Discrete gauge symmetries in D-brane models

CSIC

Angel M. Uranga IFT-UAM/CSIC, Madrid

In collaboration with M.Berasaluce-González, L. Ibáñez, P. Soler, arXiv: 1 106.4169 M. Bersaluce-González, P. G. Cámara, F. Marchesano, in progress

c.f. Pablo's talk

"Iberian strings", Bilbao, Feb 2012

Discrete symmetries in BSM

- Discrete symmetries are a key ingredient in SM
- and a useful tool in BSM model building
- For instance in the MSSM, the most general supo, up to dim 4

$$W_{\text{MSSM}} = Y_U^{ij} Q_i U_j H_u + Y_D^{ij} Q_i D_j H_d + Y_L^{ij} L_i E_j H_d + \mu H_u H_d + \lambda^{ijk} U_i D_j D_k + \lambda^{ijk'} Q_i D_j L_k + \lambda^{ijk''} L_i L_j E_k + \mu_R^i L_i H_u$$

Ops in second line can combine and induce fast proton decay Introduce discrete symmetries that forbid

- all such ops, e.g. R-parity (Q, D, L, E odd, Hu, Hd even)
- dangerous combinations, e.g. baryon triality B₃ (Q,U, D, L, E, Hu, Hd have charge 0,-1/3,+1/3,-1/3,+1/3,+1/3,-1/3)

Experimental signatures (at the LHC) depend on the symmetry!

Global and gauge symmetries in gravity ..., see recent Banks, Seiberg 2011

- Quantum gravity does not like global symmetries
- Microscopic arguments in string theory Banks, Dixon '88
- General black hole arguments

Charged black hole evaporates thermally into uncharged vacuum

Exact symmetries should be gauge

- Continuous symmetries: Charged black hole's electric field produces biased evaporation

Key point is that gauge charge is detectable by measurements at infinity

- Also true for discrete gauge symmetries: lasso black hole with charged strings and measure holonomy

Z_n discrete gauge symmetries

Realize Z_n as U(I) Higgssed by field of charge n
 Lagrangian for gauge field and phase of scalar field

$$(da - nA) \wedge *(da - nA) + \frac{1}{2}F \wedge *F$$

i.e. gauge transformation is

$$A \to A + d\lambda$$
 ; $a \to a + n$

Can be dualized to BF theory

schematically

$$\frac{1}{2}H \wedge *H + nB \wedge F + \frac{1}{2}F \wedge *F$$

Zn symmetry read from coefficient of BF coupling

BF couplings and Zn symmetries in D-branes BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action Focus on compactifications with stacks of D6's on 3-cycles basis of 3-cycles $\left[\alpha_{k}\right]$ Π_2 and 4d 2-forms $B_2^k = \int_{[\infty]} C_5$ expand 3-cycles $[\Pi_A] = \sum_k r_A^k [\alpha_k]$ **KK** reduction $\int_{[\Pi_A] \times M_A} C_5 \wedge \operatorname{tr} F_A \to N_A r_A^k \int_{Ad} B_k \wedge F$ For U(I) comb: $Q = \sum_{A} c_A Q_A \Rightarrow \left(\sum_{A} c_A N_A r_A^k \right) B_k \wedge F$ Z_n gauge symmetry iff $\sum_{A} c_A N_A r_A^k = 0 \mod n$, for all k

Zn gauge symmetries and instantons Instantons from euclidean D2-branes wrapped on 3-cycles $[\Pi]$, violate U(1)'s but consistently with unbroken Zn's basis of 3-cycles $|\beta_k|$ and 4d scalars $a_k = \int_{[\beta_k]} C_3$ expand $[\Pi] = \sum_k s_k [\beta_k]$ Instanton amplitude $e^{S_{cl.}} \sim e^{Vol(\Pi) + i \sum_k s_k a_k}$ Under $A \to A + d\lambda$; $a_k \to a_k + \sum_A c_A N_A r_A^k \lambda$ Then phase of $e^{S_{cl.}}$ rotates by multiple of $2\pi i n\lambda$ unbroken Zn's

In particular, Zn's are non-anomalous

D6-brane MSSM model building Compactifications with D6-branes on intersecting 3-cycles produce 4d sectors of gauge interactions and charged bi-fundamental fermions

Several classes of models leading to (MS)SM

(ignore O6-planes for simplicity)

R-parity and B₃ in D-brane models

Ş

For instance, in toroidal models Ibáñez, Marchesano, Rabadán'01

N_i	(n^1_A,m^1_A)	(n_A^2,m_A^2)	$\left(n_A^3,m_A^3 ight)$
$N_a = 3$	$(1/\beta^1, 0)$	(n_a^2,\epsiloneta^2)	(1/ ho, 1/2)
$N_b = 2$	$(n_b^1,-\epsiloneta^1)$	$(1/eta^2,0)$	(1, 3 ho/2)
$N_c = 1$	$(n_c^1, 3 ho\epsiloneta^1)$	$(1/eta^2,0)$	(0, 1)
$N_d = 1$	$(1/eta^1,0)$	$(n_d^2,-eta^2\epsilon/ ho)$	(1, 3 ho/2)

$$\begin{array}{rcl} F^{a} & \wedge & 3 \, \left(\, \frac{1}{\rho} \, B_{2}^{2} \, + \, n_{a}^{2} \frac{B_{2}^{3}}{2} \, \right) \\ F^{b} & \wedge & 2 \, \left(\, - \, B_{2}^{1} \, + \, 3\rho n_{b}^{1} \frac{B_{2}^{3}}{2} \, \right) \\ F^{c} & \wedge & 2n_{c}^{1} \, \frac{B_{2}^{3}}{2} \\ F^{d} & \wedge & \left(\, - \frac{1}{\rho} \, B_{2}^{2} \, + \, 3\rho n_{d}^{2} \, \frac{B_{2}^{3}}{2} \, \right) \end{array}$$

- R-parity (Qc) is automatic
- Baryon triality (Qa) if $\rho = 1/3$ and $n_a^2 = 0 \mod 3$
- Etc...

Nicely dovetails the classification of discrete gauge symmetries in the MSSM (plus right-handed neutrinos) Ibáñez, Ross '91, '92

Final remarks

- Extends similarly to type IIB models
- Can be analyzed similarly in F-theory models SU(5) x U(1)_{B-L} can produce R-parity via BF couplings
- Connected with torsion homology classes
- Further directions
 - **R-symmetries**

Non-abelian discrete gauge symmetries in progress and flavour physics:

- Torsion classes with relations Gukov, Rangamani, Witten

c.f. Pablo's talk

- Gaugings: fluxes, twisted tori
- Constraints on toroidal Yukawas