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Gauge theory / gravity dualities

Quantum field theories in flat space with very large local symmetry
groups (gauge groups) at strong coupling λ are dual to weakly
coupled theories of gravity.

This leads naturally to the following question:

How are geometry and topology
(both of spacetime and membranes embedded in spacetime)

encoded in long, gauge invariant operators?
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The four-brane giant graviton on AdS4 × CP3 is a non-spherical
membrane, embedded and moving in the complex projective space,
which changes shape as it grows.

We asked the question:

How is the changing shape of this membrane
visible in the dual ABJM model?
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Giant gravitons

A lower dimensional analogy: An electric dipole

An electric dipole moving perpendicular to a magnetic field ~B
(coupling to the EM one-form potential A1 = Aµdx

µ) experiences
a force which keeps the charges separated.

The faster it moves, the bigger the dipole! (The greater the
equilibrium separation distance between the +ve and −ve charges.)

Andrea Prinsloo The Giant Graviton on AdS4 × CP3



Motivation
Giant Gravitons

ABJM Duality
Four-brane Giant Graviton

Fluctuation Analysis
Summary & Future Research

Sphere giant gravitons on AdS5 × S5

The sphere giant is a D3-brane embedded on an S3 ⊂ S5. It is
both embedded and moving on the five-sphere space in the
background spacetime. The extension of this 1

2 -BPS object is
supported by a coupling to the 4-form potential C4.

[McGreevy, Susskind & Toumbas: hep-th/0003075]

[Grisaru, Myers & Tafjord: hep-th/0008015]
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The dual operator in N = 4 SYM is Schur polynomial, constructed
from n ∼ O(N) single complex scalar field Z and labeled by the
totally antisymmetric representation of Sn:

χ
...

(Z ) ∝ Osubdet
n (Z ) = εa1...anan+1...aN ε

b1...bnan+1...aN Z a1

b1
· · · Z an

bn

proportional to a subdeterminant with maximum size n = N.
[Balasubramanian et. al.: hep-th/0107119]

[Corley, Jevicki & Ramgoolam: hep-th/0111222]

A natural interpretation of this maximum length from the string
theory point of view is that the sphere giant cannot grow to be
bigger than the compact S5 space.
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[Aharony, Bergman, Jafferis & Maldacena (ABJM): 0806.1218 [hep-th]]
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ABJM Model

t’Hooft coupling: λ = N
k

two sets of two complex scalars: (A1)aα, (A2)aα, (B1)aα, (B2)aα

in the bifundamental representation of the U(N)× U(N) gauge
group. (Here a and α are indices in different U(N)’s.)

four composite scalars:

We can build composite scalars

(φ11)ab = (A1)aα (B†1)αb , (φ12)ab = (A1)aα (B†2)αb ,

(φ21)ab = (A2)aα (B†1)αb , (φ22)ab = (A2)aα (B†2)αb

transforming in the first U(N) of the product gauge group, out of
which we can build long, gauge invariant operators.
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Type IIA string theory on AdS4 × CP3

The metric of the AdS4 × CP3 background is

ds2 = R2
(
ds2

AdS4
+ 4ds2

CP3

)
There is a constant non-zero dilaton Φ satisfying e2Φ = 4R2

k2 . The
field strength forms are given by

F2 ≡ dC1 = 2k dJ with C1 = 2kJ

F8 = ∗F2

F4 ≡ dC3 = − 3
2kR

2 vol (AdS4)

F6 = ∗F4 ≡ dC5 = 3
2 (26)R4 vol

(
CP3

)
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The CP3 giant graviton on AdS4 × CP3

The CP3 giant graviton is a D4-brane extended and moving in the
complex projective space. Its extension is supported by a coupling
to the 5-form potential C5.

If we turn on a worldvolume gauge field, then this D4-brane will
also couple to the C1 potential through F ∧ F ∧ C1.

Andrea Prinsloo The Giant Graviton on AdS4 × CP3



Motivation
Giant Gravitons

ABJM Duality
Four-brane Giant Graviton

Fluctuation Analysis
Summary & Future Research

The dual operator of length n ∼ O(N) is a Schur polynomial

constructed from the single composite field A1B
†
1 and labeled by

the totally antisymmetric representation of Sn:

χ

...

(A1B
†
1 ) ∝ Osubdet

n (A1B
†
1 ) = εa1...anan+1...aN εb1...bnan+1...aN (A1B

†
1 )a1

b1
· · · (A1B

†
1 )anbn

which factorizes at maximum size into the product of two full
determinants

Osubdet
N (A1B

†
1 ) = (detA1) (detB†1 )

These are ABJM dibaryons, which are dual to four-branes wrapped
on different non-trivial CP2 ⊂ CP3 subspaces.

[Gut́ıerrez, Lozano & Rodŕıguez-Gómez: 1004.2826 [hep-th]]

[JM & AP: 1103.1163 [hep-th]]
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Parameterization of the complex projective space

Let us now parameterize the homogenous coordinates za of the
complex projective space CP3 as follows:

z1 = cos ζ sin θ1

2 e i(
1
2χ−

1
4ϕ1+ 1

4ϕ2) z2 = cos ζ cos θ1

2 e i(
1
2χ+ 3

4ϕ1+ 1
4ϕ2)

z3 = sin ζ sin θ2

2 e i(−
1
2χ−

1
4ϕ1+ 1

4ϕ2) z4 = sin ζ cos θ2

2 e i(−
1
2χ−

1
4ϕ1− 3

4ϕ2)

so that the CP3 metric becomes

ds2
CP3 = dζ2 + cos2 ζ sin2 ζ

[
dχ+ cos2 θ1

2 dϕ1 + cos2 θ2

2 dϕ2

]2
+ 1

4 cos2 ζ
(
dθ2

1 + sin2 θ1dϕ
2
1

)
+ 1

4 sin2 ζ
(
dθ2

2 + sin2 θ2dϕ
2
2

)
Note that θ1 = π and θ2 = π define two CP2 subspaces.
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We can split the metric of the complex projective space into radial
and angular parts:

ds2
CP3 = 1

4

{
ds2

rad + ds2
ang

}
,

where

ds2
rad = 4 dζ2 + cos2 ζ dθ2

1 + sin2 ζ dθ2
2

ds2
ang = 4 cos2 ζ sin2 ζ

[
dχ+ cos2 θ1

2 dϕ1 + cos2 θ2

2 dϕ2

]2
+ cos2 ζ sin2 θ1 dϕ

2
1 + sin2 ζ sin2 θ2 dϕ

2
2.
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The homogeneous coordinates of CP3 can be associated with the
scalars in ABJM theory

z1 −→ A1, z2 −→ A2, z3 −→ B1, z4 −→ B2

in that the momenta in these directions can be associated with the
R-charges of the scalar fields. Hence we deduce
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Giant Graviton Ansatz

∗ Point-like in the AdS4 (with r = 0) and moving only in time t.

∗ Radial ansatz in the CP3

sin (2ζ) sin θ1
2 sin θ2

2 =
√

1− α2,

∗ Motion in CP3 along the angular direction χ = χ(t).

∗ Turn off the worldvolume field strength F = dA = 0.

∗ We shall make use of the worldvolume coordinates

σa = (t, y , z1, ϕ1, ϕ2)
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Here we define the radial coordinates

y ≡ cos (2ζ) z1 ≡ cos2 θ1

2 z2 ≡ cos2 θ2

2

and the ansatz becomes(
1− y2

)
(1− z1) (1− z2) = 1− α2
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The shape of this four-brane changes as the size α increases:

The small giant graviton: α� 1

The giant graviton ansatz becomes

y2 + z1 + z2 ≈ α2

which describes a two-sphere in radial (y ,
√
z1,
√
z2) space.

The maximal giant graviton: α = 1

The giant graviton ansatz becomes

z1 = 1 or z2 = 1

which describes two separate CP2 cycles.
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Cartoon representation of the growth of the four-brane giant graviton:

The small giant graviton with α� 1 is nearly spherical, but
pinches off as it grows, until it factorizes at maximum size α = 1
into two four-branes, each wrapped on a CP2 ⊂ CP3 cycle.
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D4-brane Action

The D4-brane action SD4 = SDBI + SWZ, which describes the
dynamics of the four-brane giant graviton. Here

SDBI = −T4

∫
Σ

d5σ e−Φ
√
− det (P [g ] + 2πF ),

and

SWZ = T4

∫
Σ

{
P [C5] + P [C3] ∧ (2πF ) +

1

2
P [C1] ∧ (2πF ) ∧ (2πF )

}
,

with T4 ≡ 1
(2π)4 the tension and Σ the worldvolume of the giant.
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Substituting this ansatz into the D4-brane action

SD4 =

∫
dt LD4 with LD4 =

∫ α

−α
dy

∫ α2−y2

1−y2

0
dz1 LD4(y , z1)

associated with the radial Lagrangian density

LD4(y, z1) = −
N

2

1

(1− z1)

[
1
2

(1 + y) (1− z1) + 1
2

(1− y) (1− z2)−
(

1− α2
)]

×


√√√√1 +

(
1− χ̇2

) (
1− α2

)[
1
2

(1 + y) (1− z1) + 1
2

(1− y) (1− z2)−
(

1− α2
)] − χ̇

 ,

where z2(z1) = 1− (1−α2)
(1−y2)(1−z1)

and N ≡ kR4

2π2 denotes the flux of

the 6-form field strength through the complex projective space.
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The conserved momentum conjugate to the χ takes the form

Pχ =

∫ α

−α
dy

∫ α2−y2

1−y2

0

dz1 Pχ(y , z1),

written in terms of the radial momentum density

Pχ(y , z1) =
N

2

1

(1− z1)

[
1
2
(1 + y) (1− z1) +

1
2
(1− y) (1− z2)−

(
1− α2

)]

×


(1−α2)χ̇[

1
2

(1+y)(1−z1)+
1
2

(1−y)(1−z2)−(1−α2)
]

√
1 +

(1−χ̇2)(1−α2)[
1
2

(1+y)(1−z1)+
1
2

(1−y)(1−z2)−(1−α2)
]
+ 1

 .
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The energy H = Pχχ̇− L of this D4-brane configuration can hence
be determined as a function of its size α and angular velocity χ̇:

H =

∫ α

−α
dy

∫ α2−y2

1−y2

0

dz1 H(y , z1)

with radial Hamiltonian density

H(y , z1) =
N

2

1

(1− z1)

[
1
2
(1 + y) (1− z1) +

1
2
(1− y) (1− z2)

]√
1 +

(1−χ̇2)(1−α2)[
1
2

(1+y)(1−z1)+
1
2

(1−y)(1−z2)−(1−α2)
]

where z2(z1) = 1− (1−α2)
(1−y2)(1−z1)

.
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Note on the Numerics:

The D4-brane energy H(α, χ̇) and momentum Pχ(α, χ̇) become
singular along the curve

χ̇4 =
1

(1− α2)

Decreasing α from the maximal size α = 1, the lines of constant
momentum Pχ approach this curve in (χ̇, α)-space. At small α,
the numerics therefore become problematic.
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Energy Plots:

The energy of the four-brane, plotted as a function of the size α0

at fixed momentum Pχ, in units of the flux N:
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The finite α = α0 degenerate minimum in the energy occurs when
χ̇ = 1 and the four-brane energy is

H = Pχ = N

{
α0 +

1

2

(
1− α2

0

)
ln

(
1− α0

1 + α0

)}
indicating a BPS configuration - this is the CP3 giant graviton.
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Let us consider small fluctuations about the worldvolume of the
four-brane giant graviton:

transverse or scalar fluctuations:

vk(σa) = ε δvk(σa), α(σa) = α0 + ε δα(σa), χ(σa) = t + ε δχ(σa)

longitudinal or worldvolume fluctuations:

F (σa) = ε R2

2π δF (σa),

Andrea Prinsloo The Giant Graviton on AdS4 × CP3
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A suitable choice of worldvolume coordinates was a problem!

In the fluctuation analysis, we made use of

σa = (t, x1, x2, ϕ1, ϕ2)

with xi (α, zi ) any generic radial worldvolume coordinates, with
ranges independent of α0.
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The equations of motion for the small fluctuations are

(� δvk ) + htt δvk = 0

(� δα) + gαα
rad ∂a

(
1

gαα
rad

)
hab (∂bδα)−

gαα
rad√
−h

∂i

(√
−h

gαi
rad

gαα
rad

htb
)

(∂bδχ) = 0

(� δχ) +
(
gχχ
ang − 1

)
∂a

(
1

g
χχ
ang − 1

)
hab (∂bδχ) +

(
gχχ
ang − 1

)
√
−h

∂i

(√
−h

gαi
rad

gαα
rad

htb
)

(∂bδα) = 0.

with hab the worldvolume metric.

The CP3 fluctuations δα and δχ are clearly coupled. It is not
immediately obvious, without making a specific choice for the
radial worldvolume coordinates x1 and x2, how to define new CP3

fluctuations δβ±, in terms of a linear combination of δα and δχ,
such that the equations of motion for δβ+ and δβ− decouple.
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However, once these equations of motion have been decoupled, the
obvious ansätze

δvk(t, x1, x2, ϕ1, ϕ2) = e iωk t e imkϕ1 e inkϕ2 fk(x1, x2)

δβ±(t, x1, x2, ϕ1, ϕ2) = e iω±t e im±ϕ1 e in±ϕ2 f±(x1, x2)

should reduce these problems to second order decoupled partial
differential equations for fk(x1, x2) and f±(x1, x2). We are
interested in solving for the spectrum of eigenfrequencies ωk and
ω± in terms of the two pairs of integers mk and nk , and m± and
n± respectively.

Andrea Prinsloo The Giant Graviton on AdS4 × CP3



Motivation
Giant Gravitons

ABJM Duality
Four-brane Giant Graviton

Fluctuation Analysis
Summary & Future Research

Radial worldvolume coordinates:

The radial worldvolume shall now be described using two sets of
nested polar coordinates (r1, θ) and (r2, φ):

y = r1(α, θ) cos θ, z1 = r 2
2 (α, θ, φ) cos

2 φ, z2 = r 2
2 (α, θ, φ) sin

2 φ,

with the polar radii r1 and r2 the positive roots of

r2
1 (α, θ) =

2

sin2(2θ)

{
1−

√
1− α2 sin2(2θ)

}
r2
2 (α, θ, φ) =

2

sin2(2φ)

{
1−

√
1− r2

1 (α, θ) sin2 θ sin2(2φ)

}
,

where we observe that α = α0 describes the radial worldvolume of
the submaximal giant graviton. Here the radial worldvolume
coordinates x1 ≡ θ ∈ [0, π] and x2 ≡ φ ∈ [0, π2 ] have fixed ranges.
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Small giant graviton α0 � 1

We can expand the square roots in r1 and r2 in orders of α. The
first term in the expansion gives r1(θ) ≈ α and r2(θ, φ) ≈ α sin θ.

Our radial coordinates then become

y ≈ α cos θ

z1 ≈ α2 sin2 θ cos2 φ

z2 ≈ α2 sin2 θ sin2 φ

in the vicinity of the α = α0 surface. This approximate radial
projection of the giant is a 2-sphere in (y ,

√
z1,
√
z2)-space.
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Leading order analysis

∗ The leading-order equations of motion can easily be
decoupled.

∗ Analytic solutions can be obtained in terms of hypergeometric
and Heun functions.

∗ The spectrum is independence of the size α0 to leading order.

∗ However, this leading order spectrum is different from that of
the maximal giant graviton (dual to two dibaryons).

[JM & AP: 1103.1163 [hep-th]]
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Next-to-leading order analysis

∗ The next-to-leading-order equations of motion also decouple.

∗ The next-to-leading order equations of motion are dependent
on the size α0 and hence the shape of the giant graviton.

∗ These equations of motion did not, however, admit any
obvious analytic solution. We were not able to verify this
dependence at the level of the spectrum.
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Take home message

Membranes in the ABJM duality have non-trivial geometries!

It appears that traces of this non-trivial geometry are visible
in the fluctuation spectrum.
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Future Research

We would now like to understand how this non-trivial geometry is
encoded in the dual ABJM model. In particular, we would like to

∗ Find a complete, orthogonal basis for operators in the
holomorphic sector of the ABJM model and study the action
of the dilatation operator to leading order in 1

N .
[de Mello Koch, JM & AP: work in progress]

∗ Note that this semiclassical 1
N limit includes contributions

from non-planar diagrams (and must therefore be seen as
distinct from the usual t’Hooft limit) and describes membrane
interactions from the point of view of the dual ABJM model.
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