The Giant Graviton on $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

Andrea Prinsloo ${ }^{1,2}$

in collaboration with Jeff Murugan ${ }^{1,2}$ and Dino Giovannoni ${ }^{2}$

DG, JM \& AP: 1108.3084 [hep-th]
${ }^{1}$ National Institute for Theoretical Physics, Stellenbosch University
${ }^{2}$ Department of Mathematics and Applied Mathematics, University of Cape Town

Outline

(1) Motivation
(2) Giant Gravitons
(3) ABJM Duality

4 Four-brane Giant Graviton
(5) Fluctuation Analysis
(6) Summary \& Future Research

Outline

(1) Motivation
(2) Giant Gravitons
(3) ABJM Duality
(4) Four-brane Giant Graviton
(5) Fluctuation Analysis
(3) Summary \& Future Research

Gauge theory / gravity dualities

Quantum field theories in flat space with very large local symmetry groups (gauge groups) at strong coupling λ are dual to weakly coupled theories of gravity.

This leads naturally to the following question:

Gauge theory / gravity dualities

Quantum field theories in flat space with very large local symmetry groups (gauge groups) at strong coupling λ are dual to weakly coupled theories of gravity.

This leads naturally to the following question:
How are geometry and topology
(both of spacetime and membranes embedded in spacetime) encoded in long, gauge invariant operators?

Gauge Theory

Gravity Theory

The four-brane giant graviton on $A d S_{4} \times \mathbb{C P}^{3}$ is a non-spherical membrane, embedded and moving in the complex projective space, which changes shape as it grows.

We asked the question:
How is the changing shape of this membrane visible in the dual ABJM model?

The four-brane giant graviton on $A d S_{4} \times \mathbb{C P}^{3}$ is a non-spherical membrane, embedded and moving in the complex projective space, which changes shape as it grows.

We asked the question:
How is the changing shape of this membrane visible in the dual ABJM model?

Outline

(1) Motivation

(2) Giant Gravitons
(3) ABJM Duality

4 Four-brane Giant Graviton
(5) Fluctuation Analysis
(6) Summary \& Future Research

Giant gravitons

A lower dimensional analogy: An electric dipole

An electric dipole moving perpendicular to a magnetic field \vec{B} (coupling to the EM one-form potential $A_{1}=A_{\mu} d x^{\mu}$) experiences a force which keeps the charges separated.

The faster it moves, the bigger the dipole! (The greater the equilibrium separation distance between the +ve and -ve charges.)

Sphere giant gravitons on $\mathrm{AdS}_{5} \times S^{5}$

The sphere giant is a D3-brane embedded on an $S^{3} \subset S^{5}$. It is both embedded and moving on the five-sphere space in the background spacetime. The extension of this $\frac{1}{2}$-BPS object is supported by a coupling to the 4 -form potential C_{4}.

[McGreevy, Susskind \& Toumbas: hep-th/0003075]
[Grisaru, Myers \& Tafjord: hep-th/0008015]

The dual operator in $\mathcal{N}=4$ SYM is Schur polynomial, constructed from $n \sim O(N)$ single complex scalar field Z and labeled by the totally antisymmetric representation of S_{n} :

$$
\chi_{\boxminus}(Z) \propto \mathcal{O}_{n}^{\text {subdet }}(Z)=\epsilon_{a_{1} \ldots a_{n} a_{n+1} \ldots a_{N}} \epsilon^{b_{1} \ldots b_{n} a_{n+1} \ldots a_{N}} Z_{b_{1}}^{a_{1}} \cdots Z_{b_{n}}^{a_{n}}
$$

proportional to a subdeterminant with maximum size $n=N$.
[Balasubramanian et. al.: hep-th/0107119]
[Corley, Jevicki \& Ramgoolam: hep-th/0111222]
A natural interpretation of this maximum length from the string theory point of view is that the sphere giant cannot grow to be bigger than the compact S^{5} space.

Outline

(1) Motivation

(2) Giant Gravitons
(3) ABJM Duality

4 Four-brane Giant Graviton
(5) Fluctuation Analysis
(6) Summary \& Future Research

[Aharony, Bergman, Jafferis \& Maldacena (ABJM): 0806.1218 [hep-th]]

ABJM Model

t'Hooft coupling: $\lambda=\frac{N}{k}$
two sets of two complex scalars: $\left(A_{1}\right)_{\alpha}^{a},\left(A_{2}\right)_{\alpha}^{a},\left(B_{1}\right)_{\alpha}^{a},\left(B_{2}\right)_{\alpha}^{a}$ in the bifundamental representation of the $U(N) \times U(N)$ gauge group. (Here a and α are indices in different $U(N)$'s.)

four composite scalars:

We can build composite scalars
$\left(\phi_{11}\right)_{b}^{a}=\left(A_{1}\right)_{\alpha}^{a}\left(B_{1}^{\dagger}\right)_{b}^{\alpha}$,
$\left(\phi_{12}\right)_{b}^{a}=\left(A_{1}\right)_{\alpha}^{a}\left(B_{2}^{\dagger}\right)_{b}^{\alpha}$,
$\left(\phi_{21}\right)_{b}^{a}=\left(A_{2}\right)_{\alpha}^{a}\left(B_{1}^{\dagger}\right)_{b}^{\alpha}, \quad\left(\phi_{22}\right)_{b}^{a}=\left(A_{2}\right)_{\alpha}^{a}\left(B_{2}^{\dagger}\right)_{b}^{\alpha}$
transforming in the first $U(N)$ of the product gauge group, out of which we can build long, gauge invariant operators.

Type IIA string theory on $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

The metric of the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ background is

$$
d s^{2}=R^{2}\left(d s_{\mathrm{AdS}_{4}}^{2}+4 d s_{\mathbb{C P}^{3}}^{2}\right)
$$

There is a constant non-zero dilaton Φ satisfying $e^{2 \Phi}=\frac{4 R^{2}}{k^{2}}$. The field strength forms are given by

$$
\begin{aligned}
& F_{2} \equiv d C_{1}=2 k d J \quad \text { with } C_{1}=2 k J \\
& F_{8}=* F_{2} \\
& F_{4} \equiv d C_{3}=-\frac{3}{2} k R^{2} \operatorname{vol}\left(\operatorname{AdS}_{4}\right) \\
& F_{6}=* F_{4} \equiv d C_{5}=\frac{3}{2}\left(2^{6}\right) R^{4} \operatorname{vol}\left(\mathbb{C P}^{3}\right)
\end{aligned}
$$

The $\mathbb{C P}^{3}$ giant graviton on $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

The $\mathbb{C P}^{3}$ giant graviton is a D4-brane extended and moving in the complex projective space. Its extension is supported by a coupling to the 5 -form potential C_{5}.

If we turn on a worldvolume gauge field, then this D4-brane will also couple to the C_{1} potential through $F \wedge F \wedge C_{1}$.

The dual operator of length $n \sim O(N)$ is a Schur polynomial constructed from the single composite field $A_{1} B_{1}^{\dagger}$ and labeled by the totally antisymmetric representation of S_{n} :
$\chi_{\boxminus}\left(A_{1} B_{1}^{\dagger}\right) \propto \mathcal{O}_{n}^{\text {subdet }}\left(A_{1} B_{1}^{\dagger}\right)=\epsilon_{a_{1} \ldots a_{n} a_{n+1} \ldots a_{N}} \epsilon^{b_{1} \ldots b_{n} a_{n+1} \ldots a_{N}}\left(A_{1} B_{1}^{\dagger}\right)_{b_{1}}^{a_{1}} \cdots\left(A_{1} B_{1}^{\dagger}\right)_{b_{n}}^{a_{n}}$号
which factorizes at maximum size into the product of two full determinants

$$
\mathcal{O}_{N}^{\text {subdet }}\left(A_{1} B_{1}^{\dagger}\right)=\left(\operatorname{det} A_{1}\right)\left(\operatorname{det} B_{1}^{\dagger}\right)
$$

These are ABJM dibaryons, which are dual to four-branes wrapped on different non-trivial $\mathbb{C P}^{2} \subset \mathbb{C P}^{3}$ subspaces.
[Gutíerrez, Lozano \& Rodríguez-Gómez: 1004.2826 [hep-th]]
[JM \& AP: 1103.1163 [hep-th]]

Outline

(1) Motivation

(2) Giant Gravitons
(3) ABJM Duality

4 Four-brane Giant Graviton
(5) Fluctuation Analysis
(6) Summary \& Future Research

Parameterization of the complex projective space

Let us now parameterize the homogenous coordinates z^{a} of the complex projective space $\mathbb{C P}^{3}$ as follows:

$$
\begin{array}{ll}
z^{1}=\cos \zeta \sin \frac{\theta_{1}}{2} e^{i\left(\frac{1}{2} \chi-\frac{1}{4} \varphi_{1}+\frac{1}{4} \varphi_{2}\right)} & z^{2}=\cos \zeta \cos \frac{\theta_{1}}{2} e^{i\left(\frac{1}{2} \chi+\frac{3}{4} \varphi_{1}+\frac{1}{4} \varphi_{2}\right)} \\
z^{3}=\sin \zeta \sin \frac{\theta_{2}}{2} e^{i\left(-\frac{1}{2} \chi-\frac{1}{4} \varphi_{1}+\frac{1}{4} \varphi_{2}\right)} & z^{4}=\sin \zeta \cos \frac{\theta_{2}}{2} e^{i\left(-\frac{1}{2} \chi-\frac{1}{4} \varphi_{1}-\frac{3}{4} \varphi_{2}\right)}
\end{array}
$$

so that the $\mathbb{C P}^{3}$ metric becomes

$$
\begin{aligned}
d s_{\mathbb{C P}^{3}}^{2}= & d \zeta^{2}+\cos ^{2} \zeta \sin ^{2} \zeta\left[d \chi+\cos ^{2} \frac{\theta_{1}}{2} d \varphi_{1}+\cos ^{2} \frac{\theta_{2}}{2} d \varphi_{2}\right]^{2} \\
& +\frac{1}{4} \cos ^{2} \zeta\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \varphi_{1}^{2}\right)+\frac{1}{4} \sin ^{2} \zeta\left(d \theta_{2}^{2}+\sin ^{2} \theta_{2} d \varphi_{2}^{2}\right)
\end{aligned}
$$

Note that $\theta_{1}=\pi$ and $\theta_{2}=\pi$ define two $\mathbb{C P}^{2}$ subspaces.

We can split the metric of the complex projective space into radial and angular parts:

$$
d s_{\mathbb{C P}^{3}}^{2}=\frac{1}{4}\left\{d s_{\mathrm{rad}}^{2}+d s_{\text {ang }}^{2}\right\},
$$

where

$$
\begin{aligned}
d s_{\mathrm{rad}}^{2}= & 4 d \zeta^{2}+\cos ^{2} \zeta d \theta_{1}^{2}+\sin ^{2} \zeta d \theta_{2}^{2} \\
d s_{\mathrm{ang}}^{2}= & 4 \cos ^{2} \zeta \sin ^{2} \zeta\left[d \chi+\cos ^{2} \frac{\theta_{1}}{2} d \varphi_{1}+\cos ^{2} \frac{\theta_{2}}{2} d \varphi_{2}\right]^{2} \\
& +\cos ^{2} \zeta \sin ^{2} \theta_{1} d \varphi_{1}^{2}+\sin ^{2} \zeta \sin ^{2} \theta_{2} d \varphi_{2}^{2} .
\end{aligned}
$$

The homogeneous coordinates of $\mathbb{C P}^{3}$ can be associated with the scalars in ABJM theory

$$
z^{1} \longrightarrow A_{1}, \quad z^{2} \longrightarrow A_{2}, \quad z^{3} \longrightarrow B_{1}, \quad z^{4} \longrightarrow B_{2}
$$

in that the momenta in these directions can be associated with the \mathcal{R}-charges of the scalar fields. Hence we deduce

\[

\]

Giant Graviton Ansatz

* Point-like in the AdS_{4} (with $r=0$) and moving only in time t.
* Radial ansatz in the $\mathbb{C P}^{3}$

$$
\sin (2 \zeta) \sin \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2}=\sqrt{1-\alpha^{2}}
$$

* Motion in $\mathbb{C P}^{3}$ along the angular direction $\chi=\chi(t)$.
* Turn off the worldvolume field strength $F=d A=0$.
* We shall make use of the worldvolume coordinates

$$
\sigma^{a}=\left(t, y, z_{1}, \varphi_{1}, \varphi_{2}\right)
$$

Here we define the radial coordinates

$$
y \equiv \cos (2 \zeta) \quad z_{1} \equiv \cos ^{2} \frac{\theta_{1}}{2} \quad z_{2} \equiv \cos ^{2} \frac{\theta_{2}}{2}
$$

and the ansatz becomes

$$
\left(1-y^{2}\right)\left(1-z_{1}\right)\left(1-z_{2}\right)=1-\alpha^{2}
$$

A sketch of the submaximal and maximal $\mathbb{C P}^{3}$ giants in radial $\left(y, z_{1}, z_{2}\right)$ space.

(a) Submaximal giant graviton $0<\alpha<1$

(b) Maximal giant graviton $\alpha=1$

The shape of this four-brane changes as the size α increases:
The small giant graviton: $\alpha \ll 1$
The giant graviton ansatz becomes

$$
y^{2}+z_{1}+z_{2} \approx \alpha^{2}
$$

which describes a two-sphere in radial $\left(y, \sqrt{z_{1}}, \sqrt{z_{2}}\right)$ space.
The maximal giant graviton: $\alpha=1$
The giant graviton ansatz becomes

$$
z_{1}=1 \quad \text { or } \quad z_{2}=1
$$

which describes two separate $\mathbb{C P}^{2}$ cycles.

Cartoon representation of the growth of the four-brane giant graviton:

The small giant graviton with $\alpha \ll 1$ is nearly spherical, but pinches off as it grows, until it factorizes at maximum size $\alpha=1$ into two four-branes, each wrapped on a $\mathbb{C P}^{2} \subset \mathbb{C P}^{3}$ cycle.

D4-brane Action

The D4-brane action $S_{\mathrm{D} 4}=S_{\mathrm{DBI}}+S_{\mathrm{WZ}}$, which describes the dynamics of the four-brane giant graviton. Here

$$
S_{\mathrm{DBI}}=-T_{4} \int_{\Sigma} d^{5} \sigma e^{-\Phi} \sqrt{-\operatorname{det}(\mathcal{P}[g]+2 \pi F)},
$$

and

$$
S_{\mathrm{Wz}}=T_{4} \int_{\Sigma}\left\{\mathcal{P}\left[C_{5}\right]+\mathcal{P}\left[C_{3}\right] \wedge(2 \pi F)+\frac{1}{2} \mathcal{P}\left[C_{1}\right] \wedge(2 \pi F) \wedge(2 \pi F)\right\},
$$

with $T_{4} \equiv \frac{1}{(2 \pi)^{4}}$ the tension and Σ the worldvolume of the giant.

Substituting this ansatz into the D4-brane action

$$
S_{\mathrm{D} 4}=\int d t L_{\mathrm{D} 4} \quad \text { with } \quad L_{\mathrm{D} 4}=\int_{-\alpha}^{\alpha} d y \int_{0}^{\frac{\alpha^{2}-y^{2}}{1-y^{2}}} d z_{1} \quad \mathcal{L}_{\mathrm{D} 4}\left(y, z_{1}\right)
$$

associated with the radial Lagrangian density

$$
\begin{aligned}
\mathcal{L}_{\mathrm{D} 4}\left(y, z_{1}\right)= & -\frac{N}{2} \frac{1}{\left(1-z_{1}\right)}\left[\frac{1}{2}(1+y)\left(1-z_{1}\right)+\frac{1}{2}(1-y)\left(1-z_{2}\right)-\left(1-\alpha^{2}\right)\right] \\
& \times\left\{\sqrt{1+\frac{\left(1-\dot{\chi}^{2}\right)\left(1-\alpha^{2}\right)}{\left[\frac{1}{2}(1+y)\left(1-z_{1}\right)+\frac{1}{2}(1-y)\left(1-z_{2}\right)-\left(1-\alpha^{2}\right)\right]}}-\dot{\chi}\right\},
\end{aligned}
$$

where $z_{2}\left(z_{1}\right)=1-\frac{\left(1-\alpha^{2}\right)}{\left(1-y^{2}\right)\left(1-z_{1}\right)}$ and $N \equiv \frac{k R^{4}}{2 \pi^{2}}$ denotes the flux of the 6 -form field strength through the complex projective space.

The conserved momentum conjugate to the χ takes the form

$$
P_{\chi}=\int_{-\alpha}^{\alpha} d y \int_{0}^{\frac{\alpha^{2}-y^{2}}{1-y^{2}}} d z_{1} \mathcal{P}_{\chi}\left(y, z_{1}\right),
$$

written in terms of the radial momentum density

$$
\begin{aligned}
\mathcal{P}_{\chi}\left(y, z_{1}\right)= & \frac{N}{2} \frac{1}{\left(1-z_{1}\right)}\left[\frac{1}{2}(1+y)\left(1-z_{1}\right)+\frac{1}{2}(1-y)\left(1-z_{2}\right)-\left(1-\alpha^{2}\right)\right] \\
& \times\left\{\frac{\left(1-\alpha^{2}\right) \dot{\chi}}{\sqrt{\left.\frac{1}{2}(1+y)\left(1-z_{1}\right)+\frac{1}{2}(1-y)\left(1-z_{2}\right)-\left(1-\alpha^{2}\right)\right]}}+1\right\} .
\end{aligned}
$$

The energy $H=P_{\chi} \dot{\chi}-L$ of this D4-brane configuration can hence be determined as a function of its size α and angular velocity $\dot{\chi}$:

$$
H=\int_{-\alpha}^{\alpha} d y \int_{0}^{\frac{\alpha^{2}-y^{2}}{1-y^{2}}} d z_{1} \mathcal{H}\left(y, z_{1}\right)
$$

with radial Hamiltonian density

$$
\mathcal{H}\left(y, z_{1}\right)=\frac{N}{2} \frac{1}{\left(1-z_{1}\right)} \frac{\left[\frac{1}{2}(1+y)\left(1-z_{1}\right)+\frac{1}{2}(1-y)\left(1-z_{2}\right)\right]}{\sqrt{1+\frac{\left(1-\dot{\chi}^{2}\right)\left(1-\alpha^{2}\right)}{\left[\frac{1}{2}(1+y)\left(1-z_{1}\right)+\frac{1}{2}(1-y)\left(1-z_{2}\right)-\left(1-\alpha^{2}\right)\right]}}}
$$

where $z_{2}\left(z_{1}\right)=1-\frac{\left(1-\alpha^{2}\right)}{\left(1-y^{2}\right)\left(1-z_{1}\right)}$.

Note on the Numerics:

The D4-brane energy $H(\alpha, \dot{\chi})$ and momentum $P_{\chi}(\alpha, \dot{\chi})$ become singular along the curve

$$
\dot{\chi}^{4}=\frac{1}{\left(1-\alpha^{2}\right)}
$$

Decreasing α from the maximal size $\alpha=1$, the lines of constant momentum P_{χ} approach this curve in ($\left.\dot{\chi}, \alpha\right)$-space. At small α, the numerics therefore become problematic.

Energy Plots:

The energy of the four-brane, plotted as a function of the size α_{0} at fixed momentum P_{χ}, in units of the flux N :

(b) $P_{\chi}=0.4$

(c) $P_{\chi}=0.6$

The finite $\alpha=\alpha_{0}$ degenerate minimum in the energy occurs when $\dot{\chi}=1$ and the four-brane energy is

$$
H=P_{\chi}=N\left\{\alpha_{0}+\frac{1}{2}\left(1-\alpha_{0}^{2}\right) \ln \left(\frac{1-\alpha_{0}}{1+\alpha_{0}}\right)\right\}
$$

indicating a BPS configuration - this is the $\mathbb{C P}^{3}$ giant graviton.

Outline

(1) Motivation
(2) Giant Gravitons
(3) ABJM Duality
(4) Four-brane Giant Graviton
(5) Fluctuation Analysis
(6) Summary \& Future Research

Let us consider small fluctuations about the worldvolume of the four-brane giant graviton:

transverse or scalar fluctuations:

$$
v_{k}\left(\sigma^{a}\right)=\varepsilon \delta v_{k}\left(\sigma^{a}\right), \quad \alpha\left(\sigma^{a}\right)=\alpha_{0}+\varepsilon \delta \alpha\left(\sigma^{a}\right), \quad \chi\left(\sigma^{a}\right)=t+\varepsilon \delta \chi\left(\sigma^{a}\right)
$$

longitudinal or worldvolume fluctuations:

$$
F\left(\sigma^{a}\right)=\varepsilon \frac{R^{2}}{2 \pi} \delta F\left(\sigma^{a}\right),
$$

A suitable choice of worldvolume coordinates was a problem!
In the fluctuation analysis, we made use of

$$
\sigma^{a}=\left(t, x_{1}, x_{2}, \varphi_{1}, \varphi_{2}\right)
$$

with $x_{i}\left(\alpha, z_{i}\right)$ any generic radial worldvolume coordinates, with ranges independent of α_{0}.

The equations of motion for the small fluctuations are

$$
\begin{aligned}
& \left(\square \delta v_{k}\right)+h^{t t} \delta v_{k}=0 \\
& (\square \delta \alpha)+g_{\mathrm{rad}}^{\alpha \alpha} \partial_{a}\left(\frac{1}{g_{\mathrm{rad}}^{\alpha \alpha}}\right) h^{a b}\left(\partial_{b} \delta \alpha\right)-\frac{g_{\mathrm{rad}}^{\alpha \alpha}}{\sqrt{-h}} \partial_{i}\left(\sqrt{-h} \frac{g_{\mathrm{rad}}^{\alpha i}}{g_{\mathrm{rad}}^{\alpha \alpha}} h^{t b}\right)\left(\partial_{b} \delta \chi\right)=0 \\
& (\square \delta \chi)+\left(g_{\mathrm{ang}}^{\chi \chi}-1\right) \partial_{a}\left(\frac{1}{g_{\text {ang }}^{\chi \chi}-1}\right) h^{a b}\left(\partial_{b} \delta \chi\right)+\frac{\left(g_{\mathrm{ang}}^{\chi \chi}-1\right)}{\sqrt{-h}} \partial_{i}\left(\sqrt{-h} \frac{g_{\mathrm{rad}}^{\alpha i}}{g_{\mathrm{rad}}^{\alpha \alpha}} h^{t b}\right)\left(\partial_{b} \delta \alpha\right)=0 .
\end{aligned}
$$

with $h_{a b}$ the worldvolume metric.
The $\mathbb{C P}^{3}$ fluctuations $\delta \alpha$ and $\delta \chi$ are clearly coupled. It is not immediately obvious, without making a specific choice for the radial worldvolume coordinates x_{1} and x_{2}, how to define new $\mathbb{C P}^{3}$ fluctuations $\delta \beta_{ \pm}$, in terms of a linear combination of $\delta \alpha$ and $\delta \chi$, such that the equations of motion for $\delta \beta_{+}$and $\delta \beta_{-}$decouple.

However, once these equations of motion have been decoupled, the obvious ansätze

$$
\begin{aligned}
& \delta v_{k}\left(t, x_{1}, x_{2}, \varphi_{1}, \varphi_{2}\right)=e^{i \omega_{k} t} e^{i m_{k} \varphi_{1}} e^{i n_{k} \varphi_{2}} f_{k}\left(x_{1}, x_{2}\right) \\
& \delta \beta_{ \pm}\left(t, x_{1}, x_{2}, \varphi_{1}, \varphi_{2}\right)=e^{i \omega_{ \pm} t} e^{i m_{ \pm} \varphi_{1}} e^{i n_{ \pm} \varphi_{2}} f_{ \pm}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

should reduce these problems to second order decoupled partial differential equations for $f_{k}\left(x_{1}, x_{2}\right)$ and $f_{ \pm}\left(x_{1}, x_{2}\right)$. We are interested in solving for the spectrum of eigenfrequencies ω_{k} and $\omega_{ \pm}$in terms of the two pairs of integers m_{k} and n_{k}, and $m_{ \pm}$and $n_{ \pm}$respectively.

Radial worldvolume coordinates:

The radial worldvolume shall now be described using two sets of nested polar coordinates $\left(r_{1}, \theta\right)$ and $\left(r_{2}, \phi\right)$:

$$
y=r_{1}(\alpha, \theta) \cos \theta, \quad z_{1}=r_{2}^{2}(\alpha, \theta, \phi) \cos ^{2} \phi, \quad z_{2}=r_{2}^{2}(\alpha, \theta, \phi) \sin ^{2} \phi
$$

with the polar radii r_{1} and r_{2} the positive roots of

$$
\begin{aligned}
& r_{1}^{2}(\alpha, \theta)=\frac{2}{\sin ^{2}(2 \theta)}\left\{1-\sqrt{1-\alpha^{2} \sin ^{2}(2 \theta)}\right\} \\
& r_{2}^{2}(\alpha, \theta, \phi)=\frac{2}{\sin ^{2}(2 \phi)}\left\{1-\sqrt{1-r_{1}^{2}(\alpha, \theta) \sin ^{2} \theta \sin ^{2}(2 \phi)}\right\},
\end{aligned}
$$

where we observe that $\alpha=\alpha_{0}$ describes the radial worldvolume of the submaximal giant graviton. Here the radial worldvolume coordinates $x_{1} \equiv \theta \in[0, \pi]$ and $x_{2} \equiv \phi \in\left[0, \frac{\pi}{2}\right]$ have fixed ranges.

Small giant graviton $\alpha_{0} \ll 1$

We can expand the square roots in r_{1} and r_{2} in orders of α. The first term in the expansion gives $r_{1}(\theta) \approx \alpha$ and $r_{2}(\theta, \phi) \approx \alpha \sin \theta$.

Our radial coordinates then become

$$
\begin{aligned}
& y \approx \alpha \cos \theta \\
& z_{1} \approx \alpha^{2} \sin ^{2} \theta \cos ^{2} \phi \\
& z_{2} \approx \alpha^{2} \sin ^{2} \theta \sin ^{2} \phi
\end{aligned}
$$

in the vicinity of the $\alpha=\alpha_{0}$ surface. This approximate radial projection of the giant is a 2 -sphere in $\left(y, \sqrt{z_{1}}, \sqrt{z_{2}}\right)$-space.

Leading order analysis

* The leading-order equations of motion can easily be decoupled.
* Analytic solutions can be obtained in terms of hypergeometric and Heun functions.
* The spectrum is independence of the size α_{0} to leading order.
* However, this leading order spectrum is different from that of the maximal giant graviton (dual to two dibaryons).
[JM \& AP: 1103.1163 [hep-th]]

Next-to-leading order analysis

* The next-to-leading-order equations of motion also decouple.
* The next-to-leading order equations of motion are dependent on the size α_{0} and hence the shape of the giant graviton.
* These equations of motion did not, however, admit any obvious analytic solution. We were not able to verify this dependence at the level of the spectrum.

Outline

(1) Motivation

(2) Giant Gravitons
(3) ABJM Duality
(4) Four-brane Giant Graviton
(5) Fluctuation Analysis
(6) Summary \& Future Research

Take home message

Membranes in the ABJM duality have non-trivial geometries!
It appears that traces of this non-trivial geometry are visible in the fluctuation spectrum.

Future Research

We would now like to understand how this non-trivial geometry is encoded in the dual ABJM model. In particular, we would like to

* Find a complete, orthogonal basis for operators in the holomorphic sector of the ABJM model and study the action of the dilatation operator to leading order in $\frac{1}{N}$. [de Mello Koch, JM \& AP: work in progress]
* Note that this semiclassical $\frac{1}{N}$ limit includes contributions from non-planar diagrams (and must therefore be seen as distinct from the usual t'Hooft limit) and describes membrane interactions from the point of view of the dual ABJM model.

