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Dynamics of conserved currents in CFT

❖ One consequence of AdS/CFT is that the dynamics of conserved currents 
maps to dynamics of gauge fields in an asymptotically AdS spacetime.

❖ Gravitational dynamics in AdS spacetimes captures the dynamics of the 
conserved energy-momentum-stress tensor of the boundary field theory.

❖ A natural consequence of the planar limit, coupled with consistent truncations 
of a wide class of supergravity theories, down to pure gravitational dynamics 
in AdS spacetimes, results in Einstein’s equation with negative cosmological 
constant, describing the universal decoupled dynamics of the stress tensor 
for an infinite number of gauge theories.

❖ While the generic story of stress tensor dynamics is as complicated as 
gravity, in certain sectors it simplifies considerably to allow for exact non-
linear treatment.



The fluid/gravity correspondence

❖ The fluid/gravity correspondence establishes a correspondence between 
Einstein’s equations with a negative cc and those of relativistic conformal 
fluids. 

❖ Given any solution to the hydrodynamic equations, one can construct, in a 
gradient expansion, an approximate inhomogeneous, dynamical black hole 
solution in an asymptotically AdS spacetime. 

❖ The construction heuristically can be viewed as patching together planar AdS 
black holes of different temperatures with slow variation between patches.

❖ The fluid in question lives on the timelike boundary of AdS spacetime, and as 
is familiar, holographically encodes the entire dynamics of the bulk spacetime 
geometry.

Bhattacharyya, Hubeny, Minwalla, MR (2007)
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Relativistic hydrodynamics

❖ Hydrodynamics is an IR effective field theory, valid when systems attain local 
but not global thermal equilibrium.

❖ We require that deviations away from equilibrium are long-wavelength in 
nature, i.e., we allow fluctuations that occur at scales larger than the typical 
mean free path of the theory.  

❖ This allows for a gradient expansion: higher derivative operators are 
suppressed by powers of our expansion parameter            .

❖ The dynamical content of fluid dynamics is just conservation. The energy 
momentum tensor and charge currents if any should be covariantly 
conserved. 

`m ⌧ L tm ⌧ t

`m/L

rµT
µ⌫ = 0 , rµJ

µ = 0

❖ Conservation alone does not make for a good dynamical system since there 
are more dof than equations, but things simplify in the long-wavelength limit.



Relativistic hydrodynamics

❖ In the long-wavelength limit the dynamical dof are reduced, to local charge 
densities, local temperature and a (normalized) velocity field which indicates 
direction of flow of energy flux.

T

µ⌫(x) = [P (x) + ⇢(x)] uµ
u

⌫ + P (x) gµ⌫ +⇧µ⌫(x)

Jµ
I = qI u

µ + Jµ
I,diss

❖ The definition of the velocity field can be fixed by a choice of fluid frame; 
typically one chooses the velocity to be the timelike eigenvector of the energy 
-momentum tensor (defining thus the Landau frame).

❖ Further specification of the fluid requires constitutive relations which require 
the operators which characterize the dissipative tensors.

❖ In addition, a fluid also has an entropy current, which satisfies the 2nd  law.

J µ
S = s uµ + J µ

S,diss , rµJ µ
S � 0



Relativistic hydrodynamics

❖ The dissipative parts of stress-tensor and charge currents can be expanded 
out in a basis of on-shell inequivalent operators built from the dynamical 
variables and their derivatives. 

❖ From the velocity field we can for instance define:where the divergence, acceleration, shear, and vorticity, are defined as:6

θ = ∇µu
µ = P µν ∇µuν

aµ = uν ∇νu
µ ≡ Duµ

σµν = ∇(µuν) + u(µ aν) − 1

d − 1
θ P µν = P µα P νβ ∇(αuβ) −

1

d − 1
θ P µν

ωνµ = ∇[µuν] + u[µ aν] = P µα P νβ ∇[αuβ] .

(2.11)

For future reference we note that we will also have occasion to use a the following notation to
indicate symmetric traceless projections transverse to the velocity field. For any two tensor

T µν we define:

T 〈µν〉 = P µα P νβ T(αβ) −
1

d − 1
P µν P αβ Tαβ . (2.12)

Note that we can write the projectors a bit more compactly: P µα P νβ ∇(α uβ) = P ρ(µ∇ρuν)

and P µα P νβ ∇[α uβ] = P ρ[µ∇ρuν]. It is easy to verify all the previously asserted properties,

in addition to uµ aµ = 0 and Pµν aµ = aν :

σµν uµ = 0 , σµρ Pρν = σµ
ν , σ µ

µ = 0 ,

ωµν uµ = 0 , ωµρ Pρν = ωµ
ν , ω µ

µ = 0 .
(2.13)

We are now in possession of sufficient amount of data to write down the dissipative part

of the stress tensor to leading order in the derivative expansion. First of all let us notice

that the zeroth order equations of motion i.e., those arising from the ideal fluid description
relate the gradients of the energy density and pressure to those of the uµ. The quickest

way to derive the required relation is to consider projections of the conservation equation

∇µ (T µν)ideal = 0, along the velocity field and transverse to it, i.e.,

uν ∇µ (T µν)ideal = 0 =⇒ (ρ+ P )∇µu
µ + uµ∇µρ = 0

Pνα ∇µ (T µν)ideal = 0 =⇒ P µ
α ∇µP + (ρ+ P ) Pνα uµ ∇µuν = 0 . (2.14)

respectively. To characterize the stress-tensor at leading order in the gradient expansion

our task is reduced to writing down symmetric two tensors that can be built solely from

velocity gradients and we should furthermore account for the Landau frame condition. These

conditions in fact isolate just two terms which can appear in the expression for Πµν :

Πµν
(1) = −2 η σµν − ζ θ P µν , (2.15)

where we have introduced two new parameters the shear viscosity, η, and the bulk viscosity,

ζ .

Likewise for the charge current Υµ we will obtain contributions which are first order in the

derivatives of the thermodynamic variables ρ and qI and also the velocity field (where now

6Note that we use standard symmetrization and anti-symmetrization conventions. For any tensor Fab

we define the symmetric part F(ab) = 1
2 (Fab + Fba) and the anti-symmetric part F[ab] = 1

2 (Fab − Fba)
respectively. We also use D to indicate the velocity projected covariant derivative: D ≡ uµ ∇µ.
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❖ At first order, upon using the conservation of ideal fluid to eliminate themal 
gradients, we have



Higher order dissipative terms

❖ # of independent operators for an uncharged fluid at second order: 15. 

❖ Imposing conformal invariance of the fluid (vanishing of the trace): 5.

❖ This is simply the basis of on-shell inequivalent tensors. Further constraints 
come from positivity of the entropy current.

❖ While the viscosities are constrained to be positive (fluids dissipate energy 
flux), the entropy considerations are more powerful at second order.

❖  There are five non-trivial constraints among second-order transport 
coefficients for an arbitrary fluid (independent of equation of state).

❖ These constraints are trivially satisfied for a conformal fluid, which has 
indeed five independent transport coefficients at second order. 

Romatschke (2009)
Bhattacharyya (2012)

Bhattacharyya, Hubeny, Minwalla, MR (2007)

Baier, Romatschke, Son, Starinets, Stephanov (2007)
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Long-wavelength in gravity

❖  Since fluid dynamics is an effective field theory, we can ask whether we can 
‘derive’ it from AdS/CFT. 

❖ A-priori, the answer would seem to be yes, since the classic works on 
perturbations of planar AdS black holes reveal long-wavelength quasinormal 
modes which have a hydrodynamic character. 

Policastro, Son, Starinets (2002)

❖ The quasinormal mode computations indicate that linear hydrodynamics, i.e., 
small amplitudes coupled with long-wavelength is a good description of 
perturbed planar AdS black holes. 

❖ The synopsis of fluid/gravity is simply that this continues to hold at the non-
linear level and provides a constructive way to demonstrate equivalence of 
fluid equations and Einstein’s equations. 

Janik, Peschanski (2006) Emparan, Harmark, Niarchos, Obers (2009)
Camps, Emparan (2012)



Nonlinear fluids from gravity

❖ A basic entry in the AdS/CFT dictionary relates the global thermal equilibrium 
of a CFT on Rd-1,1 in the canonical ensemble to a planar black hole in AdS.

❖ This equilibrium state is characterized by a temperature T and global boosts 
(choice of inertial frame) parameterized by a timelike velocity field uµ.

❖ The gravitational gradient expansion uses this solution as a starting point for 
perturbation theory: the perturbation parameter is the scale of fluctuations in 
T(x) and uµ(x) normalized by the local temperature.

❖ Intuitively, this uses the fact that in local domains the fluid is equilibrated at 
T(x) and that this domain should holographically be described by a planar AdS  
black hole.

❖ Working with regular seed solution (planar black hole in ingoing EF 
coordinates), the solutions we obtain in perturbation theory exhibit a tubelike 
structure: local domains on the boundary determine a tubular region in the 
bulk centered around an ingoing (bulk) null geodesic. 



Nonlinear fluids from gravity

Fig. 1: Penrose diagram of the uniform black brane and the causal structure of the spacetimes dual to
fluid mechanics illustrating the tube structure. The dashed line in the second figure denotes
the future event horizon, while the shaded tube indicates the region of spacetime over which
the solution is well approximated by a tube of the uniform black brane.

βi(xµ) are small, G(0) is “tubewise” well approximated by a boosted black brane. Conse-
quently, for slowly varying functions b(xµ), βi(xµ), it might seem intuitively plausible that

(4.11) is a good approximation to a true solution of Einstein’s equations with a regular event

horizon. In [4] this intuition is shown to be correct, provided the functions b(xµ) and βi(xµ)

obey a set of equations of motion, which turn out simply to be the equations of boundary

fluid dynamics.

Einstein’s equations, when evaluated on the metric G(0), yield terms which involve deriva-
tives of the temperature and velocity fields in the boundary directions (i.e., (xi, v) ≡ xµ)

which we can organise order by order in a gradient expansion. Note that since G(0) is an

exact solution to Einstein’s equations when these fields are constants, terms with no deriva-

tives are absent from this expansion. It is then possible to show that field theory derivatives

of either ln b(xµ) or βi(xµ) always appear together with a factor of b. As a result, the con-

tribution of n derivative terms to the Einstein’s equations is suppressed (relative to terms
with no derivatives) by a factor of (b/L)n ∼ 1/(T L)n. Here L is the length scale of varia-

tions of the temperature and velocity fields in the neighbourhood of a particular point, and

T is the temperature at that point. Therefore, provided L T # 1, it is sensible to solve

Einstein’s equations perturbatively in the number of field theory derivatives.29 Essentially

we are requiring that
∂uµ

T
,
∂ log T

T
∼ O (ε) $ 1 (4.12)

29Note that the variation in the radial direction, r, is never slow. Although we work order by order in
the field theory derivatives, we will always solve all differential equations in the r direction exactly. This
should be contrasted with the holographic renormalization group which is a perturbative expansion in the
Fefferman-Graham radial coordinate [99].

29

❖ The geometry is determined 
exactly in the radial coordinate 
away from the boundary, but only 
perturbatively in the boundary 
directions.

❖ The construction intuitively can 
be thought of as an 
implementation of the idea of 
patching together pieces of black 
holes along the tubes.

degrees of freedom counting. A traceless, symmetric stress tensor on Bd has d(d+1)
2 −1 degrees

of freedom. But the dynamical equations of motion are simply the conservation equations
(2.1) which are just d equations leading to a vastly underdetermined system when d > 2.

However, a fluid dynamical stress tensor is a special class of conserved stress tensors for it

is described by precisely d degrees of freedom, the temperature and velocity.26

In order to make regularity manifest, we will describe how to construct gravitational

black hole solutions dual to arbitrary fluid flows using a coordinate chart that is regular on

the future horizon.27 We work with a set of generalized Gaussian null coordinates which
are constructed with the aim of having the putative horizon located at some hypersurface

r(xµ) = rH(xµ).28 So as the starting point for our analysis we consider the boosted planar

Schwarzschild-AdSd+1 black hole solution:

ds2 = −2 uµ dxµdr − r2 f(b r) uµ uν dxµdxν + r2 Pµν dxµdxν , (4.9)

where we have written the metric in ingoing Eddington-Finkelstein coordinates. We should

note that it is possible to recast (4.9) in a Weyl covariant form when the boundary metric

on Bd is curved – we have [69]:

ds2 = −2 uµ dxµ (dr + rAµ dxµ) + r2 (1 − f(b r)) uµ uν dxµdxν + r2 gµν dxµdxν . (4.10)

The main rationale behind switching to these Eddington-Finkelstein coordinates apart

from making issues of regularity more transparent, is that they provide a clear physical pic-
ture of the locally equilibrated fluid dynamical domains in the bulk geometry. The boundary

domains where local thermal equilibrium is attained in fact extend along ingoing radial null

geodesics into the bulk. So a given boundary domain corresponds to an entire tube of width

set by the scale of variation in the boundary, see Fig. 1 for an illustration. In the Eddington-

Finkelstein coordinates one just has to patch together these tubes to obtain a solution to

Einstein’s equations and moreover this patching can be done order by order in boundary
derivatives, just as in fluid dynamics. We now proceed to outline a perturbation scheme

which allows us to construct the desired gravity solution dual to fluid dynamics.

As the starting point consider the metric (4.9) with the constant parameter b and the

velocities βi replaced by slowly varying functions b(xµ), βi(xµ) of the boundary coordinates.

ds2 = −2 uµ(x
α) dxµ dr − r2 f (b(xα) r) uµ(x

α) uν(x
α) dxµ dxν + r2 Pµν(x

α) dxµ dxν . (4.11)

Generically, such a metric (we will denote it by G(0)(b(xµ), βi(xµ)) is not a solution to Ein-

stein’s equations. Nevertheless it has two attractive features. Firstly, away from r = 0,
this deformed metric is everywhere non-singular. This pleasant feature is tied to our use of

Eddington-Finkelstein coordinates. Secondly, if all derivatives of the parameters b(xµ) and

26Similar arguments can be given if we want to consider fluids which carry conserved global charges.
27For a discussion on the Fefferman-Graham coordinates and regularity see [100].
28We will determine explicitly the location of the horizon after sketching the construction of the solution.

28
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Nonlinear fluids from gravity

❖ Einstein’s equations with this ansatz splits up into two natural sets
✦  dynamical equations (which determine the radial dependence)
✦ constraint equations (momentum constraint for radial evolution)

1.3 Perturbative construction of gravity solutions 15

be schematically written as

H
h
g(0)(T (0), ua (0))

i
g(n) = s

n

(1.20)

where we have dropped the spacetime indices for notational clarity (c.f.,
[1, 5] for the explicit equations). Since each derivative with respect to xa

is accompanied by a power of ", it follows that the linear operator H is
constructed purely from the data of the equilibrium Schwarzschild-AdS

d+1

geometry. This means that H is at most a second-order di↵erential operator
with respect to the radial variable r. Moreover, it has to be independent of n.
Thus the perturbation theory in " is ultra-local in the boundary coordinates,
implying that we can solve the equations of motion of the bulk spacetime
point by point on the boundary!

On the right hand side of (1.20) we collect all order "n terms which do
not have explicit radial derivatives into a source term s

n

, which is then a
complicated construct involving contributions from di↵erent orders in per-
turbation theory. It is a local expression of (n � m)th order in boundary
derivatives of T (m) and ua (m) for m  n� 1, and ascertaining it is the most
substantial part of the computation.

The reader may be puzzled by the following aspect of (1.20): while we

have d(d+1)
2 equations, we have only d(d�1)

2 variables after fixing the gauge
redundancy. This implies that a subset of Einstein’s equations has a distin-
guished status as constraint equations, while the remainder are the physical
dynamical equations.

To understand this let us examine the di↵erential equations (1.20) by in-
voking the canonical split of our bulk coordinates Xµ = (r, xa). The E

ra

equations are the momentum constraint equations for ‘evolution’ in the ra-
dial direction. These equations are special in several ways. To start with,
they need only be satisfied on a single r slice; the ‘dynamical’ equations
(E

ab

) then ensure that they will be solved on every r slice. For this reason,
it is consistent to study these equations just at the boundary, where they
turn out to reduce merely to the equations of conservation of the boundary
stress tensor

r
a

T ab

(n�1) = 0 . (1.21)

(See §1.4.4 for the definition of the boundary stress tensor.) Note that at
nth order the equations (1.21) depend only on the boundary stress tensor
built out of the spacetime metric at order n � 1. This is because (1.21)
has an explicit boundary derivative which carries its own e↵ective power
of ". The net upshot is that the unknown metric g(n) does not enter the
equations (1.21) at all (the operator H in (1.20) vanishes for these solutions).

❖ The former are a set of decoupled ODEs, a consequence of the large 
symmetry of the background seed spacetime.

❖ The radial dependence metric can be determined at each order by solving 
these explicitly imposing regularity an normalizability as boundary conditions.

❖ The latter are simply the dynamical equations of fluid dynamics: they enforce 
conservation of the boundary stress tensor.

Here H is a linear differential operator of second order in the variable r alone. As G(n) is

already of order εn, and since every boundary derivative appears with an additional power
of ε, H is an ultralocal operator in the field theory directions. In fact not only is H is a

differential operator only in the variable r independent of xµ, but also its precise form at the

point xµ depends only on the values of β(0)
i and b(0) at xµ, and not on the derivatives of these

functions at that point. Furthermore, the operator H is independent of n; we have the same

homogeneous operator at every order in perturbation theory. This makes the perturbation

expansion in ε ultra-local in the boundary directions; we can solve the equations point by
point on the boundary!

The source term sn however is different at different orders in perturbation theory. It

is a local expression of nth order in boundary derivatives of β(0)
i and b(0), as well as of

(n − k)th order in β(k)
i , b(k) for all k ≤ n − 1. Note that β(n)

i and b(n) do not enter the nth

order equations as constant (derivative free) shifts of velocities and temperatures solve the

Einstein’s equations.

The gravitational equation (4.17) form a set of (d+1)(d+2)
2 equations. It is useful to split

these into two classes of equations: (i) a class that determines the metric data we need,

comprising of d(d+1)
2 equations which we view as dynamical equations and (ii) a second set of

d equations which are essentially constraint equations.

Constraint equations: We will refer to those of the Einstein’s equations that are of

first order in r derivatives as constraint equations. These are obtained by contracting the

equations with the one-form normal to the boundary

E(c)
M = EMN ξ

N (4.18)

where for our considerations ξN = dr. Of these equations, those with legs along the boundary

direction are simply the equations of boundary energy momentum conservation:

∇µT
µν

(n−1) = 0 . (4.19)

Here T µν
(n−1) is the boundary stress tensor dual the solution expanded up to O (εn−1) and is a

local function of the temperature and velocity fields involving no more than n−1 derivatives.

Furthermore, it is conformally covariant and consequently it is a fluid dynamical stress tensor

with n − 1 derivatives.

These constraint equations can be used to determine b(n−1) and β(n−1)
i ; this is essentially

solving the fluid dynamics equations at order O (εn) in the gradient expansion assuming that

the solutions at preceding orders are known. There is a non-uniqueness in these solutions
given by the zero modes obtained by linearizing the equations of stress energy conservation

at zeroth order. These can be absorbed into a redefinition of the β(0)
i , b(0), and do not

correspond to a physical non-uniqueness.

31



Nonlinear fluids from gravity: Consequences

❖ Once the bulk solution is known, we can extract the boundary Brown-York 
stress tensor:

which is crucially used to raise and lower the boundary indices (lowercase Greek indices).

The various functions appearing in the metric are given in terms of definite integrals

g1(y) =

∫ ∞

y

dζ
ζd−1 − 1

ζ (ζd − 1)

g2(y) = 2 y2

∫ ∞

y

dξ

ξ2

∫ ∞

ξ

dζ ζ2 g′
1(ζ)

2

g3(y) = y2

∫ ∞

y

dξ
ξd−2 − 1

ξ (ξd − 1)

g4(y) = y2

∫ ∞

y

dξ

ξ (ξd − 1)

∫ ξ

1

dζ ζd−3

(
1 + (d − 1) ζ g1(ζ) + 2 ζ2 g′

1(ζ)

)

v1(y) =
2

yd−2

∫ ∞

y

dξ ξd−1

∫ ∞

ξ

dζ
ζ − 1

ζ3 (ζd − 1)

v2(y) =
1

2 yd−2

∫ ∞

y

dξ

ξ2

[
1 − ξ (ξ − 1) g′

1(ξ) − 2 (d − 1) ξd−1

+
(
2 (d − 1) ξd − (d − 2)

) ∫ ∞

ξ

dζ ζ2 g′
1(ζ)

2

]
.

(5.7)

The asymptotic behaviour of these functions gi(y) and vi(y) which are relevant for the stress

tensor computation can be found in [69].

5.2 The boundary stress tensor

Once the bulk black hole solution is determined it is straightforward to use the holographic

prescription of [95, 96] to compute the boundary stress tensor. To perform the computation

we regulate the asymptotically AdSd+1 spacetime at some cut-off hypersurface r = Λc and

consider the induced metric on this surface, which up to a scale factor involving Λc is our

boundary metric gµν . The holographic stress tensor is given in terms of the extrinsic curva-

ture Kµν and metric data of this cut-off hypersurface. Denoting the unit outward normal to
the surface by nµ we have

Kµν = gµρ ∇ρnν (5.8)

For example for asymptotically AdS5 spacetimes the prescription of [96] gives

T µν = lim
Λc→∞

Λd−2
c

16πG(d+1)
N

[
Kµν − K gµν − (d − 1) gµν − 1

d − 2

(
Rµν − 1

2
R gµν

)]
(5.9)

where Kµν is the extrinsic curvature of the boundary. Implementing this procedure for the
metric (5.4) and utilizing the asymptotic form of the functions given in (5.7) we recover the

stress tensor quoted in (3.23) with the precise transport coefficients (3.25).

5.3 Event horizons

Having understood the geometric aspects of the coordinate chart employed for metrics dual

to arbitrary fluid flows in the boundary, we are now in a position to address our assertion

36

❖ This allows us to determine the holographic constitutive relations, by 
specifying completely the fluid dynamical transport coefficients. orders in derivatives the set of symmetric traceless tensors which transform homogeneously

under Weyl rescalings are given to be16

First order : σµν

Second order : Tµν
1 = 2 uα Dασµν , Tµν

2 = Cµανβ uα uβ ,

Tµν
3 = 4 σα〈µ σν〉

α , Tµν
4 = 2 σα〈µ ων〉

α , Tµν
5 = ωα〈µ ων〉

α

where we have introduced a notation for the second derivative operators which will be useful

to write compact expressions for the stress tensor below. Armed with this data we can

immediately write down the general contribution to the stress tensor as:

Πµν
(1) = −2 η σµν

Πµν
(2) = τπ ηTµν

1 + κTµν
2 + λ1 Tµν

3 + λ2 Tµν
4 + λ3 Tµν

5 . (3.23)

There are therefore have six transport coefficients η, τπ, κ, λi for i = {1, 2, 3}, which char-
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(see §5.1) and the holographic stress tensor [95, 96] we find explicit values for the transport

coefficients. In particular, for the N = 4 SYM fluid one has17 [4, 83]
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16Various papers in the literature seem to use slightly different conventions for the normalization of the
operators. We will for convenience present the results in the normalizations used initially in [83]. This is the
source of the factors of 2 appearing in the definition of the tensors Ti, see [4] for a discussion.

17The result for generic N = 1 superconformal field theories which are dual to gravity on AdS5 ×X5 are
given by simply replacing N2

8π2 by the corresponding central charge of the SCFT.
18For d = 3 the general results were initially derived in [67]. See also [59] for determination of some of

these coefficients in d = 3 and d = 6.
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Holographic fluids: remarks

❖ The analysis of conformal fluids is facilitated by the use of the Weyl covariant 
formalism, which allows easy construction of operators that have definite 
conformal dimensions. R. Loganayagam (2008)

❖ Holographic fluids come with very specific transport coefficients, a 
consequence of the regularity of the spacetime (outside event horizon). 

❖ For e.g., shear viscosity takes the universal value for all holographic  fluids.
❖ Similarly vanishing of  λ3  is valid for all conformal fluids and moreover

24 The fluid/gravity correspondence

come near to saturating this bound [18]. Its status in more general theories
is currently under active debate [19].

Moreover, (1.41) reveals further intriguing relations between the coe�-
cients, which hint at the specific nature of any conformal fluid which admits
a gravitational dual. For example, the result that �3 = 0 is universal but
non-trivial from the fluid standpoint. We also see that 2 ⌘ ⌧

⇡

= 4�1 + �2

for all d; this in fact was shown to hold quite generally in a large class of
two-derivative theories of gravity (including matter couplings) [20].

1.5 Specific fluid flows and their gravitational analog

The construction presented above can be generalized in many interesting
ways; however before indicating the most important of these in §1.6, we first
pause to discuss some of the special cases of the framework explained in
the preceding section. One of the reasons to discuss these special cases is
that while we have demonstrated the existence of a map from the equations
governing fluid dynamics to those governing the dynamics of gravity, we did
not at any stage solve the fluid equations explicitly. The felicitous feature of
our construction was the ultra-locality along the boundary directions which
allowed us to implement the construction in terms of local solutions to the
conservation equations. Construction of novel fluid flows and generic behav-
ior of the relativistic conservation equations are interesting (and perhaps
hard) questions. Nevertheless there are some corners where we can gain an-
alytic control which serves not only as a check that the fluid/gravity solution
set is non-empty, but also provides a point of contact with previous studies
of the hydrodynamic regime in the AdS/CFT literature.

1.5.1 Linearized setting: quasinormal modes

Above we have established a map between any solution of the equations of
fluid dynamics and long wavelength solutions of Einstein gravity with a neg-
ative cosmological constant. In order to find explicit gravitational solutions
we need a class of explicit solutions to the equations of fluid dynamics. In
this subsection and the next we will study such examples.

It is of course easy to solve the equations of fluid dynamics, derived above,
when linearized about static equilibrium. Utilizing translational invariance,
we search for solutions of the form

ua = �a
t

+ �a
j

�vj ei(!t+k

i
yi) , T = T0 + �T ei(!t+k

i
yi) ,

with purely spatial velocity fluctuations �vj . The resulting linear equations

M. Haack, A. Yarom (2008)

❖ The construction is also easy to generalize to forced fluids and to fluids on 
arbitrary curved backgrounds. 

Bhattacharyya, Loganayagam, Minwalla, Nampuri, Trivedi, Wadia (2008)
Bhattacharyya, Loganayagam, Mandal, Minwalla, Sharma (2008)

❖ Incompressible Navier-Stokes fluids can be obtained in a scaling limit.
Bhattacharyya, Minwalla, Wadia (2008)
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Fluids and black holes

❖ The gravitational solutions dual to fluids are inhomogeneous, dynamical black 
holes with a regular event horizon.

❖ The location of the event horizon can be determined at each order in the 
gradient expansion under the assumption that the fluid settles down at late 
time and long distances to an equilibrium configuration. 

❖ At each order in perturbation theory the horizon location can be determined 
algebraically! 

❖ Note that here the teleological nature of the event horizon is being 
circumvented because we are able to anchor ourselves close to an 
equilibrium configuration (courtesy the gradient expansion).

Bhattacharyya, Hubeny, Loganayagam, Mandal, Minwalla, Morita, MR, Reall (2008)



Entropy current in fluid dynamics

❖ Fluids come equipped with entropy currents with non-negative divergence. 
❖ Black hole spacetimes too have a natural notion of entropy a la Bekenstein-

Hawking given by the area of the event horizon.
❖ A natural fluid dynamical entropy current can be obtained by pulling back the 

area form of the event horizon onto the boundary along the radially ingoing 
null geodesics. 

❖ The black hole area theorem guarantees that this satisfies the 2nd law & the 
gravitational entropy current is a special case of fluid entropy current.

❖ For general conformal fluids we can write down a 4 parameter family of 
entropy currents that are consistent with 2nd law, while gravity gives only one 
non-trivial parameter.

❖ Higher order analyses constrain second order entropy current to reduce the 
parameter count to agree with gravitational construction.  

❖ Similar constructions can be made using apparent horizons.
Romatschke (2009)

Booth, Heller, Spalinski (2011)
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Generalizations I: charged fluids

❖ Keeping track of other conserved charges involves generalizing the 
gravitational construction to include gauge fields.

❖ Using Einstein-Maxwell-Chern-Simons theories in 5d, the charged fluid 
constitutive relations can be extracted (nb: now we lose universality).

Erdmenger, Haack, Kaminski, Yarom (2008)
Banerjee, Bhattacharya,Bhattacharyya, Dutta, Loganayagam, Surowka (2008)

❖ The presence of the bulk Chern-Simons term implies that the fluid dynamics 
has a new parity-violating term in the charge current involving the vorticity:

�Jµ / ✏µ⌫⇢� u⌫ r⇢u�

❖ The coefficient of proportionality is fixed by the global U(1) anomaly. 
❖ In fact, this term is necessitated by the fact that the current is anomalous and 

can be ascertained from a 2nd law argument. 
Son, Surowka (2008)



Generalizations II: non-conformal fluids
❖ While general non-conformal fluids are hard to access holographically, a 

useful class of examples involves hydrodynamic regime of dilatonic Dp-
branes, whose duals are supersymmetric gauge theories with 16 
supercharges.

❖ The hydrodynamics of these theories can be obtained using fluid/gravity, and 
in fact quite simply using a trick.

❖ The effective action for holographic dual of Dp-branes (p < 5) is an Einstein-
dilaton system in p+2 dimensions.

❖ This theory can be obtained by a formal KK reduction of Einstein-Hilbert 
action with negative cc living in p+2+δ on a flat torus Tδ and can be 
understood for e.g., by using the M5 → D4 reduction.

❖ Likewise the hydrodynamic description can be obtained by reduction of the 
conformal fluid. 

❖ This continues to hold beyond Einstein-dilaton (e.g., Maxwell) and is a 
consequence of some curious supergravity consistent truncation relations. 

I. Kanitscheider, Skenderis (2009)

J. David, M. Mahato, S. Wadia (2009) B. Withers, MR (2011)



Generalizations III: superfluids

❖ It is by now well appreciated that charged scalar hair black holes in AdS 
correspond to thermal density matrices where a global symmetry is 
spontaneously broken. 

❖ It should be possible to study long-wavelength fluctuations about such density 
matrices and recover superfluid hydrodynamics. 

❖ In addition to the hydrodynamic mode, there is a new light dof which should 
be retained: the Goldstone mode that arises from symmetry breaking.

❖ Analysis of scalar hair black holes + thermodynamics leads to the ideal Tizia-
Landau two fluid model of superfluids. 

❖ Note that there is now a new dynamical equation owing to the Goldstone 
mode: this is encapsulated as the curl-free nature of the superfluid velocity, 
which in turn can be traced back to the Goldstone mode being the phase of 
the condensate.

❖ Using fluid/gravity and positivity of entropy current the complete first order 
superfluid hydrodynamics (including global anomalies) was worked out 
recently.

Gubser; Hartnoll, Herzog, Horowitz (2009)

Bhattacharya, Bhattacharyya, Minwalla, Yarom (2011)

Sonner, Withers (2010)
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Fluids and anomalies

❖ The most interesting result coming out of the fluid/gravity explorations is the 
realization that fluid dynamics is cognizant of global anomalies of the 
microscopic theory.

❖ Holographic explorations are easy to undertake since the bulk action needs 
only to be suitably generalized to include Chern-Simons terms, a first 
principles understanding of these effects is starting to emerge from recent 
studies.

❖ Approaches to understanding anomalous transport: 
✦ adiabaticity arguments involving the entropy current
✦ Kubo formulae
✦ analysis of free theories with chiral anomalies

Son, Surowka (2008)

Loganayagam (2011)

Landsteiner + Megias + Melgar + Pena-Benitz +  Amado (2011)

Loganayagam, Surowka (2012)Kharzeev, Yee (2011)



Fluids and anomalies

❖ The anomalous transport coefficients are non-dissipative; they arise from the 
Hermitian part of the retarded Green’s function.

❖ Kubo formulae for these transport coefficients involve the limiting behaviour of 
finite momentum, zero frequency correlators.

❖ Natural way to study the anomalous transport is to couple the fluid to 
background fields. 

❖ Analysis to date involves coupling hydrodynamic dof to background 
electromagnetic fields; curiously this already seems to know about 
gravitational couplings! 

As explained in [23,41] we also have to set the background value of the temporal component

of the gauge field to zero. Hydrodynamic constitutive relations depend however on a

particular definition of the fluid velocity. In the case of the anomalous conductivities this

frame dependence has been addressed in [41] where it was shown how the Landau frame

conductivities used by Son & Surowka [9] can be obtained from a combination of the

charge and energy transport coefficient. This combination emerges because of the change

of coordinates from the laboratory rest frame to a local comoving frame on a element of

fluid in which there is no energy flux. Applying this change of frame we arrive to the

transport coefficients in Landau frame

ξB = lim
kc→0

i

2kc

∑

a,b

εabc

(

〈

JaJb
〉

−
n

ε+ P

〈

T 0aJb
〉

)∣

∣

∣

∣

ω=0,A0=0

, (4.5)

ξV = lim
kc→0

i

2kc

∑

a,b

εabc

(

〈

JaT 0b
〉

−
n

ε+ P

〈

T 0aT 0b
〉

)
∣

∣

∣

∣

ω=0

. (4.6)

The frame dependence has also recently been discussed in [50]. The relevant parts of the

hydrodynamic constitutive relations are

δTmn = σε
B(u

mBn + unBm) + σε
V (u

mωn + unωm) , (4.7)

δJm = σBB
m + σV ω

m , (4.8)

whereas in Landau frame demanding umδTmn = 0 we have no contribution to the energy

momentum tensor but instead

δJm = ξBB
m + ξV ω

m , (4.9)

where Bm = 1
2ε

mnklunFkl.

The AdS/CFT dictionary tells us how to compute the retarded propagators [71, 72].

Since we are interested in the linear response limit, we split the metric and gauge field into

a background part and a linear perturbation,

gMN = g(0)MN + εhMN , (4.10)

AM = A(0)
M + ε aM . (4.11)

Inserting these fluctuations-background fields in the action and expanding up to second

order in ε we can read the second order action which is needed to get the desired propa-

gators [73]. If we construct a vector ΦI with the components of aM and hMN and Fourier

transforming it

ΦI(r, xµ) =

∫

ddk

(2π)d
ΦI
k(r)e

−iωt+i#k#x , (4.12)

it is possible to write the complete second order action on-shell as a boundary term

δS(2)
ren =

∫

ddk

(2π)d
{ΦI

−kAIJΦ
′J
k + ΦI

−kBIJΦ
J
k}
∣

∣

∣

r→∞
, (4.13)

where derivatives are taken with respect to the radial coordinate.
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Fluids and anomalies

❖ All available data points to fluid dynamics being aware of the anomaly 
polynomial. 

energy, charge and entropy transport are given by

T µν ≡ εuµuν + pPµν + qµanomuν + uµqνanom + T µν
diss

Jµ ≡ nuµ + Jµ
anom + Jµ

diss

Jµ
S ≡ suµ + Jµ

S,anom + Jµ
S,diss

(1.1)

where uµ is the velocity of the fluid under consideration which obeys uµuµ = −1 when

contracted using the spacetime metric gµν . Further, Pµν ≡ gµν + uµuν , pressure of the

fluid is p and {ε, n, s} are the energy,charge and the entropy densities respectively. We

have denoted by {qµanom, Jµ
anom, Jµ

S,anom} the anomalous heat/charge/entropy currents and by

{T µν
diss, J

µ
diss, J

µ
S,diss} the dissipative currents.

We are primarily interested in the anomalous currents in what follows. It is convenient

to work with forms - let {q̄anom, J̄anom, J̄S,anom} be the Hodge duals of the corresponding

currents4. Using adiabaticity the following statements can be made in flat spacetime[4]

1. All these currents are derivable from a single Gibbs current Ḡanom which describes the

transport of Gibbs free energy G ≡ E − TS − µQ in the fluid. We have the following

thermodynamic relations

J̄anom = −
∂Ḡanom

∂µ

J̄S,anom = −
∂Ḡanom

∂T

q̄anom = Ḡanom + T J̄S,anom + µJ̄anom

(1.2)

2. Ḡanom is determined in terms of the fluid vorticity 2-form ω , the rest-frame magnetic

field 2-form B and a (n + 1)thdegree polynomial Fω
anom[T, µ] in temperature T and

chemical potential µ (where d = 2n is the number of spacetime dimensions). The

explicit expression for Ḡanom is given by5

Ḡanom =
1

(2ω)2

{

Fω
anom[T (2ω), B + µ(2ω)]−

[

Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

− ω
[ δ

δω
Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

}

∧ u

(1.3)

3. The polynomial Fω
anom[T, µ] obeys two constraints - first, it has no term linear in T .

Second, its value at zero temperature is completely determined by the U(1) anomaly in

the system.

4Throughout this article, we will use overbars to denote Hodge duals.
5This is just a convenient rephrasing of the formulae/results presented in the Appendix §A of [4]. In

particular, we have the following relation relating the functions appearing there to the functions appearing

here

Fω
anom[T (2ω),B + µ(2ω)] = f[B + µ(2ω)] +

1
2
T

2(2ω)2g[B + µ(2ω), Tω]

– 3 –

flow and the adiabaticity is just the statement that there is no more creation/annihilation of

states at finite energies.

Armed with this intuitive picture, we proceed in section §6 to solve the conservation

equation in flat spacetime. This results in a simple expression for the chiral spectral current

J̄q =
χ

d=2n

2π

(

qB + 2ωEp

2π

)n−1

∧
u

(n− 1)!
(1.5)

where χ
d=2n

is the chirality of the 1-particle state. This solution tells us how the states of

different energies and charges flow hence solving once for all the spectral flow problem in an

arbitrary fluid flow (in flat spacetime). We now notice a remarkable result - if we take the

external field strengths to zero B → 0, there is no more an injection of new zero-energy states

into the fluid, but the chiral spectral flow is still non-zero even if the anomaly is turned off

! In this case, the vorticity is sufficient to drive the chiral spectral current and this is the

basic reason why rotational response encodes information about the anomalies in the system

- both gravitational and non-gravitational.

In the next section §7, we add up the Gibbs-free energy contribution of each 1-particle

state to get the anomaly-induced free-energy current Ḡanom. We find that Ḡanom is of the

form given in eqn.(1.3) which was derived in [4] by thermodynamic considerations. While

this is not surprising, we find the the polynomial Fω
anom is derived by a very simple formula

from the anomaly polynomial of the system. We get

Fω
anom = Panom

(

F $→ µ, p1(R) $→ −T 2, p
k>1

(R) $→ 0
)

(1.6)

where Panom is the anomaly polynomial of the system written in terms of the U(1) field

strength F and the kth Pontryagin forms6 of the spacetime curvature p
k
(R). The above

formula gives a simple replacement rule by which one can go from the anomaly polynomial

to the polynomial Fω
anom.

Note that this a generalization of the observation made in [23] that T 2 coefficient in 4d

free theories seem to be related to gravitational anomalies. Since the 4d relation continues

to hold in strongly coupled holographic phases too [11], it is tempting to conjecture that the

above replacement rule would continue to hold even beyond free theories. We emphasize that

this is quite a non-trivial conjecture and what we have is a preliminary evidence that it might

be true. We discuss this along with other further directions in our discussion section §8. We

collect various useful results in our appendices. In the next section, we begin by explaining

our basic setup and defining our notation - most of it being quite standard and elementary, the

reader should feel free to skim through the section just noting various remarks on notation.

2. The Basic setup

The main system we will be concerned about throughout this article is a system of free

relativistic fermions at finite temperature and chemical potential in a flat spacetime with the

6See appendices §B for definitions of various quantities related to anomaly polynomials.
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❖ The anomalous transport coefficients can be extracted from an ‘anomalous 
Gibbs current’ which is built from the anomaly polynomial and its derivatives:

❖ anomalous charge current

energy, charge and entropy transport are given by

T µν ≡ εuµuν + pPµν + qµanomuν + uµqνanom + T µν
diss

Jµ ≡ nuµ + Jµ
anom + Jµ

diss

Jµ
S ≡ suµ + Jµ

S,anom + Jµ
S,diss

(1.1)

where uµ is the velocity of the fluid under consideration which obeys uµuµ = −1 when

contracted using the spacetime metric gµν . Further, Pµν ≡ gµν + uµuν , pressure of the

fluid is p and {ε, n, s} are the energy,charge and the entropy densities respectively. We

have denoted by {qµanom, Jµ
anom, Jµ

S,anom} the anomalous heat/charge/entropy currents and by

{T µν
diss, J

µ
diss, J

µ
S,diss} the dissipative currents.

We are primarily interested in the anomalous currents in what follows. It is convenient

to work with forms - let {q̄anom, J̄anom, J̄S,anom} be the Hodge duals of the corresponding

currents4. Using adiabaticity the following statements can be made in flat spacetime[4]

1. All these currents are derivable from a single Gibbs current Ḡanom which describes the

transport of Gibbs free energy G ≡ E − TS − µQ in the fluid. We have the following

thermodynamic relations

J̄anom = −
∂Ḡanom

∂µ

J̄S,anom = −
∂Ḡanom

∂T

q̄anom = Ḡanom + T J̄S,anom + µJ̄anom

(1.2)

2. Ḡanom is determined in terms of the fluid vorticity 2-form ω , the rest-frame magnetic

field 2-form B and a (n + 1)thdegree polynomial Fω
anom[T, µ] in temperature T and

chemical potential µ (where d = 2n is the number of spacetime dimensions). The

explicit expression for Ḡanom is given by5

Ḡanom =
1

(2ω)2

{

Fω
anom[T (2ω), B + µ(2ω)]−

[

Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

− ω
[ δ

δω
Fω
anom[T (2ω), B + µ(2ω)]

]

ω=0

}

∧ u

(1.3)

3. The polynomial Fω
anom[T, µ] obeys two constraints - first, it has no term linear in T .

Second, its value at zero temperature is completely determined by the U(1) anomaly in

the system.

4Throughout this article, we will use overbars to denote Hodge duals.
5This is just a convenient rephrasing of the formulae/results presented in the Appendix §A of [4]. In

particular, we have the following relation relating the functions appearing there to the functions appearing

here

Fω
anom[T (2ω),B + µ(2ω)] = f[B + µ(2ω)] +

1
2
T

2(2ω)2g[B + µ(2ω), Tω]

– 3 –

❖ anomalous entropy current
❖ anomalous heat current
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The black hole membrane paradigm

T. Damour; K. Thorne, R. Price (1970s)

❖ Connections between gravity and fluids originated in the black hole 
membrane paradigm.

❖ The membrane paradigm associates a dynamical membrane with electro-
mechanical properties to the black hole.

❖ In particular, it does away with the interior of the black hole; matter falling into 
the black hole instead interacts with the membrane.

❖ Membrane dynamics, obtained by projecting Einstein’s equations onto a null 
hypersurface, has formal similarities with the non-relativistic Navier-Stokes 
dynamics.

❖ More recently, using a gradient expansion in the near-horizon Rindler region, 
the membrane dynamics has been shown to correspond to an 
incompressible Navier-Stokes system.

Bredberg, Lysov, Keeler, Strominger (2010-11)
Compere, McFadden, Skenderis, Taylor (2011)

C. Eling, Y. Oz (2008)



Dirichlet problem for gravity

























⌃
D

X̂ = {ĝ
µ⌫

, ûµ, T̂}
'D
7�! X = {g

µ⌫

, uµ, T}

Fig. 2: Schematic representation of the gravitational Dirichlet problem in the fluid/gravity regime.

The causal structure of the fluid/gravity spacetimes is illustrated emphasizing the tubewise

approximation; in each tube the geometry resembles that of a uniformly boosted Schwarzschild-

AdS

d+1

black hole. Suitable choices of the Dirichlet surface allow us to find the map between

the boundary data X and the Dirichlet hypersurface data X̂ within each tube, rendering the

problem tractable.

not an arbitrary symmetric traceless two tensor, but constrained to take the hydrodynamical

form. It is parameterized by d independent parameters - a velocity field u
µ

(x) (unit normal-

ized so that g
µ⌫

uµ u⌫ = �1) and a scalar function b(x) which parameterizes the temperature.

The bulk metric G
MN

is determined in terms of the data X = {g
µ⌫

(x), u
µ

(x), b(x)}.

We wish to implement the same procedure, but starting with analogous data X̂ =

{ĝ
µ⌫

(x), û
µ

(x), b(x)} on the Dirichlet hypersurface ⌃
D

. But given the ultra-locality inherent

in the long-wavelength regime and the fact that [12] have solved the problem for arbitrary

boundary metrics (corresponding to fluids on arbitrary slowly varying curved backgrounds),

we don’t need to solve any equations. The solution space of the bulk Dirichlet problem

coincides with the solution space found in [12] and the problem at hand is readily solved

by slicing this solution space appropriately. With this aim, we now review the solutions

constructed in [12].
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❖ The general non-linear gravity 
problem is hard to solve.

❖  Can make progress in the long-
wavelength regime, where we 
can bring the results of the fluid/
gravity correspondence to bear.

Brattan, Camps, Loganayagam, MR (2011) 

❖ The tubewise structure of the 
spacetime allows one to 
implement the gradient 
expansion with Dirichlet bc.



Dressed up the boundary fluid

❖ The long-wavelength solution to the Dirichlet problem results in a Dirichlet 
fluid whose constitutive relations are explicitly known.

❖ In particular, this construction allows for a non-linear proof of the statement 
that shear viscosity does not run under radial evolution.

❖ The Dirichlet fluid can be viewed in terms of a conformal fluid (the usual 
boundary fluid) which happens to reside on a ‘dynamical background’.

❖ The geometry on which the conformal fluid propagates depends on the local 
fluid dof and is determined only upon solving fluid equations.

❖ One can view the fluid as carrying a local gravitational cloud with it; a field 
redefinition allows one to absorb the dynamical variables into the fluid and 
leaving behind an inert background.

❖ Pushing the Dirichlet surface to the horizon, gives an AdS embedding of the 
membrane paradigm: the boundary fluid lives on a degenrate manifold with 
Newton-Cartan structure.

Iqbal, Liu (2008)



Five questions (I’d like to know the answer to)

❖ Fluids coupled to gravity: gravitational anomalies from first principles. 

❖ Insight into turbulence: can knowledge of gravitational dynamics shed light on 
fluid dynamics?

❖ Extremal fluids: finite density locally critical dynamics as an effective field 
theory.

❖ Entropy current away from local equilibrium: what geometric construct does 
the job?

❖ Einstein’s equations from a Boltzmannian perspective: does incorporation of 
higher quasinormal modes lead to a Boltzmann type equation?


