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Introduction

• Holography is providing a new window to strong coupling physics.

• It has been instrumental in understanding non-perturbative phenomena

that pertain to QCD.

• Although a fully controlable YM dual is lacking, bottom-up models in-

spired and constrained by string theory can describe reasonably well the YM

physics.
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• For several phenomena in QCD the presence of quarks is important

(SU(Nc) theory with Nf quarks).

• Sometimes the relevant physics can be studied in the “Quenched Ap-

proximation”: quarks are probes in the glue dynamics.

• For others however, one should include propagating quarks inducing quan-

tum corrections in order to see them. In this second class we can mention:

♠ The conformal window: the theory flows to an IR CFT for x ≡ Nf
Nc

≥ xc

if quarks are massless. Chiral symmetry is expected to remain unbroken in

this phase. The conformal window ends at the Banks-Zaks point, x = 11
2 .

♠ The phase transition at x = xc that is expected from some approximate

arguments to be in the BKT class. This type of transition where for x < xc

there is a condensate is known as a conformal transition.
Miransky, Kaplan+Stephanov+Son

♠ The region just below xc where the theory is expected to exhibit walking

behavior. This type of behavior is useful for technicolor models.
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♠ The QCD thermodynamics as a function of x.

♠ The phase diagram as a function of baryon density. Here we expect a

color superconducting phase, as well as a color-flavor locking phase.
Alford+Rajagopal+Wilczek

• All of the phenomena above except the Banks-Zaks region are at strong

coupling and therefore hard to analyze.

• Several (uncontrolable) techniques were applies so far for their study:

Truncated Schwinger-Dyson equations, lattice calculations, guesswork on

β functions, etc. It is with such techniques that some of the expectations

above were found.

V-QCD, Elias Kiritsis
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The holographic models: glue

For YM, ihQCD is a well-tested holographic, string-inspired bottom-up

model with action
Gursoy+Kiritsis+Nitti, Gubser+Nelore

Sg =M3N2
c

∫
d5x

√
g

[
R−

4

3
(∂ϕ)2 + Vg(ϕ)

]
• gµν is dual to Tµν

• ϕ is dual to tr[F2].

We expect that these two operators capture the important part of the

dynamics of the YM vacuum.

• The potential Vg ↔ QCD β-function

• A→ logµ energy scale.

• eϕ → λ ’t Hooft coupling
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In the UV λ→ 0 and

Vg = V0 + V1λ+ V2λ
2 +O(λ3)

In the IR λ→ ∞ and

Vg ∼ λ
4
3
√
logλ+ · · ·

• This was chosen after analysing all possible asymptotics and characteris-
ing their behavior.

The IR asymptotics is uniquely fixed by asking for confinement, discrete
spectra and asymptotically linear glueball trajectories.

Gursoy+Kiritsis+Nitti

The vacuum saddle point is given by a Poincaré-invariant metric, and radi-
ally depended dilaton.

ds2 = e2A(dr2 + ηµνdx
µdxν)

• With an appropriate tuning of two parameters in Vg the model describes
well both T = 0 properties (spectra) as well as thermodynamics.

V-QCD, Elias Kiritsis
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YM Entropy

From M. Panero, arXiv:0907.3719

V-QCD, Elias Kiritsis
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Equation of state

From M. Panero, arXiv:0907.3719

V-QCD, Elias Kiritsis
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The sound speed
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The holographic models: flavor

• Fundamental quarks → probe D4-D̄4 branes in 5-dimensions.

• We have the gauge fields from D4−D4 strings AµL and D̄4− D̄4 strings
A
µ
R dual to J

µ
L and J

µ
R and a tachyon Tij from the D4− D̄4 strings dual to

the mass operator ψ̄iLψ
j
R.

• For the vacuum structure only the tachyon is relevant.

• An action for the tachyon motivated by the Sen action has been advocated
as the proper dynamics of the chiral, condensate giving in general all the
expected features of χSB.

Casero+Kiritsis+Paredes

STDBI = −NfNcM3
∫
d5x Vf(T ) e

−ϕ
√
−det(gab+ ∂aT∂bT )

• It has been tested in a 6d asymptotically-AdS confining background (with
constant dilaton) due to Kuperstein+Sonneschein.

Iatrakis+Kiritsis+Paredes
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It was shown to have the following properties:

• Confining asymptotics of the geometry trigger chiral symmetry breaking.

• A Gell-Mann-Oakes-Renner relation is generically satisfied.

• The Sen DBI tachyon action induces linear Regge trajectories for mesons.

• The Wess-Zumino (WZ) terms of the tachyon action, computed in
string theory, produce the appropriate flavor anomalies, include the axial
U(1) anomaly and η′-mixing, and implement a holographic version of the
Coleman-Witten theorem.

• The dynamics determines the chiral condensate uniquely a s function of
the bare quark mass.

• The mass of the ρ-meson grows with increasing quark mass.

• By adjusting the same parameters as in QCD (ΛQCD, mud) a good fit
can be obtained of the light meson masses.

V-QCD, Elias Kiritsis
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The Veneziano limit

• The ’t Hooft limit

Nc → ∞, l = g2YMNc → fixed

always samples the quenched approximation as Nf is kept fixed as Nc → ∞.

• The proper limit in order to study the previous phenomena in the large

Nc approximation is the limit introduced by Veneziano

Nc → ∞ , Nf → ∞ ,
Nf

Nc
= x→ fixed , λ = g2YMNc → fixed

• In terms of the dual string theory, the boundaries of diagrams are not

suppressed anymore: surfaces with an arbitrary number of boundaries con-

tribute at the same order (for the flavor singlet sector).

V-QCD, Elias Kiritsis
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The Banks-Zaks region

• The QCD β function in the V-limit is

λ̇ = β(λ) = −b0λ2+ b1λ
3+O(λ4) , b0 =

2

3

(11− 2x)

(4π)2
,
b1

b20
= −

3

2

(34− 13x)

(11− 2x)2

• The Banks-Zaks region is x = 11/2−ϵ with ϵ≪ 1 and positive. We obtain

a fixed point of the β-function at λ∗ ≃ (8π)2

75 ϵ+O(ϵ2) which is trustable in

perturbation theory, as λ∗ can be made arbitrarily small.

• The mass operator, ψ̄LψR has now dimension smaller than three, from

the perturbative anomalous dimension (in the V-limit)

−
d logm

d logµ
≡ γ =

3

(4π)2
λ+

(203− 10x)

12 (4π)4
λ2 +O(λ3, N−2

c )

• Extrapolating to lower x we expect the phase diagram

V-QCD, Elias Kiritsis
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Fusion

The idea is to put together the two ingredients in order to study the chiral

dynamics and its backreaction to glue.

S =M3N2
c

∫
d5x

√
g

[
R−

4

3

(∂λ)2

λ2
+ Vg(λ)

]
−

−NfNcM3
∫
d5xVf(λ, T )

√
−det(gab+ h(λ)∂aT∂bT )

with Vf(λ, T ) = V0(λ) exp(−a(λ)T2)

• V-limit: Nc → ∞ with x = Nf/Nc fixed: backreacted system.

• Probe limit x→ 0 ⇒ Vg fixed as before.

• We must choose V0(λ), a(λ), h(λ).

♠ The simplest and most reasonable choices, compatible with glue dynamics

do the job!

V-QCD, Elias Kiritsis
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The effective potential

For solutions T = T∗ = constant the relevant non-linear action simplifies

S =M3N2
c

∫
d5x

√
g

[
R−

4

3

(∂λ)2

λ2
+ Vg(λ)− xVf(λ, T )

]

Veff(λ) = Vg(λ)− xVf(λ, T∗) = Vg(λ)− xV0(λ) exp(−a(λ)T2
∗ )

• Minimizing for T∗ we obtain T∗ = 0 and T∗ = ∞. The effective potential

for λ is

♠ T∗ = 0, Veff = Vg(λ)− xV0(λ)

♠ T∗ = ∞, Veff = Vg(λ) with no fixed points.
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Veff(λ) = Vg(λ)− xV0(λ)
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Two possibilities: (a) The maximum exists for all x. (b) The maximum

exists for x > x∗.

V-QCD, Elias Kiritsis
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Condensate dimension at the IR fixed point

• By expanding the DBI action we obtain the IR tachyon mass at the IR

fixed point λ = λ∗ which gives the chiral condensate dimension:

−m2
IRℓ

2
IR = ∆IR(4−∆IR) =

24a(λ∗)

h(λ∗)(Vg(λ∗)− xV0(λ∗))

• Must reach the Breitenlohner-

Freedman (BF) bound (horizontal

line) at some xc.

• xc marks the conformal phase tran-

sition
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x

3.5

4.0

4.5

-mIR
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V-QCD, Elias Kiritsis
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Below the BF bound

• Correlation of the violation of BF bound and the conformal phase tran-
sition

• For ∆IR(4−∆IR) < 4

T (r) ∼ mqr
4−∆IR + σr∆IR

• For ∆IR(4−∆IR) > 4

T (r) ∼ Cr2 sin [(Im∆IR) log r+ ϕ]

Two possibilities:

• x > xc: BF bound satisfied at the fixed point ⇒ only trivial massless
solution (T ≡ 0, ChS intact, fixed point hit)

• x < xc: BF bound violated at the fixed point ⇒ a nontrivial massless
solution exists, which drives the system away from the fixed point.

Conclusion: phase transition at x = xc

V-QCD, Elias Kiritsis
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Matching to QCD: UV

• As λ→ 0 we can match:

♠ Vg(λ) with (two-loop) Yang-Mills β-function.

♠ Vg(λ)− xV0(λ) with QCD β-function.

♠ a(λ)/h(λ) with anomalous dimension of the quark mass/chiral condensate

• The matching allows to mark the BZ point, that we normalize at x = 11
2 .

• After the matching above we are left with a single undetermined param-
eter in the UV:

Vg ∼ V0 +O(λ) , V0 ∼W0 +O(λ)

V0 − xW0 =
12

ℓ2UV

V-QCD, Elias Kiritsis
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Matching to QCD: IR

• In the IR, the tachyon has to diverge ⇒ the tachyon action ∝ e−T
2

becomes small

♠ Vg(λ) ≃ λ
4
3
√
λ chosen as for Yang-Mills, so that a “good” IR singularity

exists etc.

♠ V0(λ), a(λ), and h(λ) chosen to produce tachyon divergence: there are

several possibilities.

♠ The phase structure is essentially independent of IR choices.
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Choice I:

Vg(λ) = 12+
44

9π2
λ+

4619

3888π4
λ2

(1 + λ/(8π2))2/3

√
1+ log(1 + λ/(8π2))

Vf(λ, T ) = V0(λ)e
−a(λ)T2

V0(λ) =
12

11
+

4(33− 2x)

99π2
λ+

23473− 2726x+92x2

42768π4
λ2

a(λ) =
3

22
(11− x)

h(λ) =
1(

1+ 115−16x
288π2

λ
)4/3

For which in the IR

T (r) ∼ T0 exp

[
81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]
, r → ∞

R is the IR scale of the solution. T0 is the control parameter of the UV
mass.
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Choice II:

a(λ) =
3

22
(11− x)

1 + 115−16x
216π2

λ+ λ2

λ20

(1 + λ/λ0)4/3

h(λ) =
1

(1+ λ/λ0)4/3

for which in the IR

T (r) ∼
27 23/431/4√

4619

√
r − r1
R

, r → ∞

R is the IR scale of the solution. r1 is the control parameter of the UV

mass.

V-QCD, Elias Kiritsis
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Varying the model

“prediction” for xc

After fixing UV coefficients from QCD, there is still freedom in choosing the

leading coefficient of V0 at λ→ 0 and the IR asymptotics of the potentials

Thick blue → VI
Thin red → VII
Resulting variation of the

edge of conformal window

3.7 . xc . 4.2

4.0 4.5 5.0 5.5
x
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-mIR
2 {IR

2

V-QCD, Elias Kiritsis
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Comparison to previous “guesses”
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The anomalous dimension of the quark mass at the IR fixed point as a function of x within
the conformal window in various approaches.

The solid blue curve is our result for the potential I.

The dashed blue lines show the maximal change as W0 is varied from 0 (upper curve) to
24/11 (lower curve).

The dotted red curve is the result from a Dyson-Schwinger analysis, the dot-dashed ma-

genta curve is the prediction of two-loop perturbative QCD, and the long-dashed green

curve is based on an all-orders β-function.

V-QCD, Elias Kiritsis
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Holographic β-functions

The second order equations for the system of two scalars plus metric can

be written as first order equations for the β-functions
Gursoy+Kiritsis+Nitti

dλ

dA
= β(λ, T ) ,

dT

dA
= γ(λ, T )

The equations of motion boil down to two partial non-linear differential

equations for β, γ.

Such equations have also branches as for DBI and non-linear scalar actions

the relation of e−AA′ with the potentials is a polynomial equation of degree

higher than two.
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The red lines are added on the top row at β = 0 in order to show the location of the

fixed point.
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The β-functions for vanishing quark mass for various values of x. The red

solid, blue dashed, and magenta dotted curves are the β-functions

corresponding to the full numerical solution (dλ/dA) along the RG flow,

the potential Veff = Vg − xVf0, and the potential Vg, respectively.

V-QCD, Elias Kiritsis
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Parameters

• A theory with a single relevant (or marginally relevant) coupling like YM

has no parameters.

• The same applies to QCD with massless quarks.

• QCD with all quarks having mass m has a single (dimensionless) param-

eter : m
ΛQCD

.

• After various rescalings this single parameter can be mapped to the

parameter T0 that controls the diverging tachyon in the IR.

• There is also x that has become continuous in the large Nc limit.

V-QCD, Elias Kiritsis

20



UV mass vs T0 and r1

The UV behavior of the background solutions with good IR singularity for the scenario I
(left) and parameter T0 and scenario II (right) and parameter r1.

The thick blue curve represents a change in the UV behavior, the red dashed curve has zero

quark mass, and the contours give the quark mass. The black dot where the zero mass

curve terminates lies at the critical value x = xc. For scenario I (II) we have xc ≃ 3.9959

(xc ≃ 4.0797).
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T0

m

T0

m

• Left figure: Plot of the UV Mass parameter m, as a function of the IR

T0 scale, for x < xc.

• Right figure: Similar plot for x ≥ xc. The vertical solid blue and dashed

red lines show where corresponding lines are intersected in previous figures.

• Such plots are sketched from the numerics, analytical expansions and

some guesses.
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• Near the fixed point value λ∗, the approximate solution of the tachyon

is given by T ∼ r2 sin [k log r+ ϕ]. The constant k is fixed for fixed x but

the normalization and ϕ are determined by the boundary conditions and IR

regularity.

• The tachyon starts at the boundary, evolves into the sinusoidal form for

a while, and then at the end diverges. Similar behavior seen at
Kutasov+Lin+Parnachev

• Different solutions differ in the region in which they are sinusoidal, and it

is this region that controls their number of zeros.

• For the n-th solution, the tachyon changes sign n times times before

diverging in the IR.

• At m = 0 there is an ∞ number of saddle point solutions (reflecting the

Efimov minima)

• They may appear even in the absence of a IR fixed point

V-QCD, Elias Kiritsis
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The free energy

The free energy difference be-

tween the ChS and ChSB mq = 0

solutions

Chiral symmetry breaking solution

favored whenever it exists (x < xc)
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x

10-6

10-4

0.01

1
ÈDEÈ�LUV

4

• The Efimov minima have free energies ∆En with

∆E0 >∆E1 >∆E2 > · · ·

V-QCD, Elias Kiritsis
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BKT scaling

We can derive

∆IR(4−∆IR) = −m2
IRℓ

2
IR = G(λ∗, x) ,

where

G(λ, x) ≡
24a(λ)

h(λ)(Vg(λ)− xVf0(λ))
.

and by matching behaviors

σ ∼
1

r3UV

exp

(
−

2K√
λ∗ − λc

)
∼

1

r3UV

exp

(
−

2K̂
√
xc − x

)
.

xc and λc are defined by G(λ∗(xc), xc) = 4 and G(λc, x) = 4, respectively, so

that λ∗ = λc at x = xc. we obtain

K =
π√

∂
∂λG(λc, x)

; K̂ =
π√

− d
dxG(λ∗(x), x)

∣∣∣
x=xc

.

23



.

-80 -60 -40 -20
log r

-200

-150

-100

-50

log T

-80 -60 -40 -20 0
log r

5

10

15

20

25

30
Λ

The tachyon logT (left) and the coupling λ (right) as functions of log r for

an extreme walking background with x = 3.992. The thin lines on the left

hand plot are the approximations used to derive the BKT scaling.

23-



æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

3.85 3.90 3.95 4.00
x

-100

-80

-60

-40

-20

logHΣ�LUV
3
L

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.005 0.010 0.020 0.050 0.100 0.200
Dx

5

10

20

50

100

-logHΣ�LUV
3
L

Left: log(σ/Λ3) as a function of x (dots), compared to a BKT scaling fit (solid line). The

vertical dotted line lies at x = xc. Right: the same curve on log-log scale, using ∆x = xc−x.

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

3.80 3.85 3.90 3.95 4.00
x

10

20

30

40

50

60

logHLUV�LIRL

æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

1 105 1010 1015 1020 1025
LUV�LIR

10-41

10-32

10-23

10-14

10-5

Σ�LUV
3

Left: log(ΛUV/ΛIR) as a function of x (dots), compared to a BKT scaling fit (solid line).

Right: σ/Λ3 plotted against ΛUV/ΛIR on log-log scale.

V-QCD, Elias Kiritsis

23-



Comparison to N=1 sQCD

The case of N = 1 SU(Nc) superQCD with Nf quark multiplets is known

and provides an interesting (and more complex) example for the non-

supersymmetric case. From Seiberg we have learned that:

• x = 0 the theory has confinement, a mass gap and Nc distinct vacua

associated with a spontaneous breaking of the leftover R symmetry ZNc.

• At 0 < x < 1, the theory has a runaway ground state.

• At x = 1, the theory has a quantum moduli space with no singularity.

This reflects confinement with χSB.

• At x = 1 + 1
Nc

, the moduli space is classical (and singular). The theory

confines, but there is no χSB.

• At 1+ 2
Nc

< x < 3
2 the theory is in the non-abelian magnetic IR-free phase,

with the magnetic gauge group SU(Nf −Nc) IR free.

24



• At 3
2 < x < 3, the theory flows to a CFT in the IR. Near x = 3 this is the

Banks-Zaks region where the original theory has an IR fixed point at weak
coupling. Moving to lower values, the coupling of the IR SU(Nc) gauge
theory grows. However near x = 3

2 the dual magnetic SU(Nf −Nc) is in its
Banks-Zaks region, and provides a weakly coupled description the IR fixed
point theory.

• At x > 3, the theory is IR free.

There are similarities and important differences with QCD:

• sQCD contains scalars and this gives rise to an extended potential and
moduli space that is responsible for most of differences.

• The chiral symmetry works differently.

• There is a similarity with the magnetic gauge group. Here it is generated
by the axial and vector mesons that are massless in the conformal window.
However, unlike sQCD here they are always weakly coupled in the IR because
of the large Nc limit.

V-QCD, Elias Kiritsis
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Outlook

There are many directions that need to be explored:

• The meson spectra at T = 0. Singlet mesons will mix with appropriate
glueballs. Is the σ-meson a dilaton?.

• Computation of the S parameter for technicolor applications.

• The finite-temperature phase diagram is being investigated.
It shows a rich and unexpected structure in the walking region.

• Study energy loss of quarks in QGP (with full backreaction).

• The parameter x resembles somewhat the doping parameter in high-Tc
superconductivity. Mesons should be thought of as Cooper pairs of axial
charge.

• Study the phase diagram at finite density.

• ”Model building”: Construction of realistic technicolor models.

V-QCD, Elias Kiritsis
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Thank you

V-QCD, Elias Kiritsis
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Numerical solutions: T = 0

T ≡ 0 backgrounds (color codes λ, A)
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V-QCD, Elias Kiritsis
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Numerical solutions: Massless with x < xc

Massless backgrounds with x < xc ≃ 3.9959 (λ, A, T )
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Massless backgrounds: beta functions β = dλ
dA , ( xc ≃ 3.9959)
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Massless backgrounds: gamma functions γ
T = d logT
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