General relativistic hydrodynamics of non-convex stellar collapse: gravitational waves

Nicolas Sanchis-Gual

Departamento de Astronomía y Astrofísica

José M. Ibáñez, NSG, José A. Font, Miguel A. Aloy, Susana Serna, Antonio Marquina. In preparation.

7th Iberian Gravitational Wave Meeting, Bilbao, 15-17 May 2017

Introduction

An open issue in relativistic astrophysics is the knowledge of the equation of state (EOS) describing the thermodynamical properties of high-density matter. Such extreme conditions are achieved in the cores of neutron stars.

With the recent detection of gravitational radiation, a significant new channel to collect complementary information and improve our understanding of the dense-matter EOS will soon be opened.

Its properties and the possible existence of exotic states may critically influence the stability and dynamics of these objects. The dense-matter EOS also plays a fundamental role in the evolution (on a hydrodynamical timescale) of scenarios of relativistic astrophysics such as core-collapse supernovae, short and long-duration progenitors of gamma-ray bursts, the cooling of protoneutron stars, the formation of stellar-mass black holes, or the merger of compact-binary systems.

Form a theoretical point of view, the existence of such exotic states of matter in the dense-matter EOS also requires the analysis of the "convexity" of the EOS.

Non-Convexity

In classical fluid dynamics, the convexity of a thermodynamical system is determined by the EOS and, more specifically, by the so-called fundamental derivative (see Isabel's talk):

$$\mathcal{G}_{(\text{cla})} := -\frac{1}{2} V \frac{\frac{\partial^2 p}{\partial V^2}\Big|_s}{\frac{\partial p}{\partial V}\Big|_s}$$

$$\mathcal{G}_{(\text{rel})} = \mathcal{G}_{(\text{cla})} - \frac{3}{2} c_{s_{(\text{rel})}}^2.$$

Motivated by the indications of the existence of possible regions in the dense-matter EOS where the thermodynamics can be non-convex, we performed a numerical study of the structure and dynamics of compact stellar configurations described by a BZT fluid.

For our study we consider the dynamics of unstable and uniformlyrotating neutron stars that collapse gravitationally to black holes.

A phenomenological NC EOS

We choose a particularly simple form of the EOS, namely an ideal gas EOS with an adiabatic index which depends on the density. While this phenomenological EOS can only be regarded as a toy-model, it serves nonetheless to exemplify the particularities that appear when the EOS is non-convex.

The pressure p obeys an ideal-gaslike EOS of the form, GGL-EOS (Gaussian Gamma Law):

$$p = (\gamma - 1)
ho\epsilon$$

 $\gamma \equiv \gamma_0 + \mathcal{K} \exp\left(-rac{x^2}{\sigma^2}
ight),$
 $\mathcal{K} := \gamma_1 - \gamma_0, \ x :=
ho -
ho_1$

Relativistic blast wave test

Gravitational collapse of RNS

Table 1. Uniformly rotating neutron star models with $\gamma = 2$ and $\kappa = 100$. From left to right the columns report the name of the model, the central density ρ_c in code units and in cgs units, the ratio of polar-to-equatorial coordinate radii r_p/r_e , the gravitational mass M_G , and the circumferential equatorial radius R_e .

Model	$ ho_c$	$\rho_c (g/cm^3)$	r_p/r_e	M_G	R_e
D1	3.280×10^{-3}	2.046×10^{15}	0.95	1.665	7.74
D4	3.116×10^{-3}	1.944×10^{15}	0.65	1.861	9.65

Table 2. Parameters of the GGL-EOS used in the rotating neutron star collapse simulations.

ro	γı	σ	ρ_1	ρ_1 (g/cm ³)
4/3	1.9	1.10	1.5×10^{-3}	9.356 ×10 ¹⁴
4/3	1.9	1.10	1.7×10^{-3}	1.060×10^{15}
4/3	1.9	1.10/ 1.15/ 1.20/ 1.50	2.1×10^{-3}	1.310×10^{15}
4/3	1.9	1.10	$2.5 imes 10^{-3}$	1.559×10^{15}

Gravitational wave radiation

Gravitational wave radiation

Summary

General Simulations of collapsing stars have shown the appearance of the characteristic compound waves of BZT fluids and have also illustrated how the non-convex dynamics is also imprinted on the gravitational-wave signals associated with the infalling phase.