The Kerr/CFT correspondence A bird-eye view

Iberian Strings 2012, Bilbao, February 2nd, 2012.

Geoffrey Compère Universiteit van Amsterdam

The **Kerr/CFT correspondence** proposes that (*at least part of*) the dynamics of rotating black holes can be identified with the dynamics of (*a close cousin of*) a conformal field theory (CFT).

Rotating black holes

1 + 1 **CFTs**

(日本) (日本) (日本)

The **Kerr/CFT correspondence** proposes that (*at least part of*) the dynamics of rotating black holes can be identified with the dynamics of (*a close cousin of*) a conformal field theory (CFT).

Rotating black holes

1 + 1 **CFTs**

(日本) (日本) (日本)

The **Kerr/CFT correspondence** proposes that (*at least part of*) the dynamics of rotating black holes can be identified with the dynamics of (*a close cousin of*) a conformal field theory (CFT).

Rotating black holes

• Metric $g_{\mu\nu}$, ...

- Angular momentum J, ...
- Symmetries $U(1) \times U(1)$
- Entropy

$$S_{BH}(M,J,\dots) = \frac{A}{4G} + \dots$$

• Dynamics of probes $\Box \phi = 0, \ldots$

1 + 1 **CFTs**

- ..., OPEs, Operators •
- T_L , T_R Temperatures
 - $Virasoro \, \times \, Virasoro \, \bullet \,$

Entropy •

$$S_{CFT} = rac{\pi^2}{3} (c_R T_R + c_L T_L)$$

Correlators •
 $\ldots, \langle O_1(0) O_2(x)
angle$

The **Kerr/CFT correspondence** proposes that (*at least part of*) the dynamics of rotating black holes can be identified with the dynamics of (*a close cousin of*) a conformal field theory (CFT).

1 + 1 **CFTs**

- ..., OPEs, Operators •
- T_L , T_R Temperatures
 - Virasoro \times Virasoro
 - Entropy •

$$S_{CFT} = rac{\pi^2}{3} (c_R T_R + c_L T_L)$$

Correlators •

 \ldots , $\langle O_1(0)O_2(x) \rangle$

э

The **Kerr/CFT correspondence** proposes that (*at least part of*) the dynamics of rotating black holes can be identified with the dynamics of (*a close cousin of*) a conformal field theory (CFT).

 \Leftrightarrow ?

 \Leftrightarrow ?

 \Leftrightarrow ?

⇔?

 \Leftrightarrow ?

Rotating black holes

- Metric $g_{\mu
 u}$, ...
- Angular momentum *J*, ...
- Symmetries $U(1) \times U(1)$
- Entropy

$$S_{BH}(M,J,\dots) = \frac{A}{4G} + \dots$$

• Dynamics of probes $\Box \phi = 0, \ldots$

1+1 CFTs

- ..., OPEs, Operators •
- T_L , T_R Temperatures
 - Virasoro \times Virasoro
 - Entropy •

$$S_{CFT} = rac{\pi^2}{3} (c_R T_R + c_L T_L)$$

Correlators

 \ldots , $\langle O_1(0)O_2(x)
angle$

イロト イポト イヨト イヨト

Why do we care?

List of open physics problems in quantum gravity :

- (1) Compute the value of the cosmological constant
- (2) Solve Hawking's paradox
- (3) Resolve the cosmological singularity
- (4) Describe the microstates of a realistic black hole

The Kerr/CFT correspondence has the potential to help solving (4).

・ 何 ト ・ ヨ ト ・ ヨ ト

Why do we care?

List of open physics problems in quantum gravity :

- (1) Compute the value of the cosmological constant
- (2) Solve Hawking's paradox
- (3) Resolve the cosmological singularity
- (4) Describe the microstates of a realistic black hole

The Kerr/CFT correspondence has the potential to help solving (4).

くぼう くほう くほう

Why do we care?

List of open physics problems in quantum gravity :

(4) Describe the microstates of a realistic black hole

The Kerr/CFT correspondence has the potential to help solving (4).

What is the main idea?

Extreme rotating black holes are

IR fixed points (characterized by universal properties)

that control the dynamics of non-extreme black holes.

What is the main idea?

Extreme rotating black holes are

IR fixed points (characterized by universal properties)

that control the dynamics of non-extreme black holes.

Is the Kerr/CFT correspondence based on string theory? No!

This is an effective (bottom-up) model but one can build UV complete models in string theory.

Is the Kerr/CFT correspondence based on string theory? No !

This is an effective (bottom-up) model but one can build UV complete models in string theory.

Is the Kerr/CFT correspondence based on string theory? No !

This is an effective (bottom-up) model but one can build UV complete models in string theory.

Is the Kerr/CFT correspondence based on string theory? No !

This is an effective (bottom-up) model but one can build UV complete models in string theory.

Derivation of Kerr/CFT in three steps

Far from extremality : "Hidden conformal symmetry of the Kerr black hole",
Castro, Maloney, Strominger,
1004.0996

© Close to extremality : "Black Hole Superradiance from Kerr/CFT", Bredberg, Hartman, Song, Strominger, 0907.3477

• At extremality : "The Kerr/CFT correspondence", Guica, Hartman, Song, Strominger, 0809.4266

Derivation of Kerr/CFT in three steps

Far from extremality : "Hidden conformal symmetry of the Kerr black hole",
Castro, Maloney, Strominger,
1004.0996

 Close to extremality : "Black Hole Superradiance from Kerr/CFT",
 Bredberg, Hartman, Song, Strominger, 0907.3477

• At extremality : "The Kerr/CFT correspondence", Guica, Hartman, Song, Strominger, 0809.4266

Derivation of Kerr/CFT in three steps

Far from extremality : "Hidden conformal symmetry of the Kerr black hole",
Castro, Maloney, Strominger,
1004.0996

 Close to extremality : "Black Hole Superradiance from Kerr/CFT",
 Bredberg, Hartman, Song, Strominger, 0907.3477

• At extremality : "The Kerr/CFT correspondence", Guica, Hartman, Song, Strominger, 0809.4266

Plan : Derivation of Kerr/CFT in three steps

3 Far from extremality : Dynamics of probes has broken $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ symmetry. Entropy still matches !

2 Close to extremality :

Dynamics of probes can be obtained from a CFT two-point correlation function.

• At extremality : Temperatures T_L , T_R , Virasoro algebra, Match $S_{BH} = S_{CFT}$!

Plan : Derivation of Kerr/CFT in three steps

③ Far from extremality : Dynamics of probes has broken $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ symmetry. Entropy still matches !

2 Close to extremality :

Dynamics of probes can be obtained from a CFT two-point correlation function.

• At extremality :

Temperatures T_L , T_R , Virasoro algebra, Match $S_{BH} = S_{CFT}$!

Plan : Derivation of Kerr/CFT in three steps

③ Far from extremality : Dynamics of probes has broken $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ symmetry. Entropy still matches !

2 Close to extremality :

Dynamics of probes can be obtained from a CFT two-point correlation function.

1 At extremality :

Temperatures T_L , T_R , Virasoro algebra, Match $S_{BH} = S_{CFT}$!

First step of the Kerr/CFT correspondence

Extremal black holes are nearly physical

Theoretical bounds on the Kerr parameters :

no naked singularity

[Thorne] from details of matter

Observed :

 $\frac{J}{GM^2} > 0.98$ $\frac{J}{GM^2} > 0.98$ $\frac{J}{GM^2} > 0.95$

[GRS 1915+105 (2006)] $M \sim 10-15 M_{\odot}$ [MCG-6-30-15 (2006)] $M \sim 3-6 imes 10^6 M_{\odot}$

[Cygnus X-1 (2011)] $M \sim 14.8 M_{\odot}$

▲撮 ▶ ▲ 陸 ▶ ▲ 陸 ▶ →

Extremal black holes are nearly physical

Theoretical bounds on the Kerr parameters :

$$rac{J}{GM^2} \leq 1$$
 no naked singularity
 $rac{J}{GM^2} \leq 0.998$ [Thorne] from details of matter

Observed :

 $\begin{aligned} \frac{J}{GM^2} &> 0.98 & [GRS \ 1915 + 105 \ (2006)] \ M &\sim 10 - 15 M_{\odot} \\ \frac{J}{GM^2} &> 0.98 & [MCG-6-30-15 \ (2006)] \ M &\sim 3 - 6 \times 10^6 M_{\odot} \\ \frac{J}{GM^2} &> 0.95 & [Cygnus \ X-1 \ (2011)] \ M &\sim 14.8 M_{\odot} \end{aligned}$

Two key statements

 The extremal Kerr black hole can be described by a field theory at the (dimensionless) temperatures

$$T_L = rac{1}{2\pi}, \qquad T_R = 0$$

② The axial symmetry can be extended to a Virasoro asymptotic symmetry algebra close to the horizon with central charge

$$c = rac{12J}{\hbar} \in 6\mathbb{N}$$

The black hole entropy can then be reproduced by a CFT counting

$$S_{BH}=rac{A}{4G\hbar}=rac{2\pi J}{\hbar}\stackrel{!}{=}rac{\pi^2}{3}(c\,T_L+c\,T_R)=S_{CFT}$$

< 母 > < ヨ > < ヨ >

Two key statements

1 The extremal Kerr black hole can be described by a field theory at the (dimensionless) temperatures

$$T_L=rac{1}{2\pi}, \qquad T_R=0$$

② The axial symmetry can be extended to a Virasoro asymptotic symmetry algebra close to the horizon with central charge

$$c=rac{12J}{\hbar}\in 6\mathbb{N}$$

The black hole entropy can then be reproduced by a CFT counting

$$S_{BH}=rac{A}{4G\hbar}=rac{2\pi J}{\hbar}\stackrel{!}{=}rac{\pi^2}{3}(c\,T_L+c\,T_R)=S_{CFT}$$

伺 ト イ ヨ ト イ ヨ ト

Two key statements

 The extremal Kerr black hole can be described by a field theory at the (dimensionless) temperatures

$$T_L=rac{1}{2\pi}, \qquad T_R=0$$

② The axial symmetry can be extended to a Virasoro asymptotic symmetry algebra close to the horizon with central charge

$$c=rac{12J}{\hbar}\in 6\mathbb{N}$$

The black hole entropy can then be reproduced by a CFT counting

$$S_{BH}=rac{A}{4G\hbar}=rac{2\pi J}{\hbar}\stackrel{!}{=}rac{\pi^2}{3}(c\,T_L+c\,T_R)=S_{CFT}$$

伺 ト イ ヨ ト イ ヨ ト

$$ds^{2} = -\frac{r^{2} - 2GMr + a^{2}}{r^{2} + a^{2}\cos^{2}\theta}(dt - a\sin^{2}\theta d\phi)^{2} + (r^{2} + a^{2}\cos^{2}\theta)d\theta^{2} + \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2GMr + a^{2}}dr^{2} + \frac{\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}((r^{2} + a^{2})d\phi - adt)^{2}$$

where $a = \frac{J}{M}$. Extremality is reached when $J = GM^2$ or a = GM. Then

$$T_H = 0, \qquad \Omega_H = rac{1}{2GM}, \qquad S_{BH} = 2\pi rac{J}{\hbar}, \qquad J \in \hbar rac{\mathbb{N}}{2}$$

Take the near-horizon limit $\lambda \rightarrow 0$:

$$t^{near} = \lambda t, \qquad r^{near} = rac{r - GM}{\lambda}, \qquad \phi^{near} = \phi - \Omega_H t$$

G. Compère (UvA)

$$ds^{2} = -\frac{r^{2} - 2GMr + a^{2}}{r^{2} + a^{2}\cos^{2}\theta}(dt - a\sin^{2}\theta d\phi)^{2} + (r^{2} + a^{2}\cos^{2}\theta)d\theta^{2} + \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2GMr + a^{2}}dr^{2} + \frac{\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}((r^{2} + a^{2})d\phi - adt)^{2}$$

where $a = \frac{J}{M}$. Extremality is reached when $J = GM^2$ or a = GM. Then

$$T_H = 0, \qquad \Omega_H = rac{1}{2GM}, \qquad S_{BH} = 2\pi rac{J}{\hbar}, \qquad J \in \hbar rac{\mathbb{N}}{2}$$

Take the near-horizon limit $\lambda \rightarrow 0$:

$$t^{near} = \lambda t, \qquad r^{near} = \frac{r - GM}{\lambda}, \qquad \phi^{near} = \phi - \Omega_H t$$

G. Compère (UvA)

(日本)(日本)(日本)

$$ds^{2} = -\frac{r^{2} - 2GMr + a^{2}}{r^{2} + a^{2}\cos^{2}\theta}(dt - a\sin^{2}\theta d\phi)^{2} + (r^{2} + a^{2}\cos^{2}\theta)d\theta^{2} + \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2GMr + a^{2}}dr^{2} + \frac{\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}((r^{2} + a^{2})d\phi - adt)^{2}$$

where $a = \frac{J}{M}$. Extremality is reached when $J = GM^2$ or a = GM. Then

$$T_H=0, \qquad \Omega_H=rac{1}{2GM}, \qquad S_{BH}=2\pirac{J}{\hbar}, \qquad J\in\hbarrac{\mathbb{N}}{2}$$

Take the near-horizon limit $\lambda
ightarrow 0$:

$$t^{near} = \lambda t, \qquad r^{near} = \frac{r - GM}{\lambda}, \qquad \phi^{near} = \phi - \Omega_H t$$

G. Compère (UvA)

(日本) (日本) (日本)

$$ds^{2} = -\frac{r^{2} - 2GMr + a^{2}}{r^{2} + a^{2}\cos^{2}\theta}(dt - a\sin^{2}\theta d\phi)^{2} + (r^{2} + a^{2}\cos^{2}\theta)d\theta^{2} + \frac{r^{2} + a^{2}\cos^{2}\theta}{r^{2} - 2GMr + a^{2}}dr^{2} + \frac{\sin^{2}\theta}{r^{2} + a^{2}\cos^{2}\theta}((r^{2} + a^{2})d\phi - adt)^{2}$$

where $a = \frac{J}{M}$. Extremality is reached when $J = GM^2$ or a = GM. Then

$$T_H=0, \qquad \Omega_H=rac{1}{2GM}, \qquad S_{BH}=2\pirac{J}{\hbar}, \qquad J\in\hbarrac{\mathbb{N}}{2}$$

Take the near-horizon limit $\lambda \rightarrow 0$:

$$t^{near} = \lambda t, \qquad r^{near} = rac{r-GM}{\lambda}, \qquad \phi^{near} = \phi - \Omega_H t$$

伺 ト イ ヨ ト イ ヨ ト

The extremal Kerr causal structure

G. Compère (UvA)

$$ds^{2} = J(1 + \cos^{2}\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \frac{4\sin^{2}\theta}{(1 + \cos^{2}\theta)^{2}} (d\phi + rdt)^{2} \right)$$

• <u>Decoupling</u> between horizon and flat asymptotics

• This spacetime is geodesically complete.

• Enhancement to $SL(2,\mathbb{R}) \times U(1)$ symmetry [Kunduri, Lucietti, Reall]

$$r
ightarrow c r, \qquad t
ightarrow t/c \ \xi = t \partial_t - r \partial$$

• $t - \phi$ reversal invariance \ldots

$$ds^{2} = J(1 + \cos^{2}\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \frac{4\sin^{2}\theta}{(1 + \cos^{2}\theta)^{2}} (d\phi + rdt)^{2} \right)$$

• <u>Decoupling</u> between horizon and flat asymptotics

• This spacetime is geodesically complete.

• Enhancement to $SL(2,\mathbb{R}) \times U(1)$ symmetry [Kunduri, Lucietti, Reall]

$$r
ightarrow c r, \qquad t
ightarrow t/c \ \xi = t \partial_t - r \partial$$

• $t - \phi$ reversal invariance t = 0

$$ds^{2} = J(1 + \cos^{2}\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \frac{4\sin^{2}\theta}{(1 + \cos^{2}\theta)^{2}} (d\phi + rdt)^{2} \right)$$

• <u>Decoupling</u> between horizon and flat asymptotics

• This spacetime is geodesically complete.

• Enhancement to $SL(2,\mathbb{R}) \times U(1)$ symmetry [Kunduri, Lucietti, Reall]

$$r
ightarrow c r, \qquad t
ightarrow t/c \ \xi = t \partial_t - r \partial_t$$

• $t - \phi$ reversal invariance, t = 0

$$ds^{2} = J(1 + \cos^{2}\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \frac{4\sin^{2}\theta}{(1 + \cos^{2}\theta)^{2}} (d\phi + rdt)^{2} \right)$$

• <u>Decoupling</u> between horizon and flat asymptotics

• This spacetime is geodesically complete.

 Enhancement to SL(2, ℝ) × U(1) symmetry [Kunduri, Lucietti, Reall]

$$egin{array}{ll} r o c \, r, & t o t/c \ \xi = t \partial_t - r \partial_t \end{array}$$

•
$$t - \phi$$
 reversal invariance
Near-horizon region of extremal Kerr [Bardeen-Horowitz, 1999]

$$ds^{2} = J(1 + \cos^{2}\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \frac{4\sin^{2}\theta}{(1 + \cos^{2}\theta)^{2}} (d\phi + rdt)^{2} \right)$$

- <u>Decoupling</u> between horizon and <u>asymptotics</u>
- Geometry is a warped product

 $AdS_2 imes_{warped} S^2.$

 [Conjecture] Any solution asymptotic to this geometry is diffeomorphic to it. [Amstel, Horowitz, Marolf, Roberts]

< 回 > < 回 > < 回 > <

Near-horizon region of extremal Kerr [Bardeen-Horowitz, 1999]

$$ds^{2} = J(1 + \cos^{2}\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \frac{4\sin^{2}\theta}{(1 + \cos^{2}\theta)^{2}} (d\phi + rdt)^{2} \right)$$

- <u>Decoupling</u> between horizon and asymptotics
- Geometry is a warped product

 $AdS_2 imes_{warped} S^2.$

• [Conjecture] Any solution asymptotic to this geometry is diffeomorphic to it.

[Amstel, Horowitz, Marolf, Roberts]

Temperature of extremal black holes

 $T_H = 0$, but ...

First law suggests the existence of a physical temperature

$$egin{aligned} \delta S &=& rac{1}{T_H}(\delta M - \Omega_H \delta J) \ &\stackrel{ext}{=}& rac{1}{T_H}((rac{\partial M}{\partial J})_{ext} - \Omega_H)\delta J = rac{1}{T_\phi}\delta J \end{aligned}$$

This suggests that excitations of extreme rotating black holes lie along

$$T_L = T_\phi = rac{1}{2\pi}, \qquad T_R = 0$$

G. Compère (UvA)

(人間) とくき とくき と

Temperature of extremal black holes

$$T_H = 0,$$
 but ...

First law suggests the existence of a physical temperature

$$\begin{split} \delta S &= \frac{1}{T_H} (\delta M - \Omega_H \delta J) \\ &\stackrel{ext}{=} \frac{1}{T_H} ((\frac{\partial M}{\partial J})_{ext} - \Omega_H) \delta J = \frac{1}{T_\phi} \delta J \end{split}$$

This suggests that excitations of extreme rotating black holes lie along

One can then argue that there is a 2d QFT description with

$$T_L=T_{\phi}=rac{1}{2\pi}, \qquad T_R=0$$

One more statement to make

 The extremal Kerr black hole can be described by a field theory at the (dimensionless) temperature

$$T_L = rac{1}{2\pi}, \qquad T_R = 0$$

② The axial symmetry can be extended to a Virasoro asymptotic symmetry algebra close to the horizon with central charge

$$c=rac{12J}{\hbar}\in 6\mathbb{N}$$

The black hole entropy can then be reproduced by a CFT counting

$$S_{BH}=rac{A}{4G\hbar}=rac{2\pi J}{\hbar}\stackrel{!}{=}rac{\pi^2}{3}c\,T_L=S_{CFT}$$

伺 ト イ ヨ ト イ ヨ ト

Interlude : detour to 3d gravity !

(Main argument to microscopically derive black hole entropy in string theory!)

Near-horizon geometry of many supersymmetric black holes is asymptotic to

$$ds^2 = l_{AdS}^2 \left(-(1+r^2)dt^2 + rac{dr^2}{1+r^2} + r^2 d\phi^2
ight)$$

Semi-classical analysis valid for $l_{AdS} \gg \hbar G_3$.

• Conformal boundary is a cylinder $(t, \phi) : x^{\pm} = t \pm \phi$ with conformal symmetries

 $\xi_L = L(x^+)\partial_+ - rL'(x^+)\partial_r \quad \text{and} \quad \xi_R = \bar{L}(x^-)\partial_- - r\bar{L}'(x^-)\partial_r$ extending

 $SL(2,\mathbb{R})_L imes SL(2,\mathbb{R})_R$

• Boundary conditions $g_{\mu\nu} = O(...)$ exist such that charges $L_n \leftrightarrow \xi_L(L(x^+) = e^{inx^+}), \quad \bar{L}_n \leftrightarrow \xi_R(\bar{L}(x^-) = e^{inx^-}),$ are finite, well-defined and conserved.

Near-horizon geometry of many supersymmetric black holes is asymptotic to

$$ds^2 = l_{AdS}^2 \left(-(1+r^2)dt^2 + rac{dr^2}{1+r^2} + r^2 d\phi^2
ight)$$

Semi-classical analysis valid for $l_{AdS} \gg \hbar G_3$.

• Conformal boundary is a cylinder $(t, \phi) : x^{\pm} = t \pm \phi$ with conformal symmetries

 $\xi_L = L(x^+)\partial_+ - rL'(x^+)\partial_r \quad \text{and} \quad \xi_R = \bar{L}(x^-)\partial_- - r\bar{L}'(x^-)\partial_r$ extending

 $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$

• Boundary conditions $g_{\mu\nu} = O(...)$ exist such that charges $L_n \leftrightarrow \xi_L(L(x^+) = e^{inx^+}), \quad \bar{L}_n \leftrightarrow \xi_R(\bar{L}(x^-) = e^{inx^-}),$ are finite, well-defined and conserved.

Near-horizon geometry of many supersymmetric black holes is asymptotic to

$$ds^2 = l_{AdS}^2 \left(-(1+r^2) dt^2 + rac{dr^2}{1+r^2} + r^2 d\phi^2
ight)$$

Semi-classical analysis valid for $l_{AdS} \gg \hbar G_3$.

• Conformal boundary is a cylinder $(t, \phi) : x^{\pm} = t \pm \phi$ with conformal symmetries

$$\begin{split} \xi_L &= L(x^+)\partial_+ - rL'(x^+)\partial_r \quad \text{and} \quad \xi_R = \bar{L}(x^-)\partial_- - r\bar{L}'(x^-)\partial_r \\ \text{extending} \end{split}$$

 $SL(2,\mathbb{R})_L imes SL(2,\mathbb{R})_R$

• Boundary conditions $g_{\mu\nu} = O(...)$ exist such that charges $L_n \leftrightarrow \xi_L(L(x^+) = e^{inx^+}), \quad \bar{L}_n \leftrightarrow \xi_R(\bar{L}(x^-) = e^{inx^-}),$ are finite, well-defined and conserved.

Near-horizon geometry of many supersymmetric black holes is asymptotic to

$$ds^2 = l_{AdS}^2 \left(-(1+r^2) dt^2 + rac{dr^2}{1+r^2} + r^2 d\phi^2
ight)$$

Semi-classical analysis valid for $l_{AdS} \gg \hbar G_3$.

• Conformal boundary is a cylinder $(t, \phi) : x^{\pm} = t \pm \phi$ with conformal symmetries

$$\begin{split} \xi_L = L(x^+)\partial_+ - rL'(x^+)\partial_r \quad \text{and} \quad \xi_R = \bar{L}(x^-)\partial_- - r\bar{L}'(x^-)\partial_r \\ \text{extending} \end{split}$$

 $SL(2,\mathbb{R})_L imes SL(2,\mathbb{R})_R$

• Boundary conditions $g_{\mu\nu} = O(\dots)$ exist such that charges

$$L_n \leftrightarrow \xi_L(L(x^+) = e^{inx^+}), \qquad \bar{L}_n \leftrightarrow \xi_R(\bar{L}(x^-) = e^{inx^-}),$$

are finite, well-defined and conserved.

[Brown-Henneaux, 1986] Algebra of charges defined via a Dirac bracket :

$$\begin{split} &i\{L_m,L_n\} &= (m-n)L_{m+n} + \frac{C_L}{12}m(m^2-1)\delta_{m,-n} \\ &i\{\bar{L}_m,\bar{L}_n\} &= (m-n)\bar{L}_{m+n} + \frac{C_R}{12}m(m^2-1)\delta_{m,-n} \\ &i\{L_m,\bar{L}_n\} &= 0 \end{split}$$

 \Rightarrow Virasoro algebra with central charges

$$c_L = c_R \stackrel{Einstein}{=} rac{3 l_{AdS}}{2 G_3}$$

[Banados, Teitelboim, Zanelli, 1993] BTZ black holes have

 $L_0 \stackrel{Einstein}{=} M - l_{AdS}J, \qquad \bar{L}_0 \stackrel{Einstein}{=} M + l_{AdS}J$

[Brown-Henneaux, 1986] Algebra of charges defined via a Dirac bracket :

$$\begin{split} &i\{L_m,L_n\} &= (m-n)L_{m+n} + \frac{c_L}{12}m(m^2-1)\delta_{m,-n} \\ &i\{\bar{L}_m,\bar{L}_n\} &= (m-n)\bar{L}_{m+n} + \frac{c_R}{12}m(m^2-1)\delta_{m,-n} \\ &i\{L_m,\bar{L}_n\} &= 0 \end{split}$$

 \Rightarrow Virasoro algebra with central charges

$$c_L = c_R \stackrel{Einstein}{=} rac{3l_{AdS}}{2G_3}$$

[Banados, Teitelboim, Zanelli, 1993] BTZ black holes have

$$L_0 \stackrel{Einstein}{=} M - l_{AdS}J, \qquad \bar{L}_0 \stackrel{Einstein}{=} M + l_{AdS}J$$

伺下 イヨト イヨト

[Brown-Henneaux, 1986] Algebra of charges defined via a Dirac bracket :

$$\begin{split} &i\{L_m,L_n\} &= (m-n)L_{m+n} + \frac{c_L}{12}m(m^2-1)\delta_{m,-n} \\ &i\{\bar{L}_m,\bar{L}_n\} &= (m-n)\bar{L}_{m+n} + \frac{c_R}{12}m(m^2-1)\delta_{m,-n} \\ &i\{L_m,\bar{L}_n\} &= 0 \end{split}$$

 \Rightarrow Virasoro algebra with central charges

$$c_L = c_R \stackrel{Einstein}{=} rac{3l_{AdS}}{2G_3}$$

[Banados, Teitelboim, Zanelli, 1993] BTZ black holes have

$$L_0 \stackrel{Einstein}{=} M - l_{AdS}J, \qquad \bar{L}_0 \stackrel{Einstein}{=} M + l_{AdS}J$$

[Strominger, 1998] BTZ black holes described by a 2D CFT

[Brown-Henneaux, 1986] Algebra of charges defined via a Dirac bracket $\{,\} \rightarrow -\frac{i}{\hbar}[,]$ and $L_m \rightarrow \hbar \mathcal{L}_m$:

$$\begin{split} & [\mathcal{L}_m, \mathcal{L}_n] &= (m-n)\mathcal{L}_{m+n} + \frac{c_L}{12}m(m^2-1)\delta_{m,-n} \\ & [\bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n] &= (m-n)\bar{\mathcal{L}}_{m+n} + \frac{c_R}{12}m(m^2-1)\delta_{m,-n} \\ & [\mathcal{L}_m, \bar{\mathcal{L}}_n] &= 0 \end{split}$$

 \Rightarrow Virasoro algebra with central charges

$$c_L = c_R \stackrel{Einstein}{=} rac{3l_{AdS}}{2G_3\hbar} \gg 1$$

[Banados, Teitelboim, Zanelli, 1993] BTZ black holes have

$$L_0 \stackrel{Einstein}{=} M - l_{AdS}J, \qquad \bar{L}_0 \stackrel{Einstein}{=} M + l_{AdS}J$$

[Strominger, 1998] BTZ black holes described by a 2D CFT

[Brown-Henneaux, 1986] Algebra of charges defined via a Dirac bracket $\{,\} \rightarrow -\frac{i}{\hbar}[,]$ and $L_m \rightarrow \hbar \mathcal{L}_m$:

$$\begin{bmatrix} \mathcal{L}_m, \mathcal{L}_n \end{bmatrix} = (m-n)\mathcal{L}_{m+n} + \frac{C_L}{12}m(m^2-1)\delta_{m,-n} \\ \begin{bmatrix} \bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n \end{bmatrix} = (m-n)\bar{\mathcal{L}}_{m+n} + \frac{C_R}{12}m(m^2-1)\delta_{m,-n} \\ \begin{bmatrix} \mathcal{L}_m, \bar{\mathcal{L}}_n \end{bmatrix} = 0$$

 \Rightarrow Virasoro algebra with central charges

$$c_L = c_R \stackrel{Einstein}{=} rac{3 l_{AdS}}{2 G_3 \hbar} \gg 1$$

[Banados, Teitelboim, Zanelli, 1993] BTZ black holes have

$$\mathcal{L}_0 \stackrel{Einstein}{=} rac{1}{\hbar} (M - l_{AdS}J), \qquad ar{\mathcal{L}}_0 \stackrel{Einstein}{=} rac{1}{\hbar} (M + l_{AdS}J)$$

[Strominger, 1998] BTZ black holes described by a 2D CFT

$$S_{BH} \stackrel{!}{=} 2\pi \sqrt{rac{c_L \mathcal{L}_0}{6}} + 2\pi \sqrt{rac{c_R ar{\mathcal{L}}_0}{6}} \stackrel{Cardy}{=} S_{CFT}$$

(One can use this reasoning to derive microscopically the entropy of a large class of supersymmetric black hole in string theory.)

End of Interlude : back to Kerr!

• Now, we have $AdS_2 \times_{warped} S_2$.

• Idea : conformal symmetries along ∂_{ϕ} !

 $l_n = e^{-in\phi} \partial_\phi + inr e^{-in\phi} \partial_r$

• Decoupling \Rightarrow Boundary conditions :

$$g_{\mu
u}\sim ar{g}_{\mu
u}+O(\dots),\qquad Q_{\partial_t}=0$$

• Representation by covariant charges [Barnich, Brandt, 2001],

[Barnich, G.C, 2007]

$$l_n \rightarrow L_n[(g_{\mu\nu},\ldots);\mathcal{L}]$$

Charges finite. Conserved and integrable after fixing technical details. [Amsel,Marolf,Roberts, 2009]

- Now, we have $AdS_2 \times_{warped} S_2$.
- Idea : conformal symmetries along ∂_{ϕ} !

$$l_n = e^{-in\phi}\partial_\phi + inre^{-in\phi}\partial_r$$

• Decoupling \Rightarrow Boundary conditions :

$$g_{\mu
u}\sim ar{g}_{\mu
u}+O(\dots),\qquad Q_{\partial_t}=0$$

• Representation by covariant charges [Barnich, Brandt, 2001],

[Barnich, G.C, 2007]

$$l_n \rightarrow L_n[(g_{\mu\nu},\ldots);\mathcal{L}]$$

Charges finite. Conserved and integrable after fixing technical details. [Amsel,Marolf,Roberts, 2009]

• Now, we have $AdS_2 \times_{warped} S_2$.

• Idea : conformal symmetries along ∂_{ϕ} !

$$l_n = e^{-in\phi}\partial_\phi + inre^{-in\phi}\partial_r$$

• Decoupling \Rightarrow Boundary conditions :

$$g_{\mu
u}\simar{g}_{\mu
u}+O(\dots),\qquad Q_{\partial_t}=0$$

• Representation by covariant charges [Barnich, Brandt, 2001],

[Barnich, G.C, 2007]

$$l_n \rightarrow L_n[(g_{\mu\nu},\ldots);\mathcal{L}]$$

Charges finite. Conserved and integrable after fixing technical details. [Amsel,Marolf,Roberts, 2009]

- Now, we have $AdS_2 \times_{warped} S_2$.
- Idea : conformal symmetries along ∂_{ϕ} !

$$l_n = e^{-in\phi} \partial_\phi + inre^{-in\phi} \partial_r$$

• Decoupling \Rightarrow Boundary conditions :

$$g_{\mu
u}\simar{g}_{\mu
u}+O(\dots),\qquad Q_{\partial_t}=0$$

• Representation by covariant charges [Barnich, Brandt, 2001],

[Barnich, G.C, 2007]

$$l_n \to L_n[(g_{\mu\nu},\ldots);\mathcal{L}]$$

Charges finite. Conserved and integrable after fixing technical details. [Amsel,Marolf,Roberts, 2009]

Charges can be represented via a Dirac bracket,

$$i\{\mathcal{L}_m,\mathcal{L}_n\}=(m-n)\mathcal{L}_{m+n}+rac{c_L}{12}m(m^2-1)\delta_{m+n,0}$$

and they admit a central term, with central charge

$$c_L \stackrel{Kerr}{=} \frac{12J}{\hbar}$$

The black hole entropy can then be reproduced by a CFT counting

$$S_{BH} = \frac{A}{4G\hbar} = \frac{2\pi J}{\hbar} \stackrel{!}{=} \frac{\pi^2}{3} c_L T_L = S_{CFT}$$

in one chiral sector. Note $c_L \gg T_L$.

(4 間) (4 回) (4 回) (4 回)

Charges can be represented via a Dirac bracket,

$$i\{\mathcal{L}_m,\mathcal{L}_n\} = (m-n)\mathcal{L}_{m+n} + \frac{c_L}{12}m(m^2-1)\delta_{m+n,0}$$

and they admit a central term, with central charge

$$c_L \stackrel{Kerr}{=} rac{12J}{\hbar}$$

The black hole entropy can then be reproduced by a CFT counting

$$S_{BH}=rac{A}{4G\hbar}=rac{2\pi J}{\hbar}\stackrel{!}{=}rac{\pi^2}{3}c_L\,T_L=S_{CFT}$$

in one chiral sector. Note $c_L \gg T_L$.

Question : is this a numerical coincidence?

ヨト・モート

Extensions of entropy matching [Many authors ...]

For any 4d black hole in Einstein gravity + matter fields, the near-horizon region is

$$ds^{2} = \alpha(\theta) \left(\left(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} \right) + d\theta^{2} + \beta(\theta)(d\phi + k r dt)^{2} \right)$$

[Kunduri, Lucietti, Reall, 2007]

(日本) (日本) (日本)

and one can show

$$S_{BH} = rac{A}{4G\hbar} \stackrel{!}{=} rac{\pi^2}{3} c_L T_L = S_{CFT}$$

with

$$T_L = \frac{1}{2\pi k}$$

$$C_L \stackrel{Einstein}{=} \frac{3k}{2\pi G} A$$

Extensions of entropy matching [Many authors ...]

For any 4d black hole in Einstein gravity + matter fields, the near-horizon region is

$$ds^{2} = \alpha(\theta) \left(\left(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} \right) + d\theta^{2} + \beta(\theta)(d\phi + k r dt)^{2} \right)$$

[Kunduri, Lucietti, Reall, 2007]

and one can show

$$S_{BH} = rac{A}{4G\hbar} \stackrel{!}{=} rac{\pi^2}{3} c_L \, T_L = S_{CFT}$$

with

$$T_L = rac{1}{2\pi k}$$
 $c_L \stackrel{Einstein}{=} rac{3k}{2\pi G} A$

글 에 너 글 어

Question : is this a numerical coincidence?

G. Compère (UvA)

伺 ト イ ヨ ト イ ヨ ト

Question : is this a numerical coincidence ? No !

G. Compère (UvA)

28 / 54

→ < ∃ →</p>

Question : Does it depends on the field equations of Einstein gravity?

What about other theories of gravity?

Any diffeomorphic covariant Lagrangian

 $\mathbf{L}(f^*(\phi)) = f^*\mathbf{L}(\phi)$

can be written as

$$\mathbf{L} = d^{D}x \ L(g_{ab}, R_{abcd}, \nabla_{e}R_{abcd}, \nabla_{(e}\nabla_{f)}R_{abcd}, \dots, \\ \psi, \nabla_{a}\psi, \nabla_{(a}\nabla_{b)}\psi, \dots)$$

[Iyer Wald 1994]

• This encompasses all α' corrections.

What about other theories of gravity?

Any diffeomorphic covariant Lagrangian

 $\mathbf{L}(f^*(\phi)) = f^*\mathbf{L}(\phi)$

can be written as

$$\mathbf{L} = d^{D}x \ L(g_{ab}, R_{abcd}, \nabla_{e}R_{abcd}, \nabla_{(e}\nabla_{f)}R_{abcd}, \dots, \\ \psi, \nabla_{a}\psi, \nabla_{(a}\nabla_{b)}\psi, \dots)$$

[Iyer Wald 1994]

• This encompasses all α' corrections.

Extensions of entropy matching What happens with higher curvature corrections? Near-horizon geometry still

$$ds^{2} = \alpha(\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \beta(\theta)(d\phi + k r dt)^{2} \right)$$

but now the black hole entropy is

$$S_{BH} = -2\pi \int_{S} rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} vol(S)
eq rac{A}{4G}$$

where

$$\frac{\delta L}{\delta R_{abcd}} \equiv \frac{\partial L}{\partial R_{abcd}} - \nabla_e \frac{\partial L}{\partial \nabla_e R_{abcd}} + \dots$$

Obtained from the black hole thermodynamics

 $T_{BH}\delta S_{BH} = \delta M - \Omega \delta J$

[Wald 1993; Iyer, Wald 1994]

ヘロト 人間 ト イヨト イヨト

Extensions of entropy matching What happens with higher curvature corrections? Near-horizon geometry still

$$ds^{2} = \alpha(\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \beta(\theta)(d\phi + k r dt)^{2} \right)$$

but now the black hole entropy is

$$S_{BH} = -2\pi \int_{S} rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} vol(S)
eq rac{A}{4G}$$

where

$$\frac{\delta L}{\delta R_{abcd}} \equiv \frac{\partial L}{\partial R_{abcd}} - \nabla_e \frac{\partial L}{\partial \nabla_e R_{abcd}} + \dots$$

Obtained from the black hole thermodynamics

 $T_{BH}\delta S_{BH} = \delta M - \Omega \delta J$

[Wald 1993; Iyer, Wald 1994]

・ 母 ト ・ ヨ ト ・ ヨ ト ・

Extensions of entropy matching What happens with higher curvature corrections? Near-horizon geometry still

$$ds^{2} = \alpha(\theta) \left((-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}}) + d\theta^{2} + \beta(\theta)(d\phi + k r dt)^{2} \right)$$

but now the black hole entropy is

$$S_{BH} = -2\pi \int_{S} rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} vol(S)
eq rac{A}{4G}$$

where

$$\frac{\delta L}{\delta R_{abcd}} \equiv \frac{\partial L}{\partial R_{abcd}} - \nabla_e \frac{\partial L}{\partial \nabla_e R_{abcd}} + \dots$$

Obtained from the black hole thermodynamics

$$T_{BH}\delta S_{BH} = \delta M - \Omega \delta J$$

[Wald 1993; Iyer, Wald 1994]

Extensions of entropy matching [Azeyanagi, G.C.,

Ogawa, Tachikawa, Terashima, 2009]

The temperature can be derived from free quantum fields in the curved geometry $\Rightarrow T_L$ does not depend on gravitational field equations

$$T_L = \frac{1}{2\pi k}$$

Now, need some tricks

- Any *Diff*-invariant theory can be recasted in second order form using field redefinitions and auxiliary fields.
- The geometry has $SL(2,\mathbb{R}) \times U(1)$ and $t \phi$ symmetry

Using asymptotic charge technology, we find

$$c_L = -12k \int_S rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} \operatorname{vol}(S) + 0$$

(checked up to 30 derivatives of the Riemann)

Extensions of entropy matching [Azeyanagi, G.C.,

Ogawa, Tachikawa, Terashima, 2009]

The temperature can be derived from free quantum fields in the curved geometry $\Rightarrow T_L$ does not depend on gravitational field equations

$$T_L = \frac{1}{2\pi k}$$

Now, need some tricks

- Any *Diff*-invariant theory can be recasted in second order form using field redefinitions and auxiliary fields.
- The geometry has $SL(2,\mathbb{R}) imes U(1)$ and $t-\phi$ symmetry

Using asymptotic charge technology, we find

$$c_L = -12k \int_S rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} \operatorname{vol}(S) + 0$$

(checked up to 30 derivatives of the Riemann)

Extensions of entropy matching [Azeyanagi, G.C.,

Ogawa, Tachikawa, Terashima, 2009]

The temperature can be derived from free quantum fields in the curved geometry $\Rightarrow T_L$ does not depend on gravitational field equations

$$T_L = \frac{1}{2\pi k}$$

Now, need some tricks

- Any *Diff*-invariant theory can be recasted in second order form using field redefinitions and auxiliary fields.
- The geometry has $SL(2,\mathbb{R}) \times U(1)$ and $t \phi$ symmetry

Using asymptotic charge technology, we find

$$c_L = -12k \int_S rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} \, vol(S) + 0$$

(checked up to 30 derivatives of the Riemann)
Extensions of entropy matching

Therefore, we get

$$S_{BH} \stackrel{!}{=} rac{\pi^2}{3} c_L T_L + 0 = S_{CFT}$$

G. Compère (UvA)

33 / 54

글 에 너 글 어

4 A N

Question : Does it depends on the field equations of Einstein gravity?

No! It is a property of extreme horizons and diffeomorphism-invariance!

Question : Does it depends on the field equations of Einstein gravity?

No! It is a property of extreme horizons and diffeomorphism-invariance!

モトィモト

To be a CFT or not to be a CFT?

• Universal matching

$$S_{BH}=rac{\pi^2}{3}c_LT_L$$

for all rotating extremal black holes.

- No $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$ invariant ground state
- Only one Virasoro algebra appears in the asymptotic symmetry group. No other solutions than NHEK.
 ⇒ Only one chiral sector.
- The central charge depends on the parameters of the black hole

Question : What is the nature of what looks like a chiral sector of a CFT?

This is an open question. There are several embeddings in string/M-theory. [Song, Strominger; G.C., Song, Virmani; Guica, El-Showk; ...] None is conclusive. Question : What is the nature of what looks like a chiral sector of a CFT?

This is an open question. There are several embeddings in string/M-theory. [Song, Strominger; G.C., Song, Virmani; Guica, El-Showk; ...] None is conclusive.

Second step of the Kerr/CFT correspondence

2 Close to extremality :

Dynamics of probes can be obtained from a CFT two-point correlation function.

• At extremality :

Temperatures T_L , T_R , Virasoro algebra, Match $S_{BH} = S_{CFT}$!

Scattering "close to extremality"

A near-extremal rotating black hole is defined from the condition

$$M T_H \ll 1, \qquad \Leftrightarrow \qquad \tau_H \equiv rac{r_+ - r_-}{r_+} \ll 1.$$

We will look at the scattering of a probe field $\Box \Phi=0$, $\Phi=e^{-i\omega t}e^{im\phi}\Theta(\theta)R(r)$

close to the superradiant bound

 $\omega \sim m\Omega_H + q_e \Phi_e$

(1日) (1日) (1日)

Scattering "close to extremality"

A near-extremal rotating black hole is defined from the condition

$$M T_H \ll 1, \qquad \Leftrightarrow \qquad \tau_H \equiv \frac{r_+ - r_-}{r_+} \ll 1.$$

We will look at the scattering of a probe field $\Box \Phi = 0$,

$$\Phi = e^{-i\omega t} e^{im\phi} \Theta(\theta) R(r)$$

close to the superradiant bound

$$\omega \sim m\Omega_H + q_e \Phi_e$$

3 × 4 3 ×

Scattering process

39 / 54

Superradiant scattering Define the absorption probability

$$\sigma_{abs}(\omega, m, l; M, J) \equiv \frac{dE_{abs}/dt}{dE_{in}/dt}.$$

[Computed by Press and Teukolsky in the 70s] What we really want to match with a CFT computation is

$$\sigma_{abs}^{near} = \frac{dE_{abs}/dt}{|\Phi(x=x_B)|^2}, \qquad \tau_H \ll x_B \ll 1.$$

Result :

 $\sigma_{abs}^{near}(\omega, m, l; M, J) =$ Gamma functions

Feature : Superradiance ($\sigma_{abs} < 0$) occurs when

 $\omega < m\Omega_H + q_e \Phi_e$

Spontaneous emission also occurs : extremal Kerr-Neumann black holes spontaneously decay.

G. Compère (UvA)

Superradiant scattering Define the absorption probability

$$\sigma_{abs}(\omega, m, l; M, J) \equiv \frac{dE_{abs}/dt}{dE_{in}/dt}.$$

[Computed by Press and Teukolsky in the 70s] What we really want to match with a CFT computation is

$$\sigma_{abs}^{near} = \frac{dE_{abs}/dt}{|\Phi(x=x_B)|^2}, \qquad \tau_H \ll x_B \ll 1.$$

Result :

 $\sigma_{abs}^{near}(\omega, m, l; M, J) =$ Gamma functions

Feature : Superradiance ($\sigma_{abs} < 0$) occurs when $\omega < m\Omega_H + q_e \Phi_e$

Spontaneous emission also occurs : extremal Kerr-Neumann black holes spontaneously decay.

G. Compère (UvA)

Dual CFT picture

The process is controlled by the two-point function

$$G(t^+,t^-) = \left< \mathcal{O}^\dagger(t^+,t^-) \mathcal{O}(0) \right>,$$

where t^{\pm} are the coordinates of the CFT. From the so-called Fermi's golden rule, the absorption probability σ_{abs} is given by

$$\sigma_{abs} \sim \int dt^+ dt^- e^{-i\omega_R t^- - i\omega_L t^+} [G(t^+ - i\epsilon, t^- - i\epsilon) - G(t^+ + i\epsilon, t^- + i\epsilon)]$$

A B K A B K

Dual CFT picture : Matching

More precisely, the form of the thermal two-point function is dictated by conformal invariance to be

$$G(t^+,t^-) \sim \left(rac{\pi T_L}{\sinh{(\pi T_L t^+)}}
ight)^{2h_L} \left(rac{\pi T_R}{\sinh{(\pi T_R t^-)}}
ight)^{2h_R} e^{iq_L\mu_L t^+ + iq_R\mu_R t^-}$$

at temperatures (T_L, T_R) and chemical potentials (μ_L, μ_R) when the operator has conformal dimensions (h_L, h_R) and charges (q_L, q_R) .

Matching the gravity result around the Kerr black hole gives

$$\begin{array}{ll} h_L = h_L(m,l,a\omega) & h_R = h_R(m,l,a\omega) \\ T_L = \frac{1}{2\pi}, & T_R = T_R^{ext} \\ \omega_L = m & \frac{\omega_R - q_R \mu_R}{T_R} = \frac{\omega - m\Omega_H}{2\pi T_H} - 2r_+ \omega \\ q_L = e, & q_R = m \\ \mu_L = -\frac{Q^3}{2I} & \mu_R = \Omega_H \end{array}$$

・ 母 ト ・ ヨ ト ・ ヨ ト ・

Dual CFT picture : Matching

More precisely, the form of the thermal two-point function is dictated by conformal invariance to be

$$G(t^+,t^-) \sim \left(rac{\pi T_L}{\sinh{(\pi T_L t^+)}}
ight)^{2h_L} \left(rac{\pi T_R}{\sinh{(\pi T_R t^-)}}
ight)^{2h_R} e^{iq_L\mu_L t^+ + iq_R\mu_R t^-}$$

at temperatures (T_L, T_R) and chemical potentials (μ_L, μ_R) when the operator has conformal dimensions (h_L, h_R) and charges (q_L, q_R) .

Matching the gravity result around the Kerr black hole gives

$h_L = h_L(m, l, a\omega)$	$h_R = h_R(m, l, a\omega)$
$T_L = \frac{1}{2\pi},$	$T_R = T_R^{ext}$
$\omega_L = \overline{m}$	$rac{\omega_R-q_R\mu_R}{T_R}=rac{\omega-m\Omega_H}{2\pi T_H}-2r_+\omega$
$q_L = e$,	$q_R = m$
$\mu_L = -\frac{Q^3}{2J}$	$\mu_{R} = \Omega_{H}$

Features

• CFT description forms a representation under the symmetries

$Virasoro_L \times Current_L \times (Virasoro_R \times Current_R)$

while only $Virasoro_L$ belongs to the asymptotic symmetry group of the near-horizon geometry.

• Real and complex weights

$$h_L(m, l, a\omega) = h_R(m, l, a\omega) \in \mathbb{R} \text{ or } i\mathbb{R}$$

- Imaginary conformal weights are related to Schwinger pair production.
- \blacktriangleright Rotating extremal black holes decay \Rightarrow no stable ground state
- Many features to be better understood !

イロト 不得 トイヨト イヨト

Features

• CFT description forms a representation under the symmetries

$Virasoro_L \times Current_L \times (Virasoro_R \times Current_R)$

while only $Virasoro_L$ belongs to the asymptotic symmetry group of the near-horizon geometry.

• Real and complex weights

$$h_L(m, l, a\omega) = h_R(m, l, a\omega) \in \mathbb{R} \text{ or } i\mathbb{R}$$

- Imaginary conformal weights are related to Schwinger pair production.
- \blacktriangleright Rotating extremal black holes decay \Rightarrow no stable ground state
- Many features to be better understood !

Features

• CFT description forms a representation under the symmetries

$Virasoro_L \times Current_L \times (Virasoro_R \times Current_R)$

while only $Virasoro_L$ belongs to the asymptotic symmetry group of the near-horizon geometry.

• Real and complex weights

$$h_L(m, l, a\omega) = h_R(m, l, a\omega) \in \mathbb{R} \text{ or } i\mathbb{R}$$

- Imaginary conformal weights are related to Schwinger pair production.
- \blacktriangleright Rotating extremal black holes decay \Rightarrow no stable ground state
- Many features to be better understood !

(1日) (1日) (1日) (日)

Third and last step of the Kerr/CFT correspondence

Dynamics of probes can be obtained from a CFT two-point correlation function.

• At extremality :

Temperatures T_L , T_R , Virasoro algebra, Match $S_{BH} = S_{CFT}$!

Conformal invariance away from extremality

- Away from extremality, there is no decoupled near-horizon geometry with conformal invariance.
- Yet, conformal invariance can be present in the solution space of fields propagating on the geometry and control the scattering amplitudes and the asymptotic growth of states.

Scattering Process

Let's look again at a scalar probe Φ obeying

 $\Box \Phi = 0.$

We have

$$\Phi = e^{-i\omega t + im\phi}\Theta(\theta)R(r)$$

We look only in the low-energy regime,

 $M\,\omega \ll 1$

3 × 4 3 ×

Scattering Process

In the near region $r \ll \omega^{-1}$,

 $\Theta(\theta) = Y_{lm}(\theta), \qquad R(r) = \text{hypergeometric}$

$SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$ symmetry Trick : define new coordinates

$$(w^+, w^-, y, \theta)$$

related to (t, r, ϕ, θ) as

$$w^{+} = \sqrt{\frac{r-r_{+}}{r-r_{-}}}e^{2\pi T_{R}\phi}$$

$$w^{-} = \sqrt{\frac{r-r_{+}}{r-r_{-}}}e^{2\pi T_{L}\phi-\frac{t}{2M}}$$

$$y = \sqrt{\frac{r_{+}-r_{-}}{r-r_{-}}}e^{\pi (T_{L}+T_{R})\phi-\frac{t}{4M}}$$

where

$$T_R = rac{T_H}{\Omega_H}, \qquad T_L = rac{1}{2\pi} \left(1 + rac{M^2 - J}{J}
ight)$$

.

・ 得 ト ・ ヨ ト ・ ヨ ト

$SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R$ symmetry

The radial part of the wave equation can then be written as

$$\mathcal{H}^{2}\Phi \equiv \left(-H_{0}^{2} + \frac{1}{2}(H_{1}H_{-1} + H_{-1}H_{1})\right)\Phi = l(l+1)\Phi$$

where $\Phi = e^{-i\omega t}R(r)$ and

$$H_1 = i\partial_+,$$

$$H_0 = i(w^+\partial_+ + \frac{1}{2}y\partial_y)$$

$$H_{-1} = i(w^{+2}\partial_+ + w^+y\partial_y - y^2\partial_-)$$

obey the $SL(2,\mathbb{R})_L$ algebra. There is also a second set of generators $SL(2,\mathbb{R})_R$ such that

$$\bar{\mathcal{H}}^2\Phi = l(l+1)\Phi \,.$$

く 戸 と く ヨ と く ヨ と …

Identification breaks symmetry to $U(1)_L \times U(1)_R$

At fixed r, the change of coordinates is

$$w^+ = e^{2\pi T_R \phi}$$

 $w^- = e^{2\pi T_L \phi - rac{t}{2M}}$

where

$$T_R = rac{T_H}{\Omega_H}, \qquad T_L = rac{1}{2\pi} \left(1 + rac{M^2 - J}{J}
ight)$$

The identification

$$\phi \sim \phi + 2\pi$$

breaks $SL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R \to U(1)_L \times U(1)_R$.

T_L , T_R can be interpreted as temperatures

Assume that (w^+, w^-) plane describes a $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$ invariant CFT vacuum.

We define the coordinates t^+ and t^- as

$$egin{array}{rcl} w^+ &\equiv e^{t_+} = e^{2\pi T_R \phi} \ w^- &\equiv e^{-t_-} = e^{2\pi T_L \phi - rac{t}{2M}} \end{array}$$

Then the identification

$$\phi~\sim~\phi+2\pi$$

can be written as

$$t_+ ~\sim~ t_+ + 4 \pi^2 T_R, \qquad t_- \sim t_- - 4 \pi^2 T_L$$

Tracing over the region outside the strip leads to a density matrix with temperatures T_L , T_R .

G. Compère (UvA)

Entropy matching

Remarkably, the entropy of the Kerr black hole

$$S_{BH}=rac{2\pi}{\hbar G}\left(M^2+\sqrt{M^4-J^2}
ight)$$

agrees with the Cardy formula

$$S_{CFT} = \frac{\pi^2}{3} (c_L T_L + c_R T_R)$$

with

$$c_L = c_R = \frac{12J}{\hbar}.$$

・ 得 ト ・ ヨ ト ・ ヨ ト

Conclusions

• Remarkable agreement between black hole entropy and Cardy formula

$$S_{BH}=rac{\pi^2}{3}\left(c_LT_L+c_RT_R
ight)$$

where c_L computed for extremal black holes, $c_R = c_L$, and T_L , T_R computed independently for extremal black holes and non-extremal black holes.

- Two regimes where the dynamics of probes is governed by conformal symmetry :
 - at near-extremality close to superradiant bound
 - away from extremality at low energy
- Open question : what is the nature of this "CFT"?
- Open question : Are there other regimes where the CFT description is valid?

イロト イポト イヨト イヨト

For further reading : check the reviews

- *"Cargèse Lectures on the Kerr/CFT correspondence"*, Bredberg, Keeler, Lysov, Strominger, **1103.2355**
- "The Kerr/CFT correspondence, a bird-eye view", G.C., **1202.XXXX**