ABJM Baryon Stability and Myers effect

Konstadinos Siampos

CPHT - Ecole Polytechnique
IBERIAN STRINGS 2012
Bilbao 31 February 2012

- Based on:
- Y. Lozano, M. Picos and K. Sfetsos, JHEP 07(2011)03, arXiv:1105.093[hep-th].
- Work in progress: Less supersymmetric backgrounds; Klebanov-Witten, Sasaki-Einstein and β-deformed (Frolov) with D. Giataganas, Y. Lozano and M. Picos.

AdS/CFT and motivation

- The AdS/CFT correspondence is a tool to extract information for gauge theories at strong coupling from gravity. Prototype was the $A d S_{5} \times S^{5}$ dual to $\mathcal{N}=4$ SYM [Maldacena 99]. Extensions: temperature, velocity, Coulomb branch, marginally deformed backgrounds...
- $A d S_{4} / C F T_{3}$: Type IIA string theory on $A d S_{4} \times C P^{3}$ with an $\mathcal{N}=6$ quiver CS matter theory with gauge group $U(N)_{k} \times U(N)_{-k}$ and marginal superpotential [ABJM Model]. The superpotential coupling proportional to k^{-2}, $N^{1 / 5} \ll k$ and allows for a weak coupling regime $(\lambda=N / k)$. The Type IIA theory is then weakly curved when $k \ll N$.
- Study of bound states of quarks are dual to classical string/brane probe solutions. Discrepancies between field theory /experimental expectations and their gravitational description; baryons: colorless states.

Plan of the talk:

- Construction of baryons within the gravity/gauge theory duality.
- Macroscopical calculation of binding energy and charges.
- Stability analysis:
- Based on general statements concerning the perturbative stability of such string solutions (transcendental equation), rather than (heavy) numerics.
- Applications and resolutions of the discrepancies, non-sinlet solutions.
- Microscopical calculation of binding energy and charges.
- Conclusions and future directions.
- Comment on extensions to less supersymmetric theories; Klebanov-Witten, Sasaki-Einstein and β-deformed (Frolov) backgrounds.

Baryon potential within AdS/CFT

- Heavy baryon potential $E(L)$ is extracted from Wilson loop expectation values $\langle W(C)\rangle$.
- Within AdS/CFT, the interaction potential energy of the baryon is given by [prototype by Witten 1998]

$$
e^{-\mathrm{i} E T}=\langle W(C)\rangle \simeq \exp (\mathrm{i} S[C])
$$

$S[C]=S_{N G}+S_{D B I}+S_{C S}$, Note: Quarks are external. The strings and the brane are probe solutions on our background.

Figure: Baryon Configuration

Dp-Brane energy

The DBI action of a $D p$-brane in string units reads

$$
S_{p}=-T_{p} \int d^{p+1} \xi e^{-\phi} \sqrt{|\operatorname{det}(P[g+2 \pi \mathcal{F}])|}, \quad T_{p}=\frac{1}{(2 \pi)^{p}}
$$

where g is the induced metric and $\mathcal{F}=F+\frac{1}{2 \pi} B_{2}$ is the magnetic flux. The metric of a $D p$-brane wrapping on $C P^{p / 2}$ cycles (gauge choice is time and the angles of the $C P^{p / 2}$ cycles; static gauge and we wrap all the $C P^{p / 2}$ cycles) reads

$$
d s_{\text {ind }}^{2}=-\frac{16 \rho^{2}}{L^{2}} d \tau^{2}+L^{2} d s_{C P^{\frac{p}{2}}}^{2} .
$$

where $F=\mathcal{N} J$ and $B_{2}=-2 \pi J, J$ is the Kähler form (equations of motion are satisfied) and $\mathcal{N} \in 2 \mathbb{Z}$. The energy of the Dp-brane is [Lozano et. al. 2010].

$$
\begin{aligned}
& E_{D B I}^{D p}=-Q_{p} \frac{4 \rho_{0}}{L}, \quad Q_{p}=\frac{T_{p}}{g_{s}} \operatorname{Vol}\left(C P^{\frac{p}{2}}\right)\left(L^{4}+(2 \pi)^{2}\left(\mathcal{N}-a_{p}\right)^{2}\right)^{\frac{p}{4}} \\
& a_{2,6}=1, \quad a_{4}=0, \text { due Freed-Witten anomaly of } C P^{2}, \text { not spin-manifold. }
\end{aligned}
$$

Note: \mathcal{N}^{2} is comparable to $L^{4} \gg 1$.

Dp-brane Charges

The CS action for a Dp-brane reads

$$
S_{C S}=T_{p} \int d^{p+1} \xi\left[P\left(\sum_{q} C_{q} e^{B_{2}}\right) e^{2 \pi F}\right]_{p+1}
$$

Both the D4 and D6-branes have CP ${ }^{1}$ D2-branes dissolved.
Therefore in the presence of a magnetic flux they capture the F_{2} flux and develop a tadpole with charge $q=k \frac{\mathcal{N}^{\frac{p}{2}-1}}{2^{\frac{p}{2}-1}\left(\frac{p}{2}-1\right) \text { ! }}$, [Lozano et al 2010].
There are three more couplings for $D 6$:

- The $\int_{D 6} F_{2} \wedge B_{2} \wedge B_{2} \wedge A$ which cancels [Aharony et al 09] from higher curvature terms [Green et al 96, Cheung et al 97, Bachas et al 99].
- The $\int_{D 6} F_{2} \wedge F \wedge B_{2} \wedge A$ which contributes to its k charge, $q_{D 6}=N+k \frac{\mathcal{N}(\mathcal{N}-2)}{8}$, where the N units induced by the F_{6} flux $S_{C S}^{D 6}=2 \pi T_{6} \int_{R \times \mathbb{P}^{3}} P\left[F_{6}\right] \wedge A=N T_{F 1} \int d t A_{t}$.

Classical solution

Solving the e.o.m. and imposing the b.c. at UV and at the baryon vertex (Figure) we find that

$$
\begin{aligned}
\ell= & \frac{L^{2} \sqrt{x(1-x)}}{6 \rho_{0}}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{3}{4}, \frac{7}{4} ; 4 x(1-x)\right), x=I_{\min } / I \\
E_{b i n}= & E_{D p}+E_{I F 1}+E_{(q-I) F 1}= \\
= & I T_{F 1} \rho_{0}\left\{-{ }_{2} F_{1}\left(-\frac{1}{4}, \frac{1}{2}, \frac{3}{4} ; 4 x(1-x)\right)+2 x-1\right\} . \\
& I \geqslant \frac{q}{2}\left(1+\sqrt{1-\beta^{2}}\right)=I_{\min }, \sqrt{1-\beta^{2}} \equiv \frac{2 Q_{p}}{L q T_{F_{1}}} \leqslant 1 .
\end{aligned}
$$

where the inequality gives a bound on the magnetic flux that can be dissolved on the worldvolume. Or equivalently:
$E_{b i n}=-f(x) \frac{\left(g_{s} N\right)^{2 / 5}}{\ell} \leqslant 0, f(x) \geqslant 0$.

- Conformal dependence.
- Non-logarithmic 2-d dependence.
- Non-pertubative and concavity.

Stability analysis

Instabilities can emerge only from the longitudinal fluctuations of the / strings [Sfetsos, K.S. 2008]. Perturbing the embedding according to $r=r_{\mathrm{cl}}+\delta r(\rho)$ and expanding the Nambu-Goto action to quadratic order in the fluctuations, the zero mode solution vanishing in the UV reads

$$
\delta r=A \int_{\rho}^{\infty} d \rho \frac{\rho^{2}}{\left(\rho^{4}-\rho_{1}^{4}\right)^{3 / 2}}=\frac{A}{3 \rho^{3}}{ }_{2} F_{1}\left(\frac{3}{2}, \frac{3}{4} ; \frac{7}{4} ; \frac{\rho_{1}^{4}}{\rho^{4}}\right),
$$

imposing the boundary condition at the baryon vertex ρ_{0} we find

$$
{ }_{2} F_{1}\left(\frac{3}{2}, \frac{3}{4} ; \frac{7}{4} ; 1-\gamma^{2}\right)=\frac{3}{2 \gamma\left(1+\gamma^{2}\right)} \Longrightarrow \gamma_{c} \simeq 0.538, \quad \gamma \equiv \sqrt{1-\frac{\rho_{1}^{4}}{\rho_{0}^{4}}} .
$$

Thus the stability bound of F-strings is more restrictive $I \geqslant \frac{q}{1+\gamma_{c}}\left(1+\sqrt{1-\beta^{2}}\right)$. The brane fluctuations they prove to be stable. Note that there are no boundary conditions for these fluctuations, the reason being that the $\mathbb{R} \times C P^{\frac{p}{2}}$ space has no boundary.

Microscopical energy

DO-brane charge on the $D p$-branes wrapped on (fuzzy) $C P^{\frac{p}{2}}$ suggests a close analogy with the dielectric effect dielectric [Emparan 97, Myers 99]. The DBI action describing the dynamics of n coincident DO-branes expanded into fuzzy $C P^{p / 2}$

$$
S_{n D 0}^{D B I}=-\frac{1}{g_{s}} \int d \tau \frac{4 \rho}{L} \operatorname{STr} \sqrt{\operatorname{det} Q}, Q^{i}{ }_{j}=\delta^{i}{ }_{j}+\frac{i}{2 \pi}\left[X^{i}, X^{k}\right] E_{k j} .
$$

$E=g+B_{2}$. Thus, $Q^{i}{ }_{j}=\delta^{i}{ }_{j}+M^{i}{ }_{j}$ with $M^{i}{ }_{j}$ given by

$$
M^{i}{ }_{j}=-\frac{1}{\frac{p}{2}+1} \Lambda_{(m)} f_{i k l} X^{\prime}\left(\frac{p L^{2}}{8 \pi} \delta^{k}{ }_{j}-\sqrt{\frac{p}{4\left(\frac{p}{2}+1\right)}} f_{k j m} X^{m}\right),
$$

We shall compute $\operatorname{det} Q$ by computing traces of powers of M for the fuzzy $C P^{p / 2}$ space.

However, for $B_{2}=0$ in the limit

$$
\begin{aligned}
& L \gg 1, \quad m \gg 1 \longrightarrow r \simeq \frac{L^{4}}{m^{2}}=\text { finite }, \\
& \operatorname{Tr}(M)=0, \quad \operatorname{Tr}\left(M^{2}\right)=-\frac{p}{2^{4} \pi^{2}}, \quad \operatorname{Tr}\left(M^{3}\right) \simeq 0, \quad \operatorname{Tr}\left(M^{4}\right) \simeq \frac{p^{2}}{2^{8} \pi^{4}} \\
& \operatorname{Tr}\left(M^{2 n}\right) \simeq p(-1)^{n}\left(\frac{r}{16 \pi^{2}}\right)^{n} \mathbb{I}, \quad \operatorname{Tr}\left(M^{2 n+1}\right) \simeq 0 .
\end{aligned}
$$

Thus the energy of n D0-branes expanding into a fuzzy $C P^{\frac{p}{2}}$ is then given to leading order in m by

$$
E_{n D 0} \simeq-\frac{n}{g_{s}}\left(1+\frac{L^{4}}{16 \pi^{2} m^{2}}\right)^{\frac{p}{4}} \frac{4 \rho_{0}}{L},\left(L \gg 1, L^{p} \ll n\right)
$$

where $n=\operatorname{dim}(m, 0)$. For $m \sim \frac{\mathcal{N}}{2}$ the leading order in m coincides with the macroscopical result.

- For $B_{2} \neq 0$ it turns out that redefinition of m gets corrected:

$$
\mathcal{N}=2 m+2, p=2,4 \text { and } \mathcal{N}=2 m+4, p=6
$$

Microscopical charges

We shall next show how fundamental strings that stretch from the Dp-brane to the boundary of $A d S_{4}$ strings arise in the microscopic setup. The relevant CS terms for n coincident D0-branes in the $A d S_{4} \times C P^{3}$ are

$$
\begin{aligned}
& S_{C S}=\int d \tau \operatorname{STr}\left\{\left[\left(i_{X} i_{X}\right) F_{2}-\frac{1}{(2 \pi)^{2}}\left(i_{X} i_{X}\right)^{3} F_{6}+\frac{i}{2 \pi}\left(i_{X} i_{X}\right)^{2} F_{2} \wedge B_{2}\right.\right. \\
& \left.\left.-\frac{1}{2} \frac{1}{(2 \pi)^{2}}\left(i_{X} i_{X}\right)^{3} F_{2} \wedge B_{2} \wedge B_{2}\right] A_{\tau}\right\} .
\end{aligned}
$$

Where we have expanded the background potentials on the non-Abelian scalars occurs through the Taylor expansion [Garousi et al 1998] and the pull-backs into the worldline are given in terms of gauge covariant derivatives, $D_{\tau} X^{\mu}=\partial_{\tau} X^{\mu}+i\left[A_{\tau}, X^{\mu}\right]$.

In the large m limit we find:
$-S_{C S_{1}} \simeq q \int d \tau A_{\tau}, q=\frac{2}{p} k \frac{\mathcal{N}^{\frac{p}{2}-1}}{2^{\frac{p}{2}-1}\left(\frac{p}{2}-1\right)!}$, the number of fundamental string charge in each $C P^{1}$, in agreement with the macroscopical result.

- $S_{C S_{2}} \simeq N \int d \tau A_{\tau}$, in agreement with the macroscopical result.
$-S_{C S_{3}} \simeq-k \frac{m^{\frac{p}{2}-2}}{\left(\frac{\rho}{2}\right)!} \int d \tau A_{\tau}, S_{C S_{4}} \simeq \frac{3!}{8} k \frac{m^{\frac{p}{2}-3}}{\left(\frac{\rho}{2}\right)!} \int d \tau A_{\tau}$.
To find the units of F-charge for D2, D4 and D6 brane requires consideration of sub-leading contributions in the large m expansion of $S_{C S_{1}}$ and its identification with the magnetic flux.
We also find a $k / 8$ contribution for the D6, coming from $S_{C S_{4}}$.
Stability analysis goes along the same lines than in the macroscopical set-up; non-singlet classical stable solutions.

Dielectric higher-curvature terms

Generalizing the Chern-Simons action for multiple Dp-branes [Myers 1999] to include higher curvature terms we find for our background

$$
S_{\text {h.c. }}=-\frac{i}{(2 \pi)^{2}} \int_{\mathbb{R}} S \operatorname{Tr}\left[\left(i_{X} i_{X}\right)^{3}\left(F_{2} \wedge \Omega_{4}\right)\right] A
$$

where Ω_{4} is given in term of the Pontryagin classes of the normal and the tangent bundle of the three $C P^{2}$ circles of the $C P^{3}$ manifold [Eguchi et al 1980, Bergman et al 2009]. Substituting F_{2} and Ω_{4} we find:

$$
S_{\text {h.c. }} \simeq-\frac{\kappa}{8} \int_{\mathbb{R}} d \tau A_{\tau}
$$

Thus this higher curvature coupling cancels the $S_{C S_{4}}$ contribution as in the macroscopical case.

Summary-future directions

- We constructed macroscopically magnetically charged particle-like branes in ABJM with $k<N$. Stability analysis increases the classical lower bound for each value of the magnetic flux.
- We gave an alternative description in terms of D0-branes expanded into fuzzy $C P^{\frac{p}{2}}$ spaces, we can explore finite 't Hooft coupling region, $L^{p} \ll n$.
- We constructed dielectric higher curvature couplings that to the best of our knowledge have not been considered before in the literature. This new coupling exactly cancels the $k / 8$ contribution to the D6-brane tadpole.
- We constructed baryon in Klebanov-Witten backgrounds which are dual to $\mathcal{N}=1$, rough approximation the construction is not supersymmetric. We have constructed baryon in Sasaki-Einstein and β-deformed (Frolov) backgrounds; a 5/8.

Review of the $\operatorname{AdS}_{4} \times C P^{3}$ background

In our conventions the $A d S_{4} \times C P^{3}$ metric reads

$$
d s^{2}=L^{2}\left(\frac{1}{4} d s_{A d s_{4}}^{2}+d s_{\mathrm{CP}^{3}}^{2}\right),
$$

with L the radius of curvature in string units

$$
L=\left(\frac{32 \pi^{2} N}{k}\right)^{1 / 4}, \quad g_{s}=\frac{L}{k}
$$

and where we have normalized the two factors such that $R_{\mu v}=-3 g_{\mu v}$ and $8 g_{\alpha \beta}$ for $A d S_{4}$ and $C P^{3}$, respectively. The explicit parameterization of $A d S_{4}$ we use is

$$
d s_{A d S_{4}}^{2}=\frac{16 \rho^{2}}{L^{2}} d \vec{x}^{2}+L^{2} \frac{d \rho^{2}}{\rho^{2}}, \quad d \vec{x}^{2}=-d \tau^{2}+d x_{1}^{2}+d x_{2}^{2} .
$$

For the metric on $C P^{3}$ we use the parameterization in [Pope 1984, Warner 1985]

$$
\begin{aligned}
& d s_{\mathbb{C P}^{3}}^{2}=d \mu^{2}+\sin ^{2} \mu\left[d \alpha^{2}+\frac{1}{4} \sin ^{2} \alpha\left(\cos ^{2} \alpha(d \psi-\cos \theta d \phi)^{2}+d \theta^{2}\right.\right. \\
& \left.\left.+\sin ^{2} \theta d \phi^{2}\right)+\frac{1}{4} \cos ^{2} \mu\left(d \chi+\sin ^{2} \alpha(d \psi-\cos \theta d \phi)\right)^{2}\right],
\end{aligned}
$$

where

$$
0 \leqslant \mu, \alpha \leqslant \frac{\pi}{2}, \quad 0 \leqslant \theta \leqslant \pi, \quad 0 \leqslant \phi \leqslant 2 \pi, \quad 0 \leqslant \psi, \chi \leqslant 4 \pi .
$$

Inside $C P^{3}$ there is a $C P^{1}$ for $\mu=\alpha=\pi / 2$ and fixed χ and ψ and also a $C P^{2}$ for fixed θ and ϕ. In these coordinates the connection in $d s_{S^{7}}^{2}=(d \tau+\mathcal{A})^{2}+d s_{\mathbb{C P}^{3}}^{2}$ reads

$$
\mathcal{A}=\frac{1}{2} \sin ^{2} \mu\left(d \chi+\sin ^{2} \alpha(d \psi-\cos \theta d \phi)\right) .
$$

The Kähler form

$$
J=\frac{1}{2} d \mathcal{A}
$$

is then normalized such that

$$
\int_{C P^{1}} J=\pi, \quad \int_{C P^{2}} J \wedge J=\pi^{2}, \quad \int_{C P^{3}} J \wedge J \wedge J=\pi^{3} .
$$

Therefore,

$$
\frac{1}{6} J \wedge J \wedge J=d \operatorname{Vol}\left(\mathbb{P}^{3}\right) \quad \text { and } \quad \operatorname{Vol}\left(\mathbb{C P}^{3}\right)=\frac{\pi^{3}}{6}
$$

The $A d S_{4} \times C P^{3}$ background fluxes can then be written as
$F_{2}=\frac{2 L}{g_{s}} J, \quad F_{4}=\frac{3 L^{3}}{8 g_{s}} d \operatorname{Vol}\left(A d S_{4}\right), \quad F_{6}=-\left(\star_{10} F_{4}\right)=\frac{6 L^{5}}{g_{s}} d \operatorname{Vol}\left(\mathbb{P}^{3}\right)$
where $g_{s}=\frac{L}{k}$. The flux integrals satisfy

$$
\int_{C P^{3}} F_{6}=32 \pi^{5} N, \quad \int_{C P^{1}} F_{2}=2 \pi k .
$$

The flat B_{2}-field that is needed to compensate for the Freed-Witten worldvolume flux in the D4-brane is given by [Aharony et al 2009]

$$
B_{2}=-2 \pi J .
$$

Fuzzy $C P^{\frac{p}{2}}$ manifold

$C P^{\frac{p}{2}}$ is the coset manifold $S U\left(\frac{p}{2}+1\right) / U\left(\frac{p}{2}\right)$, and can be defined by the submanifold of $\mathbb{R}^{\frac{p^{2}}{4}+p}$ determined by the set of $p^{2} / 4$ constraints

$$
\sum_{i=1}^{\frac{p^{2}}{4}+p} x^{i} x^{i}=1, \quad \sum_{j, k=1}^{\frac{p^{2}}{4}+p} i^{j j k} x^{j} x^{k}=\frac{\frac{p}{2}-1}{\sqrt{\frac{p}{4}\left(\frac{p}{2}+1\right)}} x^{i}
$$

where $d^{i j k}$ are the components of the totally symmetric $S U\left(\frac{p}{2}+1\right)$-invariant tensor. The Fubini-Study metric of the $C P^{\frac{p}{2}}$ is given by

$$
d s_{C P \frac{p}{2}}^{2}=\frac{p}{4\left(\frac{p}{2}+1\right)} \sum_{i=1}^{\frac{p^{2}}{4}+p}\left(d x^{i}\right)^{2} .
$$

A fuzzy version of $C P^{\frac{p}{2}}$ can then be obtained by imposing the conditions at the level of matrices. This is achieved with a set of coordinates $X^{i}\left(i=1, \ldots, \frac{p^{2}}{4}+p\right)$ in the irreducible totally symmetric representation of order $m,(m, 0)$, satisfying:

$$
\left[X^{i}, X^{j}\right]=i \Lambda_{(m)} f_{i j k} X^{k}, \quad \Lambda_{(m)}=\frac{1}{\sqrt{\frac{p m^{2}}{4\left(\frac{p}{2}+1\right)}+\frac{p}{4} m}}
$$

with $f_{i j k}$ the structure constants in the algebra of the generalized Gell-Mann matrices of $S U\left(\frac{p}{2}+1\right)$. The dimension of the $(m, 0)$ representation is given by

$$
\operatorname{dim}(m, 0)=\frac{\left(m+\frac{p}{2}\right)!}{m!\left(\frac{p}{2}\right)!}
$$

The Kähler form of the fuzzy $C P^{\frac{p}{2}}$ is given by:

$$
J_{i j}=\frac{1}{\frac{p}{2}+1} \sqrt{\frac{p}{4\left(\frac{p}{2}+1\right)}} f_{i j k} X^{k} .
$$

