NR waveforms with SEOBNRv4

$$h(t) = \omega_{t_0, t_0 + T}^{-} e^{i\varphi_0} h_{\text{PN}}(t + \delta t) + \omega_{t_0, t_0 + T}^{+} e^{i\varphi_0} h_{\text{NR}}(t + \delta t)$$

Inspiral Phase

Built on TaylorF2 phase calibrated with 3 pseudo-PN coefficients

$$\varphi_{\text{Ins}} = \varphi_{\text{TF2}}(Mf;\Xi) + \frac{1}{\eta} \left(\sigma_0 + \sigma_1 f + \frac{3}{4} \sigma_2 f^{3/4} + \frac{3}{5} \sigma_3 f^{5/3} + \frac{1}{2} \sigma_4 f^2 \right)$$
$$A_{\text{Ins}} = A_{\text{PN}} + A_0 \sum_{i=1}^3 \rho_i f^{(6+i)/3}$$

- Improve calibration by fitting to SEOBNRv4 (compared to v2 in PhenomD)
- +3.5PN cubic-in-spin terms (Marsat 2015)
- +3PN quadratic-spin terms (Bohé et al 2015)

Model Construction: Intermediate

Phase ansatz for intermediate (merger) regime:

• Freedom in *time* and *phase* shifts - use phase derivative!

$$\varphi(f) \to \varphi(f) + \varphi_0 + 2\pi t$$

- Conceptual shift from previous polynomial fits
- Opt for a *double* Lorentzian model (merger & ringdown)
- More robust especially when including extreme mass ratio limit

$$\varphi'_{\rm MR} = \alpha_1 + \sum_{i=2}^n \alpha_n f^{-p_n} + \frac{a}{f_{\rm damp}^2 + (f - f_{\rm ring})^2}$$

Amplitude ansatz for intermediate (merger) regime:

• Use a fifth order polynomial with 2 free collocation points

$$A_{\rm Int} = A_0 \left(\delta_0 + \delta_1 f + \delta_2 f^2 + \delta_3 f^3 + \delta_4 f^4 + \delta_5 f^5 \right)$$

Model Construction: Ringdown

Phase ansatz for ringdown:

• Lorentzian model as used in previous phenom models

$$\varphi'_{\rm MR} = \alpha_1 + \sum_{i=2}^n \alpha_n f^{-p_n} + \frac{a}{f_{\rm damp}^2 + (f - f_{\rm ring})^2}$$

Amplitude ansatz for ringdown:

• As in PhenomD we use a deformed Lorentzian

Ringdown frequency

$$h_{\rm RD} = \frac{a e^{-\lambda (f - f_{\rm RD})}}{(f - f_{\rm RD})^2 + \sigma^2}$$

- Peak ~ ringdown frequency
- Width ~ damping frequency
- High f falloff > polynomial

Model Construction: Extreme Mass Ratio Limit

Time domain waveforms used in EMR limit:

- Numerical approach + semi-analytic EOB test-mass dynamics (5.5PN)
- Conservative motion + linear-in- η radiation reaction
- Hyperboloidal coordinates unambiguous waveforms at \mathscr{I}^+

Bernuzzi+ PRD84 (2011), Harms+ CQG31 (2014)

Hierarchical Fit: Collocation Points

Need to map from phenomenological coefficients to physical parameters

- Advocate use of collocation points
- "Fitting for value at fixed frequencies and differences between values"
- Find they are better conditioned than basis coefficients
- Accurate polynomial fits may require high order
- For ideal ansatz may need only a few coefficients in some direction

Hierarchical Fits: Workflow

• Insight from luminosity & final mass/spin fits

Jiménez+ (PRD2017), Keitel+ (arXiv:2016)

Hierarchical Fit: 1D Fits

Start by constructing 1D fits: non-spinning and equal mass, equal spin

- Parameter space is densely sampled by accurate NR simulations
- Can construct well conditioned and tightly constrained fits

Hierarchical Fit: Equal Spin 2D Fit

• Fits informed using information criteria: BIC, AIC, AICc and residuals

$$BIC = -2 \ln \mathcal{L}_{max} + N_{coeff} \ln(N_{data})$$

• Start from 1D non-spinning $f(\eta)$ or equal spin $f(S) \rightarrow 2D$ $f(\eta, S)$

• Can choose spin parameterisation:

Hierarchical Fit: Unequal Spins

Unequal spin effects are a subdominant effect

• Functional form can be inferred from PN & BH perturbation theory

$$\mathcal{F}_{\rm SO}^{\rm LO} \propto \sqrt{1-4\eta} \left(-\frac{13}{16} + \frac{43}{4}\eta \right) \Sigma_{\ell}$$

• Motivates a general fit of the form

$$\lambda\left(\eta, \hat{S}, \Delta\chi\right) = f_1(\eta)\Delta\chi + \underbrace{f_2(\eta)\Delta\chi^2 + f_3(\eta)\hat{S}\Delta\chi}_{\text{Next-to-Leading Order}}$$

$$f_1(\eta) = \sqrt{1 - 4\eta} P(\eta)$$

• In equal mass limit terms linear in $\Delta\chi\,$ must vanish due to $\sqrt{1-4\eta}\,$

$$\Sigma_{\ell} = m_2 \, \vec{\chi}_2 \cdot \vec{\ell} - m_1 \, \vec{\chi}_1 \cdot \vec{\ell}$$

Hierarchical Fit: Unequal Spins

Fit residual of 2D surface with unequal spin effects

• Take dominant linear contribution to avoid overfitting noisy data

$$X = X_{Eq} + f(\eta) (\chi_1 - \chi_2) + \dots$$

Hierarchical Fit: Unequal Spins

- We can now perform the same procedure to fit all phenomenological coefficients!
- More prominent in some coefficients physical intuition behind this as well!

Error bars larger/unreliable in regions poorly sampled by NR

Vanishes in equal mass limit

Hierarchical Fits: Unequal Spins, Outlook

Rapid improvements with more data and better control of systematics

Model Validation: Preliminary Mismatches

Standard model validation tools:

• The overlap is the noise weighted inner product

$$\langle h_1, h_2 \rangle = 4 \operatorname{Re} \int_{f_{\min}}^{f_{\max}} \frac{\tilde{h}_1(f) \ \tilde{h}_2^*(f)}{S_n(f)} df$$

• Calculate mismatch between normalised waveforms $\hat{h} = h/\sqrt{\langle h, h \rangle}$

$$\mathcal{M}(h_1, h_2) = 1 - \max_{t_0, \phi_0} \langle \hat{h}_1, \hat{h}_2 \rangle$$

• Indistinguishability $\mathcal{M} \lesssim (2\rho^2)^{-1} \leftarrow \rho \lesssim 25 \text{ need } \mathcal{M} \lesssim 8 \times 10^{-4}$

Summary

- Focus has been on completing non-precessing 22-mode model (HM extensions discussed by Cecilio!)
 - Need high fidelity models for O3 and beyond (ET)!
 - Have robust method to fit to the non-precessing parameter space
 [Jiménez+ (PRD2017), Keitel+ (arXiv:2016)]
 - Have calibrated for the unequal spin effects
 - Extreme mass ratio limit constrains model avoids pathological boundary conditions
 - Matching regions guided by MECO, ISCO and ringdown frequencies
 - Preliminary typical matches @ 20-200 solar masses ~ 10⁻⁴ to 10⁻⁶
 - In Progress: Parameter estimation / Improved precessing models