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BPS States in String theory

The problem we would like to address is to compute 
the spectrum of BPS states in Calabi-Yau 
compactifications

In this talk we will focus on type IIA on a local 
toric Calabi-Yau and consider bound states of D0-
D2-D4-D6 branes

We want to compute the degeneracy         (or 
Donaldson-Thomas invariant) for a given charge 

Ω(γ)



The degeneracy is really a 
piecewise constant function

At walls of marginal stability the 
degeneracy jumps according to a 
wall-crossing formula

The moduli space is divided in 
chambers

Chamber Structure

Denef-Moore
Kontsevich-Soibelman

The vacuum is parametrized by the moduli space 
of complexified Kähler parameters u ∈ B

Ω(γ;u)



Chamber Structure
At each point in the moduli space we have a lattice 
of (electric/magnetic) charges 

Pick a basis        of the lattice. A generic BPS state 
will be of the form  

For example D-branes (vector bundles) wrapping 
holomorphic cycles or fractional branes.

The “wall-crossing problem”: is a lattice site 
occupied by a stable state? what is               ?

Γu = Γe,u ⊕ Γm,u
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Chamber Structure
In each chamber we have a different 
counting problem

Some regions are easier than others: 
at “large radius” geometrical data 
are “good” (cycles, bundles...)

In the noncommutative crepant 
resolution chamber (NCCR) we use 
quivers and representation theory

Szendroi
Ooguri&Yamazaki 



DT Invariants
The DT chamber lives in the “large radius”

Consider bound states of a gas of D2-D0 with a 
single D6 (just to make life easier). 

If we sit on the D6 brane these bound states will 
look like “generalized instantons” 

Their spectrum can be computed on any toric CY 
using a generalization of Nekrasov’s instanton 
counting techniques

Iqbal Okounkov Nekrasov Vafa
M.C. Sinkovics Szabo



Warm up: affine space

In this case the problem reduces to D0-D6 states

We have constructed an explicit ADHM-like 
parametrization of the instanton moduli space

We end up with a quiver quantum mechanics 
which compute the index of BPS states
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Noncommutative Crepant Resolutions
This chamber corresponds to a singular geometry 
like            obtained by blowing down a curve or a 
divisor from the large radius phase

The cycle has still a non trivial quantum volume 
measured by the B-field

Our formalism can be adapted to this situation via 
a generalization of the Kronheimer-Nakajima 
construction of instantons on ALE spaces

The key ingredients are the McKay quiver and the 
3D McKay correspondence 

C3/Γ



The McKay Quiver

The orbifold action is encoded in the natural 
representation Q = (ρa, ρb, ρc)

The McKay quiver      has nodes 
given by the irreducible 
representations and arrows 
determined by the decomposition

ρk ⊗Q = a(1)
kl ρl

where
V = (R2 ⊕R3)� (R5 ⊕OX) (9.21)

Let us compute c2(V) more explicitly. First of all the first Chern class of V vanishes

c1(V) = c1(R2) + c1(R3)− c1(R5 = R2 ⊗R3) = 0 (9.22)

due to the additivity of the first Chern class under tensor product. Therefore

c2(V) = −ch(V) (9.23)

simplifying the computation. By the additivity of the Chern character

ch2(V) = ch2(R2) + ch2(R3)− ch2(R5) (9.24)

=
1
2

�
c1(R2)2 + c1(R3)2 − c1(R5)2

�
(9.25)

=
1
2

�
c1(R2)2 + c1(R3)2 − (c1(R2) + c1(R3))2

�
(9.26)

= −c1(R2) c1(R3) (9.27)

which implies
c2(V) = c1(R2) c1(R3) (9.28)

From the representation theory data we can construct the matrices a(1,2)
ij . The matrix a(1) is

given by
ρi ⊗Q = ρi ⊗ (ρ1 ⊕ ρ2 ⊕ ρ3) = a(1)

ji ρj = ρi+1 ⊕ ρi+2 ⊕ ρi+3 (9.29)

or more explicitly

a(1)
ij =





0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0




, a(2)

ij =





0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0




(9.30)

The associated quiver is
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(9.31)
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C3/Z6

Q = (ρ1, ρ2, ρ3)

Q

The quiver comes equipped with a set of relations:

bρ
i : ρ −→ ρ⊗ ρai r = �bρ⊗ρai

j bρ
i = b

ρ⊗ρaj

i bρ
j �



The McKay Correspondence
The 3D McKay correspondence tells us how to 
extract geometrical data from the McKay quiver

The representation theory of the quiver is encoded 
all the information about the (canonical, large 
radius) resolution of the singularity

But there’s more: the path algebra (i.e. the algebra 
of paths on the quiver) is itself a resolution of the 
singularity: the NCCR

The resolution is “non geometric”, in the same 
sense as noncommutative geometry

van den Bergh
Ginzburg

Ito-Nakajima



Instanton Quivers

The BPS spectrum in the NCCR chamber can be 
reformulated as a generalized instanton counting 
problem

We start from the resolved geometry and use the 
McKay correspondence. Our construction uses a 
“stability” parameter to go to the NCCR chamber

We give an explicit parametrization of the 
instanton moduli space. The problem boils down to 
the study of the representation theory of a certain 
framed quiver: the instanton quiver



The vector spaces       label boundary 
conditions for the instanton. Each 
instanton at infinity is associated 
with the representation  

The dimensions                    count the 
number of fractional branes in a 
certain representation. 

Instanton Quivers

The ingredients are two vector spaces.

V0

V1V2

W0

W1W2

V =
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Instanton Quivers

We will now construct a quiver which encodes this construction and has the generalized ADHM

equations as relations. We can proceed from the point of view of representation theory. To begin

with, we consider all the irreducible representations of Γ ∈ SL3(C). To each of these representations

we associate a tautological bundle. We construct the quiver by declaring that to each node rep-

resents a different representation / tautological bundle (including the trivial representation which

corresponds to the trivial bundle). Two nodes are connected by a number a(ji)
of arrows going

from j to i determined by the tensor product decomposition

ρi ⊗Q = a(1)
ji ρj (5.4)

where Q is the natural representation of SL3(C) on C3
defined by the orbifold action. In formulas, if

the orbifold acts as (x, y, z) −→ (ρax, ρby, ρcz) then the natural representations is Q = ρa⊕ρb⊕ρc.

Note that in general the matrix a(1)
ij does not have any particular symmetry property, contrary to

the familiar case of instantons on two dimensional ALE spaces, where it is symmetric. The resulting

quiver it known as the bound McKay quiver (Q, r) and is associated with the ideal of relations �r�.
In practical applications one is interested in the representations of this quiver, which are obtained

by associating with every vertex a ki–dimensional vector space Vi and a linear map, represented

by a ki × kj matrix, to every arrow from Vi to Vj . Then the relations between the arrows of the

quiver induce equivalent relations between the representations. Those can be compactly rewritten

if we introduce the linear map B ∈ HomΓ(V,Q⊗ V ) where V =
�

Vi ⊗ ρi. This map decomposes

as

B =

�

ρ∈IrrΓ

(Bρ
1 , Bρ

2 , Bρ
3) (5.5)

where Bρ
i : Vρ −→ Vρ⊗ρai

where we have denoted the regular representation as Q =
�3

i=1 ρai .

Then the relations have the simple form

B
ρ⊗ρai
j Bρ

i = B
ρ⊗ρaj

i Bρ
j ρ ∈ Irr(Γ) . (5.6)

check:quiver or its opposite? Associated with this quiver is its moduli space of representations

Rep(Q, r). This is not quite the end of the story, as there is a natural U(Vi) action on each vector

space which lifts to the linear maps Bi as

Bi −→ gvjBigvi (5.7)

Therefore the relevant moduli space is actually the quotient in geometric invariant theory of

Rep(Q, r) by GL(V ).

5.3 Noncommutative crepant resolutions

Quivers and their representation theory have a deep relation with geometry. Many toric varieties

can be realized as moduli spaces of representations of a certain quiver. The moduli space of

representations of the McKay quiver with fixed dimension vector v = 1 is isomorphic to the

“canonical” crepant resolution of an abelian orbifold singularity Γ− Hilb
n
(C3

) [45]. This relation

extends to an equivalence between derived categories [55], as we’ll review afterwards.

Under certain circumstances the path algebra A of the quiver itself can be seen as a resolution of the

singularity [18, 19]. In this case the path algebra A contains the coordinate ring of the singularity

as its center. Also the noncommutative algebra A “knows” about all the other crepant resolutions,

in the sense that there exists a derived equivalence between the corresponding derived categories,

of modules and of coherent sheaves. For example if the derived category of a crepant resolution X

28

Bρ
i : Vρ −→ Vρ⊗ρai

Instanton configurations are labelled 
by coloured partitions where the 
“color” degree of freedom is associated 
with the irreps

Between the nodes there are maps obeying certain 
relations

For a fixed configuration, the Witten index of the 
instanton quantum mechanics compute the 
spectrum of BPS states

V =
�

k

Vk ⊗ ρ∨k



Example

As an example the             partition function isC3/Z3

Here p is a formal parameter that labels the number of boxes in a 3d partition while the other

formal variables keep track of the decomposition k = (k0, k1, k2). The first terms of the partition

function can be calculated to be

Z(C3/Z3) = 1 + pr0 + 3p2r0r1 + 3p3r0r
2
1 − 3p3r0r1r2

+ 9p4r0r
2
1r2 + p4r0r

3
1 − 3p4r20r1r2

− 6p5r0r
3
1r2 + 9p5r0r

2
1r

2
2 − 9p5r20r

2
1r2

− 9p6r20r
3
1r2 + 15p6r0r

3
1r

2
2 + 21p6r20r

2
1r

2
2 + 3p6r0r

2
1r

3
2 + . . .

=
�
1 + 3(−p3r0r1r2) + 12(−p3r0r1r2)

2
+ · · ·

�

×
�
1 + pr0 + 3p2r0r1 + 3p3r0r

2
1 + p4

(9r0r
2
1r2 + r0r

3
1)

+p5
(9r0r

2
1r

2
2 − 6r0r

3
1r2)

+p6
(15r0r

3
1r

2
2 + 9r20r

2
1r

2
2 + 3r0r

2
1r

3
2) + · · ·

�
(8.30)

Note that we recover the McMahon function raised to the power of the Euler characteristic of the

target space as a factor. Indeed the generating function of Z3–invariant holomorphic polynomials

decomposes as

1

3

2�

a=0

1

(1− ζat1)(1− ζat2)(1− ζat3)
=

1

(1− t1
t3

)(1− t2
t3

)(1− t33)

+
1

(1− t1
t2

)(1− t3
t2

)(1− t32)
+

1

(1− t2
t1

)(1− t3
t1

)(1− t31)
(8.31)

that is three invariant copies of C3
. We thus expect the topological string partition function to

contain the factor

M(x)
3

= 1 + 3x + 12 x2
+ 37 x3

+ 111 x4
+ 303 x5

+ 804 x6
+ · · · (8.32)

What we would like to do now is to compare these combinatorial generating functions with our

BPS generating function

ZDT (C3/Z3) =

�

π

(−1)
(−|π1|−|π2|+|π0||π1|+|π0||π2|+|π1||π2|) q

1
3 |π|− 1

6 (7|π0|−8|π1|+|π2|) v
1
2 (3|π0|−4|π1|+|π2|) .

(8.33)

where again v = e
−ϕ

. A quick computation shows that the two partitions functions are related by

the change of variables

p = q
1
3 (8.34)

r0 = q−
7
6 v

3
2 (8.35)

r1 = q
4
3 v−2

(8.36)

r2 = q−
1
6 v

1
2 (8.37)

Giving

Z(C3/Z3) =
�
1 + 3(−q) + 12(−q)2 + · · ·

�
(8.38)

×
�
1 + q−

5
6 v

2
3 + 3q

5
6 v−

4
3 + 3q

5
2 v−

10
3 + 9q

8
3 v−

17
6 + q

25
6 v−

16
3 + 9q

17
6 v−

7
3 − 6q

13
3 v−

29
6

+15q
9
2 v−

13
3 + 9q2v−

5
3 + 3q3v−

11
6 + · · ·

�

We could have equally, and perhaps more correctly, included a non vanishing D4 brane charge:

ZDT (C3/Z3) =

�

π

(−1)
(−|π1|−|π2|+|π0||π1|+|π0||π2|+|π1||π2|) q

1
3 |π|+ 1

6 (7|π0|−8|π1|+|π2|)
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Note that we recover the McMahon function raised to the power of the Euler characteristic of the

target space as a factor. Indeed the generating function of Z3–invariant holomorphic polynomials

decomposes as
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that is three invariant copies of C3
. We thus expect the topological string partition function to

contain the factor
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3

= 1 + 3x + 12 x2
+ 37 x3

+ 111 x4
+ 303 x5

+ 804 x6
+ · · · (8.32)

What we would like to do now is to compare these combinatorial generating functions with our

BPS generating function

ZDT (C3/Z3) =

�

π

(−1)
(−|π1|−|π2|+|π0||π1|+|π0||π2|+|π1||π2|) q

1
3 |π|− 1

6 (7|π0|−8|π1|+|π2|) v
1
2 (3|π0|−4|π1|+|π2|) .

(8.33)

where again v = e
−ϕ

. A quick computation shows that the two partitions functions are related by

the change of variables

p = q
1
3 (8.34)

r0 = q−
7
6 v

3
2 (8.35)

r1 = q
4
3 v−2

(8.36)

r2 = q−
1
6 v

1
2 (8.37)

Giving

Z(C3/Z3) =
�
1 + 3(−q) + 12(−q)2 + · · ·

�
(8.38)

×
�
1 + q−

5
6 v

2
3 + 3q

5
6 v−

4
3 + 3q

5
2 v−

10
3 + 9q

8
3 v−

17
6 + q

25
6 v−

16
3 + 9q

17
6 v−

7
3 − 6q

13
3 v−

29
6

+15q
9
2 v−

13
3 + 9q2v−

5
3 + 3q3v−

11
6 + · · ·

�

We could have equally, and perhaps more correctly, included a non vanishing D4 brane charge:
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The instanton action is computed again via the 
McKay correspondence from the anomalous 
couplings

The generating function only depends on two 
parameters as in the large radius limit.



Wall-Crossing Formula

Having in principle solved the BPS spectrum in 
one chamber (the NCCR) we can move in nearby 
chambers with a wall-crossing formula

The wall-crossing formula is written in terms of 
McKay data

To each irrep we associate an operator         with 
commutation relations

Xr

Xr Xs = λ2a(2)
rs −2a(1)

rs Xs Xr

i�
Q⊗ ρr =

�

s

a(i)
sr ρs



Wall-Crossing Formula

To a charge vector                             we associateγ =
�

r∈irrep

gr γr

Xγ = λ−
P

r<s gr gs (a(2)
rs −a(1)

rs )
��

r

Xgr
r

We construct the quantum monodromy invariant

M(λ) =
��

θρ

Ψ
�
λ2sρ Xρ;λ

�Ωref
2sρ

(ρ)

The ordering is determined by the central charges 
(fixed by the McKay correspondence). As this 
changes crossing walls of marginal stability, the 
degeneracies change to keep          invariantM(λ)

Cecotti-Neitzke-Vafa
Kontsevich-Soibelman



Motivic Invariants

We can use our formalism to study motivic DT

Roughly speaking the motivic invariant 
represents the BPS Hilbert space itself

They can be computed via our instanton quivers

With the motivic wall-crossing formula one can 
study directly the Hilbert space across the moduli 
space and the algebra of BPS states

�
NDTµ=0(k)

�
= L 1

2 χQ(k,k)

�
f−1
k (0)

�
−

�
f−1
k (1)

�

[Gk]



Conclusions

We have developed a formalism to study the 
spectrum of BPS states on toric CY

Our formalism is very efficient in certain 
chambers (such as at large radius or the NCCR)

It can be generalized to study wall-crossing, 
motivic invariants, cluster algebra structures, 
noncommutative mirror symmetry and defects 
(which I haven’t mentioned)

yet, still a small piece of the puzzle...


