A simple model with asymptotically Lifshitz BHs

Javier Tarrío
Bilbao, $2^{\text {nd }}$ February

based on: arXiv:1201.5480
arXiv:1105.6335 w/ S. Vandoren

Universiteit Utrecht

Lifshitz metric

- The final aim is extend AdS/CFT to study non-isotropic, strongly coupled, field th.

$$
t \rightarrow \lambda^{z} t \quad x \rightarrow \lambda x
$$

- Lifshitz algebra generators identified with isometries of the Lifshitz metric

$$
d s^{2}=\frac{\ell^{2}}{r^{2}} d r^{2}-\frac{r^{2 z}}{\ell^{2 z}} d t^{2}+\frac{r^{2}}{\ell^{2}} d \vec{x}_{d-1}^{2}
$$

- Want to study asymptotically Lifshitz charged BHs, to mimic finite temperature and chemical potential

$z=1$ (AdS) case

- In AAdS case there is the known AdS-RN

$$
S=-\frac{1}{16 \pi G_{d+1}} \int d^{d+1} x \sqrt{-g}\left(R-2 \Lambda-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{4} e^{\lambda \phi} F^{2}\right)
$$

- Where the solution reads

$$
\begin{aligned}
& d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2}}{\ell^{2}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
& b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-d}+\rho^{2} r^{-2(d-1)} \\
& F_{r t}=\rho r^{1-d} \quad e^{\lambda \phi}=1
\end{aligned}
$$

$z=1$ (AdS) case

- In AAdS case there is the known AdS-RN

$$
S=-\frac{1}{16 \pi G_{d+1}} \int d^{d+1} x \sqrt{-g}\left(R-2 \Lambda-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{4} e^{\lambda \phi} F^{2}\right)
$$

- Where the solution reads

$$
\left.\begin{array}{l}
d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2}}{\ell^{2}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-d}+\rho^{2} r^{-2(d-1)} \\
F_{r t}=\rho r^{1-d} \quad e^{\lambda \phi}=1
\end{array} \begin{array}{c}
\text { Chamblin } \\
\text { Emparan } \\
\text { Johnson } \\
\text { Myers }
\end{array}\right\}
$$

$z=1$ (AdS) case

- In AAdS case there is the known AdS-RN

$$
S=-\frac{1}{16 \pi G_{d+1}} \int d^{d+1} x \sqrt{-g}\left(R-2 \Lambda-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{4} e^{\lambda \phi} F^{2}\right)
$$

- Where the solution reads

$$
\begin{aligned}
& d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2}}{\ell^{2}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
& b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-d}+\rho^{2} r^{-2(d-1)}
\end{aligned} \begin{gathered}
\substack{\text { Chamblin } \\
\text { Emparan } \\
\text { Johnson } \\
\text { Myers }} \\
F_{r t}=\rho r^{1-d} \quad e^{\lambda \phi}=1
\end{gathered}
$$

Anisotropic case

- Let's play the same game with different asymptotics ($z!=1$)

$$
S=-\frac{1}{16 \pi G_{d+1}} \int d^{d+1} x \sqrt{-g}\left(R-2 \Lambda-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{4} e^{\lambda \phi} F^{2}\right)
$$

- Now the solution is no longer charged nor with spherical topology

$$
\begin{aligned}
& b_{k} \simeq 1-m r^{-(d+z-1)} \\
& F_{r t}=f r^{d+z-2} \quad e^{\lambda \phi}=\mu r^{2(1-d)} \\
& \mu f^{2}=2(z-1)(d+z-1)
\end{aligned}
$$

Anisotropic case

- One may try to introduce charge by adding an extra field
$S=-\frac{1}{16 \pi G_{d+1}} \int d^{d+1} x \sqrt{-g}\left(R-2 \Lambda-\frac{1}{2}(\partial \phi)^{2}-\sum_{i=1}^{2} \frac{1}{4} e^{\lambda_{i} \phi} F_{i}^{2}\right)$
- Actually there are two possible solutions now

$$
b_{k} \simeq\left\{\begin{array}{l}
1+\sqrt{\frac{k}{r^{2}}}-m r^{-(d+z-1)} \\
1-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)}
\end{array}\right.
$$

Anisotropic case

- Natural question: do we have spherical topology and charge with $U(1)^{3}$ theory?
$S=-\frac{1}{16 \pi G_{d+1}} \int d^{d+1} x \sqrt{-g}\left(R-2 \Lambda-\frac{1}{2}(\partial \phi)^{2}-\sum_{i=1}^{3} \frac{1}{4} e^{\lambda_{i} \phi} F_{i}^{2}\right)$
- The answer is yes, for the blackening function we obtain

$$
b_{k} \simeq 1+\frac{\frac{k}{r^{2}}}{}-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)}
$$

The solution with $\mathrm{U}(1)^{3}$

$$
\begin{aligned}
& d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2 z}}{\ell^{2 z}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
& b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)}
\end{aligned}
$$

$$
e^{\phi}=\mu r^{\sqrt{2(d-1)(z-1)}}
$$

The solution with $\mathrm{U}(1)^{3}$

$$
\begin{gathered}
d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2 z}}{\ell^{2 z}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)} \\
\mathcal{A}_{t}^{(z)^{\prime}} \simeq f_{1}(d, z) r^{d+z-2}
\end{gathered}
$$

$$
e^{\phi}=\mu r \sqrt{2(d-1)(z-1)}
$$

The solution with $\mathrm{U}(1)^{3}$

$$
\begin{aligned}
& d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2 z}}{\ell^{2 z}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
& b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)} \\
& f_{2}(d, z) r^{d+z-4} \\
& \mathcal{A}_{t}^{(z)^{\prime}} \simeq f_{1}(d, z) r^{d+z-2} \\
& e^{\phi}=\mu r^{\sqrt{2(d-1)(z-1)}}
\end{aligned}
$$

The solution with $\mathrm{U}(1)^{3}$

$$
\begin{gathered}
d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2 z}}{\ell^{2 z}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2} \\
b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)} \\
\mathcal{A}_{t}^{(k)^{\prime}} \simeq f_{2}(d, z) r^{d+z-4} \\
\mathcal{A}_{t}^{(z)^{\prime}} \simeq f_{1}(d, z) r^{d+z-2} \\
e_{t}^{\phi} \simeq \rho r^{2-d-z} \\
\end{gathered}
$$

The solution with $\mathrm{U}(1)^{3}$

$$
d s^{2}=\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{b_{k}(r)}-b_{k}(r) \frac{r^{2 z}}{\ell^{2 z}} d t^{2}+r^{2} d \Omega_{k, d-1}^{2}
$$

$$
b_{k} \simeq 1+\frac{k}{r^{2}}-m r^{-(d+z-1)}+\rho^{2} r^{-2(d+z-2)}
$$

$\mathcal{A}_{t}^{(k)^{\prime}} \simeq f_{2}(d, z) r^{d+z-4}$

These fields diverge at the boundary!! $A_{t}^{\prime} \simeq \rho r^{2-d-z}$

$$
e^{\phi}=\mu r^{\sqrt{2(d-1)(z-1)}}
$$

Cons

- Divergent fields at the boundary spoil Lifshitz symmetry

$$
\begin{aligned}
& \mathcal{L}_{\xi} \mathcal{A} \neq 0 \\
& \xi=z t \partial_{t}-r \partial_{r}+x^{i} \partial_{i}
\end{aligned}
$$

- Model cannot be obtained from string theory due to the constant potential, and for generic potential no Lifshitz solution is known

Charmousis, Gouteraux, Kim, Kiritsis, Meyer

Pros

- Analytic for generic $d>2$ and $z \geq 1$
- Can be understood as effective IR theories that must be UV completed
- Great toy model: matter fields not coupling to \mathcal{A} do not know about their

Plauschinn Stoof divergent behaviour!

Vandoren

- Infinities can be removed with (almost) standard holographic renormalization

Holo-ren

- Prior to an on-shell evaluation: the variational problem ($k=1$ from now on)
- add Gibbons-Hawking term
- consider badly behaved gauge fields

$$
\mathcal{A}_{t}^{(z)^{\prime}} \simeq f_{1}(d, z) r^{d+z-2} \quad \mathcal{A}_{t}^{(k)^{\prime}} \simeq f_{2}(d, z) r^{d+z-4}
$$

- Correct variational problem implies
$\tilde{S}=S+S_{G H}+\frac{1}{2 \kappa_{2}} \int_{\partial} \sqrt{-h} \frac{1}{2} n_{\mu}\left(e^{\lambda_{z} \phi} \mathcal{A}_{\nu}^{(z)} \mathcal{F}_{(z)}^{\mu \nu}+e^{\lambda_{k} \phi} \mathcal{A}_{\nu}^{(k)} \mathcal{F}_{(k)}^{\mu \nu}\right)$

Holo-ren

- Recall the AAdS counterterm
$S_{c t}=-\frac{1}{\kappa^{2}} \int_{\partial} d^{d} x \sqrt{-h}\left(\frac{d-1}{\ell}+\frac{\ell}{2(d-2)} R+\frac{\ell^{3}}{2(d-2)^{2}(d-4)}\left[R_{a b} R^{a b}-\frac{d}{4(d-1)} R^{2}\right]+\cdots\right)$
- The series truncates depending on the number of dimensions, and for fixed d one needs the term with R^{n}, where

$$
n=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

- For the non-AdS case this relation reads

$$
n=\left\lfloor\frac{d+z-2}{2}\right\rfloor
$$

Holo-ren

- Can we avoid restricting to specific d and z ? There are infinite counterterms, but for the most general boundary metric!
- Notice that the asymptotic metric is static with topology $\mathbb{R}_{t} \times S^{d-1}$, then

$$
\begin{aligned}
& R_{t \alpha \beta \gamma}^{(h)}=0 \\
& R_{i j k l}^{(h)} \sim h_{i k} h_{j l}-h_{i l} h_{j k}
\end{aligned}
$$

- In concrete, any contraction of curvature tensors is proportional to a power of $R_{(h)}$

Holo-ren

- One method to obtain the counterterm: consider

$$
S_{c t}=\frac{1}{\kappa^{2}} \int_{\partial} \sqrt{-h} \sum_{n=0}^{n_{\max }} c_{n} R_{(h)}^{n}
$$

- For several values of d and z fix c_{o} to cancel divergences, repeat with $c_{1}, c_{2} \ldots$
- Find each $c_{i \leq n_{\max }}$ as a function of d and z, and generalize to arbitrary power n
- Resum the series (and check for other d^{\prime} s and z^{\prime} s)

Holo-ren

- A second method to write down the counterterm: calculate on-shell action in the neutral case with no black hole
- Factor out $\sqrt{-h}$ and trade all factors of radial coordinate for the boundary Ricci scalar

Kraus

- Subtract precisely that counterterm: Liersen equivalent to backgound subtraction!

On-shell evaluation

- The on-shell, renormalized, action

$$
\tilde{S}-\frac{1}{\kappa^{2}} \int_{\partial} d^{d} x \sqrt{-h} \frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}}=\beta W
$$

On-shell evaluation

- The on-shell, renormalized, action

$$
\tilde{S}-\frac{1}{\kappa^{2}} \int_{\partial} d^{d} x \sqrt{-h} \frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}}=\beta W
$$

- What about the energy?

On-shell evaluation

- The on-shell, renormalized, action

$$
\tilde{S}-\frac{1}{\kappa^{2}} \int_{\partial} d^{d} x \sqrt{-h} \frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}}=\beta W
$$

- What about the energy?
$T_{m n}=\frac{1}{\kappa^{2}}\left[K_{m n}-K h_{m n}+\frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}} h_{m n}\right]$

On-shell evaluation

- The on-shell, renormalized, action

$$
\tilde{S}-\frac{1}{\kappa^{2}} \int_{\partial} d^{d} x \sqrt{-h} \frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}}=\beta W
$$

- What about the energy?
$T_{m n}=\frac{1}{\kappa^{2}}\left[K_{m n}-K h_{m n}+\frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}} h_{m n}\right]$
- There are corrections, but M is accesible

On-shell evaluation

- The on-shell, renormalized, action

$$
\tilde{S}-\frac{1}{\kappa^{2}} \int_{\partial} d^{d} x \sqrt{-h} \frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}}=\beta W
$$

- What about the energy?
$T_{m n}=\frac{1}{\kappa^{2}}\left[K_{m n}-K h_{m n}+\frac{d-1}{\ell} \sqrt{1+\frac{(d-2) \ell^{2} R_{(h)}}{(d-1)(d+z-3)^{2}}} h_{m n}\right]$
- There are corrections, but M is accesible

$$
M=\int d^{d-1} x \sqrt{\operatorname{det} h_{i j}} k^{m} \xi^{n} T_{m n}=\frac{V_{d-1}}{16 \pi G_{d+1}} \frac{m(d-1)}{\ell^{1+z}}
$$

Thermodynamics

- Defining charge and chemical potential in the standard way

$$
\begin{aligned}
& \tilde{Q}=\frac{1}{16 \pi G_{d+1}} \int e^{\lambda \phi} * F_{2}=\frac{V_{d-1} \ell^{z-1} \rho}{16 \pi G_{d+1}} \\
& \tilde{\Phi}=A_{t}(\infty)=\frac{\rho \mu^{-\sqrt{2 \frac{z-1}{d-1}}}}{d+z-3} r_{h}^{3-d-z}
\end{aligned}
$$

- Thermodynamic relations are satisfied, in particular

$$
\begin{aligned}
& W=M-T S-\tilde{\Phi} \tilde{Q} \\
& F=\Delta M-T S
\end{aligned}
$$

Phase diagrams

- Grand-canonical ensemble

BH

$$
\begin{aligned}
& 1<=\mathrm{Z}<2 \quad \mathrm{Z}=2 \\
& \tilde{\Phi}_{c}^{2}=k \frac{2(d-1)(d-2)^{2}}{(d+z-3)^{3}} \ell^{2(1-z)} \mu^{-\sqrt{2 \frac{z-1}{d-1}}}
\end{aligned}
$$

Phase diagrams

- Canonical ensemble

$$
\begin{aligned}
& 1<=\mathrm{Z}<2 \quad \mathrm{Z}=2 \quad \mathrm{Z}>2 \\
& T_{H P}=\frac{d-1}{2 \pi(2-z) \ell}\left[\frac{(2-z)(d-2)^{2}}{z(d+z-3)^{2}}\right]^{z / 2}
\end{aligned}
$$

Summary and outlook

- We presented a solution for $U(1)^{3}$ theory with dilatonic couplings; generic z and d
- Some vector fields just support geometry via Neumann boundary conditions!
- The same fields have a bad behaviour at the boundary, however...
- Finite on-shell action and mass of b.h. with holographic renormalization: phase diagrams
- If no matter couples to the \mathcal{A} fields and quantites are renormalized, can we make sense of this theory anyway?

