

An ultra-stable thermal environment in high precision optical metrology

Alejandro Torrents Rufas

Outline

- GRLOW
- Ultra-stable thermal environment
 - Passive thermal shields
 - Mathematical model
 - FEM simulations
 - Experimental Transfer Funcitons
 - Thermal Stability

- Mach Zehnder Interferometer
- OPTOMETER
- Future Work
- Conclusion

General Information

GRLOW: Low-frequency technology test bed

- **Aim:** develop an infrastructure to test GW technologies at low frequencies
- Main objectives:
 - Implement a low-frequency stabilised thermal environment(10⁻⁴ Hz). •
 - Implement a basic interferometer, based in deep phase modulation scheme.
 - Combine both to test key technologies at very low frequencies: materials, • optoelectronics, etc.

Passive Thermal Shields

•

- Multi-layer thermal radiation insulator (mirror polished steel) •
- Low thermal conductivity supports between cylinders ٠

- Mathematical Model
 - Transfer function estimate:

$$\tilde{H}_{ij}(\omega) = \frac{\tilde{T}_j(\omega)}{\tilde{T}_i(\omega)} = \frac{1}{1 + \frac{m_j c_j \beta_{ij}}{4\sigma A_j T_0^3}} i\omega$$

Multi-layer transfer function

$$\begin{split} \tilde{H}(\omega) &= \frac{1}{1 + \sum_{k=1}^{N} \frac{1}{(2k)!} \frac{(N+k)!}{(N-k)!} (i\omega\tau)^{k}} \\ &= (1 + \frac{1}{4}i\omega\tau)^{1/2} \quad sec \left[(2N+1) \quad csc^{-1} \right] \end{split}$$

$$-1\left(\frac{(1+i)}{\sqrt{\omega\tau/2}}\right)$$

• FEM simulations

Frequency [Hz]

Experimental Transfer Function

1	л,	1	1	J,	1		Ţ	1	F			
	т	•	ς	2	1		•	•	2			
-	•	1		2					-			
	T	ļ	5	3	C	2		2	3			
			,					ļ				
_	I	Ì	ì		ļ			2	ł			
•	Т	2	ç	2	٢		2	ļ	5			
	-	1		_				`	_			
	X	Ì	:	12	Ì	:	1	:	4			
							ŝ		н			
	0	1	1	0	1	1	3	1	1			
1	2	1	1	2	1	1	3	1	1			
	÷		1	÷		1	1	1	1			
		,	,		,	,	÷,	,	4			
				-								
				å			ŝ		4			
	÷			÷								
	÷			i			i					
	-0			÷			1	ĩ	Ŧ			
ì	2	ì	ì	3	ì	ì	ŝ	ì	1			
	÷	ł	i	÷	ł	1	i	ł	н.			
1	÷	ł	ł	÷	ł	1	ŝ	ł	H.			
	÷			÷			3		н			
	Â			Â.			ŝ		Т			
				ž					Т			
	÷			÷			ŝ		Т			
				1					Т			
	-			÷								
				7		•	ŝ		Л			
		1			1		ī	Ĩ	٦			
			l	3		Ì	3		1			
,	ō	,	,	ò	,	,	3	,	4			
4	ġ,	1	,	Ó		,	ž	,	н			
ï			•	÷.	ł		÷		н			
					1	1	ş	•	Г			
1	5	Ĺ	Ĺ	1					7			
			1	5			5		Т			
				-		1	5	ŝ	1			
									-			
				-								
		ī	ī	÷.	ī	ī		ĩ	4			
ŝ	1	j	ì	3	Ì	ì	ŝ	ì	Ξ.			
,	14	ĺ		14		i	-		7			
	÷	i	ì	2	1	4	3	ł	4			
	- 5						2		-			
	-			-			-]			
1	E		1	Ĩ		Î	i	1	J			
				Ĵ.			1.0]			
	÷.			1			i		1			
	5			-			i					
	÷.			÷.			i.					
	-			-			Ť		-			
									_	-	2	1
						1	1		0			
								1	-			

Experimental Transfer Funciton

1	ļ,	1	1	ļ,	1	1	Ţ	1	F			
•	Т	1	ç	2	٢	2	2	2	>	l		
										l		
_	I			5	ļ		,		3	l		
•	Т	1	ç	1	٢	2		2	L	l		
-				0						l		
_	I			5	ļ			()	l		
				1.1			1		F	1		
	3	Ĵ	Ì	3		Ì	ŝ	ì	1			
,	ő		,	ő	,	,	1	,	н			
	Ċ,		,	Ċ,	,	,	2	,	н			
	4			1.1			ì		4			
1	1.1	1	1	1	1	1	1	1	1			
				9		1	1		Н			
				5								
	1			1			1					
	1			1			1					
	Q.			¢.			3	ï	Н			
ì	3	ì	ì	2	ì	ì	ŝ	ì	7			
1	÷	1	ł	÷	1	ł	3	ł	Н			
1	÷	1	ł	÷	ł	ł	ł	ł	Н			
	÷	-		÷			ì		Н			
	Â.			â.			ŝ		Т			
				÷.					Т			
				-			i		Ц			
	3			3			ì		٦			
			_	1								
						•	i	_	.			
	÷						í	P				
				ē		ì	i		F			
	1.1			1.1			1		1			
Ĵ	X	Ĵ	ì	X	į	ì	i	ì	Ι			
1	5			1			i		Ι			
			1	۰.	ŝ	ŝ	ŝ	ľ	П			
4	2			1		l	Ì	1	3			
	2		١	ŝ.					٦			
	i,			141		1	ä	ł	Н			
				-			ł	1	5			
				÷					٦			
				1								
				ŵ			ĵ	ī	F			
ŝ	5	ì	ì	ö	ì	ì	ī	ì	٦			
	÷.		5	÷		1	i		Н			
1	17	1	ł		1	4	2	1	4			
	- 2						2		4			
	-			-			i		1			
-	1		1	1		Î	i	Ĩ	J			
				-								
	3			3			1		1			
	1			1			1					
	-						1					
	1			-			1	-				
											,	
						,	1		n	Ē	2	2
								1	U			

Air Conditioning acting at the mHz!

ΙϹϾ IEEC⁹ CSIC

1	л,	1	1	J,	1	1	Ţ	1	F		
	-	•	2	2				,	2	1	
_	I	1						4	-	L	
	Т	1	Ş	3	ſ	2	ļ	2	3	L	
1	•									L	
	I	ļ	ŝ	5	l			4	ŀ	L	
	-	•			,			E	-	L	
_	I	1		2			2	5)		
•	~		•	14		•	4	•	Η		
	3			3			ŝ		7		
,	0	1	1	0	1	,	3		н		
1	0	1	1	0	1	1	3	1	н		
	÷			÷			1	1	Н		
,	÷			÷	,		2	,	Н		
				-							
			1	2		1	1		1		
				-							
	÷			÷			i				
	÷			÷			î	7	╡		
	÷			÷			i		Н		
ì	Ξ	ì	ì	2	ì	ì	į	ì	٦		
		i			1		ì		н		
-	ŝ.			÷			i		Ч		
	â			â.			i		1		
				-			-				
	-						1		4		
	1			5							
	1			Ś							
	-			-			2		ч		
ì	5	ì	ì	5	ì	ì	i	ì	4		
	÷			÷			i		Н		
Ì	2	j	Ì	2	l	Ì	1	l	1		
2	s	ŝ	Ĺ	2	l	l	i	Ì]		
		1	1		í	í	į	ĺ	1		
	C,	ľ	ľ	2			1	1	2		
	5			Ś	_						
	1			1		1	Ś	ŝ	٦		
				-					2		
	÷.	7	7	÷.	7	ī	ŝ	7	킈		
ŝ		ì	ì	3	ì	ì	ì	ì	킈		
	2			÷		1	i		Н		
	17	ł	ſ	2	١	ś	2	ł	4		
	ĝ			ŝ			1				
	÷			÷			ì		-		
									1		
	3			2			1		۲		
							1				
	2			÷.			i.				
	1			1			1		_		
									_	-	ļ
						•	1		0	-	2

Thermal Stability

- Electronic measuring noise: $S_{T, \rm sensor}^{1/2}(\omega) \leq 10^{-5}\,{\rm K}/\sqrt{{\rm Hz}}$
- LISA Pathfinder requirements: $S_T^{1/2}(\omega) \le 10^{-4} \,\text{K}/\sqrt{\text{Hz}} \;, \quad 1 \,\text{mHz} \le \omega/2\pi \le 30 \,\text{mHz}$

	ĩ	i.	ĩ	ĩ	ĩ	ì	ĩ	2	1	l	ì	ĩ	ĩ	2	ĵ,	1	-
		÷	÷	÷	÷	ł	ł	ł	1		ł	ł	ł		ł		-
	1	1	ł	ł	1	ł	1	ł	1	1	ł	ł	ł	ł	ł		-
_		-	-	-	-	-		-	ı.	1	ł	ł	ł	•	1	1	-
									Ł	1	ł	ł	ł	ł	ł	1	-
									ł				1		ł	1	-
									ł						ł	1	
									Ł	•	1	1	1	•	í	1	-
									L	2	1	1	1	1	1	1	
									L		ŝ	ĩ	ŝ	2	ì		_
									L		l	l	ì		ì		
									ŀ		,	,	,		,		-
									ŀ						1	1	1
									ŀ								
									ŀ						;		
									L	l	î	ĩ	î	l	î	1	
									Ł	÷	ì	ì	ì	ì	ì		_
									Ł	1	ł	ł	ł				_
									Ł						ł		-
									ŀ		1	1	1	1	1		-
									ŀ				1		1	1	1
									ŀ								1
									ŀ						7		_
									Ł	÷	÷	÷	÷		÷		-
									Ł	1	ł	ł	ł	•	ł		-
									Ł	•	1	1	1	•	1		-
									Ł	1	ł	ł	ł	1	ł		-
•	•	-	•			۱	١		ŀ		1	1	1		1		1
	ľ					/											
_																	_
	ł	ł	ł	ł	ł	ł	ł	Ĩ	1	í	ł	ł	ł	í	í	1	
	1	1	1	1	1	1	î	1	1		1	1	1	2	2	1	
	÷	÷	÷	÷	÷	÷	i	i	1	į.	÷	÷	÷	ì	i		_
							i								,		-
					,			1							•		-
								1	1		1		1		ł	1	1
									,								
	ï	ï	ï	ï	ï	ï	ï	ł	1	Î	ï	ï	ï	í	ï	1	-
	i.	ŗ.	1	ŗ.	ł.	ŝ	ŝ	ţ,	5	l	ŝ	ł.	ł	1	ŝ	1	
	ĵ.	ĵ.	ĵ,	ĵ,	ĵ,	į.	1	1	1	1	ĵ,	ĵ,	į.		ĵ,	1	
	ĩ	ĩ	ĩ	ĩ	ĩ	Ĩ	Ĩ	Î	1		Ĩ	Ĩ	Ĩ	1	Ĩ	1	
1	1	1	1	1	1	1	1	ļ	l	ļ	1	1	1		1		
	ļ	ļ	ļ	ļ	ļ	ļ	i	į	į		ļ	ļ	ļ		i	1	
	,	,	,	,	,	,	,				,	,	,				

 $V_{PD} = A[1 - c\cos(\varphi + m\cos(\omega_{mod}t + \psi))]$

Phase can be extracted through non-linear minimisation:

$$\chi^2 = \sum_{n=1}^{10} |\widetilde{V}_{PD}(n) - a_n(m,\phi)e^{i\,n\,\Psi}|^2$$

11	

• Experiment: Thermo-elastic effects

• Experiment: Thermo-elastic effects

OPTOMETER

- Opto-mechanical resonators
 - **Aim:** Design and development on an innovative on-chip temperature sensor with high precision and stability for use in applications with high sensitivity and environmental purity, such as space missions.
 - Main objectives:
 - Construction of an ultra-stable thermostat at low-frequency range.
 - Validate the use of technologies in the band of very low frequencies.
 - application

Miniaturisation of the technology to reach a final prototype and qualify if it for an space

15

OPTOMETER

Status: Preliminary statement, main elements in the lab, starting optical layout

16

Future work

- Thermal enclosure:
 - Attenuate outer fluctuations with a passive insulator curtain.
 - Active thermal control using a thermo-electric cooler.

e insulator curtain. ctric cooler.

Conclusions

- Although we need more data processing, mathematical model, FEM simulations and experimental results seems quite similar.
- Temperature stability set to 10⁻⁵ K Hz^{-1/2} at the band of the mHz with passive thermal shields.
- We have develop a Mach-Zehnder interferometer with a sensitivity of 100nm • $Hz^{-1/2}$ at the frequency range of the mHz.
- Keep working to achieve a high precision thermal sensor in the next months.

18

Questions?

Alejandro Torrents Rufas

