The problem of gauge fixing in the Newman-Penrose formalism

Andrea Nerozzi

7th Iberian Gravitational Wave Meeting, Bilbao

May 16th, 2017

Andrea Nerozzi (7th Iberian Gravitational WaThe problem of gauge fixing in the Newman-

Current problems with wave extraction in NR

- Extraction takes place at finite radius rather than null infinity
- Gauge ambiguity in the determination of the correct tetrad to project the Weyl tensor components.
- Numerical integration of the Weyl scalar Ψ_4 to obtain the strain

Systematic errors coming from wave extraction are starting to become the dominant source of errors. The need of a mathematically rigorous wave extraction technique is becoming an urgent topic in numerical relativity.

The Newman-Penrose formalism is used in numerical relativity to obtain gauge invariant information about gravitational waves.

$$\Psi_4 = \frac{\partial^2 h_+^{TT}}{\partial t^2} + i \frac{\partial^2 h_{\times}^{TT}}{\partial t^2}$$

The Kinnersley tetrad guarantees that $\Psi_4 = 0$ for Kerr.

- The chosen tetrad must converge to the Kinnersley tetrad in the background limit.
- Calculating Ψ_4 using tetrads evaluated numerically normally brings unwanted gauge effects into the final waveform.
- Our objective is to <u>eliminate</u> the numerical evaluation of the tetrad (no more Gram-Schmidt!).

Relevant tetrads in the NP formalism for a general (Petrov type I) space-time

1) Symmetric transverse tetrad (STT)

$$\Psi_1=\Psi_3=0\qquad\qquad\qquad\Psi_0=\Psi_4$$

2) Quasi-Kinnersley tetrad (QKT)

$$\Psi_1 = \Psi_3 = 0 \qquad \qquad \epsilon = 0$$

- QKT is the "right tetrad", it guarantees the convergence the Kinnersley tetrad in the Petrov type D limit.
- STT in a convenient tetrad because of its symmetric properties, but not good for numerical applications.
- STT and QKT are related by a spin/boost (type III) tetrad transformation (complex parameter *B*).

Different approaches to Einstein's equations in vacuum

Coord. approach	Newman-Penrose N	IP in STT
$g_{\mu u}$	$\ell^\mu, \textit{n}^\mu, \textit{m}^\mu, ar{m}^\mu$	$\Sigma_{\mu u}, \Sigma^+_{\mu u}, \Sigma^{\mu u}$
Γ _{abc}	$ ho, \mu, au, \pi, \sigma, \lambda, u, \kappa, \epsilon, \gamma, eta, lpha$	A_{μ},B_{μ},C_{μ}
C_{abcd}	$\Psi_0,\Psi_1,\Psi_2,\Psi_3,\Psi_4$	Ψ_2, Ψ_4

• In STT the only remaining degrees of freedom are Ψ_2 and Ψ_4

$$\begin{split} \Psi_{2}^{STT} &= -\frac{I^{\frac{1}{2}}}{2\sqrt{3}} \left(\Theta + \Theta^{-1}\right), \\ \Psi_{4}^{STT} &= \frac{I^{\frac{1}{2}}}{2i} \left(\Theta - \Theta^{-1}\right), \end{split}$$

• I is one of the two curvature invariants and $\Theta = f(I, J)$.

The Bianchi identities

The Bianchi identities ($\nabla_a C^{*a}_{bcd} = 0$) written as functions of the variables introduced within our approach give

$$A_a = -\frac{iK}{\sqrt{3}}B_a - \frac{1}{6}\nabla_a \ln I - \frac{K}{3}\nabla_a \ln \Theta$$

$$C_a = -\frac{i(K+3K^{-1})}{2\sqrt{3}}B_a + \frac{1}{6}\nabla_a \ln I + \left(\frac{3K^{-1}-K}{6}\right)\nabla_a \ln \Theta.$$

where

$$K = rac{\Theta - \Theta^{-1}}{\Theta + \Theta^{-1}}$$

It turns out that the Bianchi identities can be used as simple relations to derive the two vectors A_a and C_a once B_a is known. But what about the third vector? Can we find a third potential?

We introduce following function of the self-dual Weyl tensor

$$D^*_{abcd} =
abla_\mu
abla^\mu C^*_{abcd}.$$

Using the Bianchi identities it is possible to show that D^*_{abcd} is given by

$$D^*_{abcd} = 16 \ I \ I_{abcd} - rac{3}{2} \ C^*_{abef} \ C^{*ef}_{\ cd},$$

where I_{abcd} is the identity tensor: $I_{abcd} = \frac{1}{4} (g_{ac}g_{bd} - g_{ad}g_{bc} + i\epsilon_{abcd})$.

The tensor D^*_{abcd} has the same symmetries of the self-dual Weyl tensor, included its trace-free property.

Analogously to $\nabla_a C^{*a}_{bcd} = 0$, the divergence of D^*_{abcd} must satisfy

$$\nabla_{a} D^{*a}{}_{bcd} = \mathcal{S}_{a} C^{*a}{}_{bcd} + \mathcal{T}_{a} D^{*a}{}_{bcd}.$$

 \mathcal{T}_a and \mathcal{S}_a are tetrad invariant vectors given by

$$\mathcal{T}_{a} = \nabla_{a} \ln \left[I^{\frac{1}{2}} \left(\Theta^{3} + \Theta^{-3} \right)^{\frac{1}{3}} \right] - \frac{I^{-\frac{1}{2}}}{\sqrt{3} \left(\Theta^{3} + \Theta^{-3} \right)} S_{a}.$$
$$S_{a} = f(\nabla_{a} I, \nabla_{a} \Theta) + D^{*bcd}_{a} \nabla_{e} D^{*e}{}_{bcd}.$$

These two vectors naturally introduce a third tetrad invariant quantity that cannot be expressed as a function of I and J. Gradient of a third scalar?

The Petrov type D limit

 A_a , B_a and C_a can be expressed as functions of $\nabla_a I$, $\nabla_a \Theta$ and S_a . In the limit of Petrov type D they are given by

$$\begin{array}{rcl} A_{a} & = & \frac{1}{6} \nabla_{a} \ln I, \\ B_{a} & = & 0, \\ C_{a} & = & -\frac{1}{6} \nabla_{a} \ln I - \frac{I^{-\frac{1}{2}}}{6\sqrt{3}} \mathcal{S}_{a}. \end{array} \qquad \begin{array}{c} \rho, \mu, \tau, \pi \\ \lambda, \sigma, \nu, \kappa \\ \epsilon, \gamma, \beta, \alpha \end{array}$$

- These values are consistent with the known expressions for the spin coefficients in Kerr.
- The value of C_a calculated in the Kerr space-time confirms that $S_a = \nabla_a \Phi!$ (at least in this limit)
- Knowing C_a in STT and in QKT allows to calculate the spin/boost parameter \mathcal{B} between STT and QKT.

Knowing the spin-boost parameter \mathcal{B} between STT and QKT we find that the values of Ψ_2 and Ψ_4 in QKT are given by

$$\begin{split} \Psi_{2}^{QKT} &= -\frac{I^{\frac{1}{2}}}{2\sqrt{3}} \left(\Theta + \Theta^{-1}\right), \\ \Psi_{4}^{QKT} &= \frac{\mathcal{B}^{2}I^{\frac{1}{2}}}{2i} \left(\Theta - \Theta^{-1}\right). \end{split}$$

Moreover: the spin coefficient σ in QKT vanishes in the Kerr limit and is naturally related to

$$\sigma^{QKT} = \frac{\partial h_+^{TT}}{\partial t} + i \frac{\partial h_{\times}^{TT}}{\partial t}.$$

No need for numerical integration!

The Ricci identities

It is known that the Ricci identities in STT simplify to

$$\nabla_{a}A^{a} = A_{a}A^{a} - B_{a}B^{a} - \frac{2I^{\frac{1}{2}}}{\sqrt{3}}\left(\Theta + \Theta^{-1}\right)$$

$$\nabla_{a}B^{a} = -2B_{a}C^{a} + 2i\Psi_{-}$$

$$\nabla_{a}C^{a} = A_{a}A^{a} - B_{a}B^{a} + 2A_{a}C^{a} - \frac{4I^{\frac{1}{2}}}{\sqrt{3}}\left(\Theta + \Theta^{-1}\right)$$

Our result of obtaining A_a , B_a and C_a as functions of $\nabla_a I$, $\nabla_a \Theta$ and maybe $\nabla_a \Phi$ would then lead to equations of the type

$$\nabla_{a}\nabla^{a}I = \dots$$
$$\nabla_{a}\nabla^{a}\Theta = \dots$$
$$\nabla_{a}\nabla^{a}\Phi = \dots$$

A set of three non-linear wave-like equations for I, Θ and Φ .

Andrea Nerozzi (7th Iberian Gravitational WaThe problem of gauge fixing in the Newman-

Conclusions

Conclusions

- Transverse tetrads $(\Psi_1 = \Psi_3 = 0)$ are an elegant form of fixing the gauge in the Newman-Penrose formalism for wave extraction.
- Using STT as a starting point, we only need to calculate the spin-boost parameter \mathcal{B} to obtain the scalars in QKT.
- Bianchi identities and the divergence of D^{*}_{abcd} allow to find the expression for the spin coefficients in STT, and consequently B.
- Work in progress to determine whether the additional degree of freedom (S_a) can in general be expressed as gradient of a third potential (it can in the Petrov type D limit).
- This procedure allows to study alternative quantities to Ψ_4 , like σ , related to the first time derivative of the strain.