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Lifshitz metric
• The final aim is extend AdS/CFT to study 

non-isotropic, strongly coupled, field th.

• Lifshitz algebra generators identified with 
isometries of the Lifshitz metric

• Want to study asymptotically Lifshitz 
charged BHs, to mimic finite temperature 
and chemical potential
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z=1 (AdS) case
• In AAdS case there is the known AdS-RN

• Where the solution reads
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Anisotropic case
• Let’s play the same game with different 

asymptotics (z!=1)

• Now the solution is no longer charged 
nor with spherical topology
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Anisotropic case
• One may try to introduce charge by 

adding an extra field

• Actually there are two possible solutions 
now
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Anisotropic case
• Natural question: do we have spherical 

topology and charge with U(1)3 theory?

• The answer is yes, for the blackening 
function we obtain
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The solution with U(1)3
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These fields diverge at the boundary!!



Cons
• Divergent fields at the boundary spoil 

Lifshitz symmetry

• Model cannot be obtained from string 
theory due to the constant potential, and 
for generic potential no Lifshitz solution 
is known
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Pros
• Analytic for generic d>2 and z>1

• Can be understood as effective IR 
theories that must be UV completed

• Great toy model: matter fields not 
coupling to     do not know about their 
divergent behaviour!

• Infinities can be removed with (almost) 
standard holographic renormalization

9

A
Gursoy

Plauschinn
Stoof

Vandoren



Holo-ren
• Prior to an on-shell evaluation: the 

variational problem (k=1 from now on)

   - add Gibbons-Hawking term
   - consider badly behaved gauge fields 

• Correct variational problem implies
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Holo-ren
• Recall the AAdS counterterm

• The series truncates depending on the 
number of dimensions, and for fixed d 
one needs the term with Rn, where

• For the non-AdS case this relation reads
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Holo-ren
• Can we avoid restricting to specific d and 

z? There are infinite counterterms, but 
for the most general boundary metric!

• Notice that the asymptotic metric is 
static with topology                 , then

• In concrete, any contraction of curvature 
tensors is proportional to a power of 
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Holo-ren
• One method to obtain the counterterm: 

consider

• For several values of d and z fix c0 to 
cancel divergences, repeat with c1, c2...

• Find each ci<nmax as a function of d and z, 
and generalize to arbitrary power n

• Resum the series (and check for other d’s and z’s)
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Holo-ren
• A second method to write down the 

counterterm: calculate on-shell action in 
the neutral case with no black hole

• Factor out         and trade all factors of 
radial coordinate for the boundary Ricci 
scalar

• Subtract precisely that counterterm: 
equivalent to backgound subtraction!
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On-shell evaluation
• The on-shell, renormalized, action
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On-shell evaluation
• The on-shell, renormalized, action

• What about the energy?
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On-shell evaluation
• The on-shell, renormalized, action

• What about the energy?

• There are corrections, but M is accesible
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On-shell evaluation
• The on-shell, renormalized, action

• What about the energy?

• There are corrections, but M is accesible
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Thermodynamics
• Defining charge and chemical potential in 

the standard way

• Thermodynamic relations are satisfied, in 
particular
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Phase diagrams
• Grand-canonical ensemble

1<=z<2                z=2                     z>2
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Phase diagrams
• Canonical ensemble

1<=z<2                z=2                     z>2
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Summary and outlook
• We presented a solution for U(1)3 theory with 

dilatonic couplings; generic z and d
- Some vector fields just support geometry via Neumann 
boundary conditions!
- The same fields have a bad behaviour at the boundary, 
however... 

• Finite on-shell action and mass of b.h. with 
holographic renormalization: phase diagrams

• If no matter couples to the      fields and 
quantites are renormalized, can we make 
sense of this theory anyway?
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