1berian Strings 2012
Bílbao

BPS states, Wall-crossing and Quivers

Michele cirafici
IST, Lisboa
M.C.EA.Sincovics \& R.J. Szabo: 0803.4188, 1012.2725, 1108.3922
and M.C. to appear

BPS states in String theory

- The problem we would like to address is to compute the spectrum of BPS states in calabi-Yau compactifications
- In this talk we will focus on type IIA on a local tori calabi-Yau and consider bound states of DO-D2-D4-D6 braves
- We want to compute the degeneracy $\Omega(\gamma)$ (or Donaldson-Thomas invariant) for a given charge

Chamber Structure

- The vacuum is parametrized by the moduli space of complexified Kähler parameters $u \in \mathcal{B}$
- The degeneracy is really a piecewise constant function $\Omega(\gamma ; u)$
- At walls of marginal stability the degeneracy jumps according to a wall-crossing formula
- The moduli space is divided in chambers

Chamber Structure

- At each point in the moduli space we have a lattice of (electric/magnetic) charges $\Gamma_{u}=\Gamma_{e, u} \oplus \Gamma_{m, u}$
- Pick a basis $\left\{\gamma_{i}\right\}$ of the lattice. A generic BPS state will be of the form $\gamma=\sum_{i} n_{i} \gamma_{i}$
- For example D-branes (vector bundles) wrapping holomorphic cycles or fractional brawes.
- The "wall-crossing problem": is a lattice site occupied by a stable state? what is $\Omega(\gamma ; u)$?

Chamber Structure

- In each chamber we have a different counting problem
- Some regions are easier than others: at "large radius" geometrical data are "good" (cycles, bundles...)
- In the noncommutative crepant resolution chamber (NCCR) we use quivers and representation theory

DT Invariants

- The DT chamber lives in the "large radius"
- Consider bound states of a gas of D2-DO with a single DG (just to make life easier).
- If we sit on the DG brave these bound states will look like "generalized instantons"
- Their spectrum can be computed on any toric CY using a generalization of Nelerasov's instanton counting techniques

Warm up: affine space

- In this case the problem reduces to DO-D6 states
- we have constructed an witten
- We have constructed an explicít ADHM-líke parametrization of the instanton moduli space
- We end up with a quiver quantum mechanics which compute the index of BPS states

$$
\begin{aligned}
& {\left[B_{i}, B_{j}\right]+\epsilon^{i j k}\left[B_{k}^{\dagger}, \phi\right]=0} \\
& I^{\dagger} \phi=0
\end{aligned}
$$

Noncommutative Crepant Resolutions

- This chamber corresponds to a singular geometry like \mathbb{C}^{3} / Γ obtained by blowing down a curve or a divisor from the large radius phase
- The cycle has still a non trivial quantum volume measured by the B-field
- Our formalism can be adapted to this situation via a generalization of the Kronheimer-Nakajima construction of instantons on ALE spaces
- The key ingredients are the McKay quiver and the 3D McKay correspondence

The Mckay Quiver

- The orbifold action is encoded in the natural representation $Q=\left(\rho_{a}, \rho_{b}, \rho_{c}\right)$
- The Mckay quiver Q has nodes given by the irreducible representations and arrows determined by the decomposition

$$
\rho_{k} \otimes Q=a_{k l}^{(1)} \rho_{l}
$$

$$
Q=\left(\rho_{1}, \rho_{2}, \rho_{3}\right)
$$

- The quiver comes equipped with a set of relations:

$$
\mathrm{b}_{i}^{\rho}: \rho \longrightarrow \rho \otimes \rho_{a_{i}} \quad \mathrm{r}=\left\langle\mathrm{b}_{j}^{\rho \otimes \rho a_{a_{i}}} \mathrm{~b}_{i}^{\rho}=\mathrm{b}_{i}^{\rho \otimes \rho_{a_{j}}} \mathrm{~b}_{j}^{\rho}\right\rangle
$$

The McKay Correspondence

- The 3D McKay correspondence tells us how to extract geometrical data from the Mckay quiver Ito-Nakajima
- The representation theory of the quiver is encoded all the information about the (canonical, large radius) resolution of the singularity
- But there's more: the path algebra (i.e. the algebra of paths on the quiver) is itself a resolution of the singularity: the NCCR
- The resolution is "non geometric", in the same sense as noncommutative geometry

Instanton Quivers

- The BPS spectrum in the NCCR chamber can be reformulated as a generalized instanton counting problem
- We start from the resolved geometry and use the McKay correspondence. Our construction uses a "stability" parameter to go to the NCCR chamber
- We give an explicit parametrization of the instanton moduli space. The problem boils down to the study of the representation theory of a certain framed quiver: the instanton quiver

Instanton Quivers

- The ingredients are two vector spaces. $V=\sum_{k} V_{k} \otimes \rho_{k}^{v}$
- The vector spaces W_{k} label boundary

$$
W=\sum_{k} W_{k} \otimes \rho_{k}^{\vee}
$$ conditions for the instanton. Each instanton at infinity is associated with the representation $\bigoplus \rho_{k}^{w_{k}}$

- The dimensions $v_{k}=\operatorname{dim} V_{k}$ count the number of fractional braves in a certain representation.

Instanton Quivers

- Between the nodes there are maps obeying certain relations

$$
B_{j}^{\rho \otimes \rho_{a_{i}}} B_{i}^{\rho}=B_{i}^{\rho \otimes \rho_{a_{j}}} B_{j}^{\rho} \quad B_{i}^{\rho}: V_{\rho} \longrightarrow V_{\rho \otimes \rho_{a_{i}}}
$$

- For a fixed configuration, the Witten index of the instanton quantum mechanics compute the spectrum of BPS states
- Instanton configurations are labelled by coloured partitions where the "color" degree of freedom is associated with the irreps $\quad V=\sum_{k} V_{k} \otimes \rho_{k}^{\vee}$

Example

- As an example the $\mathbb{C}^{3} / \mathbb{Z}_{3}$ partition function is

$$
\begin{aligned}
& \mathcal{Z}_{D T}\left(\mathbb{C}^{3} / \mathbb{Z}_{3}\right)= \sum_{\pi}(-1)^{\left(-\left|\pi_{1}\right|-\left|\pi_{2}\right|+\left|\pi_{0}\right|\left|\pi_{1}\right|+\left|\pi_{0}\right|\left|\pi_{2}\right|+\left|\pi_{1}\right|\left|\pi_{2}\right|\right)} \\
& q^{\frac{1}{3}|\pi|-\frac{1}{6}\left(7\left|\pi_{0}\right|-8\left|\pi_{1}\right|+\left|\pi_{2}\right|\right)} v^{\frac{1}{2}\left(3\left|\pi_{0}\right|-4\left|\pi_{1}\right|+\left|\pi_{2}\right|\right)}
\end{aligned}
$$

- The instanton action is computed again via the McKay correspondence from the anomalous couplings
- The generating function only depends on two parameters as in the large radius limit.

Wall-Crossing Formula

- Having in principle solved the BPS spectrum in one chamber (the NCCR) we can move in nearby chambers with a wall-crossing formula
- The wall-crossing formula is written in terms of McKay data
- To each irrep we associate an operator X_{r} with commutation relations

$$
\mathrm{X}_{r} \mathrm{X}_{s}=\lambda^{2 a_{r s}^{(2)}-2 a_{r s}^{(1)}} \mathrm{X}_{s} \mathrm{X}_{r} \quad \bigwedge^{i} Q \otimes \rho_{r}=\bigoplus_{s} a_{s r}^{(i)} \rho_{s}
$$

Wall-Crossing Formula

- To a charge vector $\gamma=\sum_{r \in \text { irrep }} g_{r} \gamma_{r}$ we associate

$$
\mathrm{X}_{\gamma}=\lambda^{-\sum_{r<s} g_{r} g_{s}\left(a_{r s}^{(2)}-a_{r s}^{(1)}\right)} \prod^{\cap} \mathrm{X}_{r}^{g_{r}}
$$

- We construct the quantum monodromy invariant

$$
\mathrm{M}(\lambda)=\prod_{\theta_{\rho}}^{\sim} \Psi\left(\lambda^{2 s_{\rho}} \mathrm{X}_{\rho} ; \lambda\right)^{\Omega_{2 s_{\rho}}^{\text {ref }}(\rho)} \begin{gathered}
\text { cecotti-Neitzree-vafa } \\
\text { Kontsevich-Soobelman }
\end{gathered}
$$

- The ordering is determined by the central charges (fixed by the McKay correspondence). As this changes crossing walls of marginal stability, the degeneracies change to keep $M(\lambda)$ invariant

Motivic Invariants

- We can use our formalism to study motivic DT
- Roughly speaking the motivic invariant represents the BPS Hilbert space itself
- They can be computed via our instanton quivers

$$
\left[\operatorname{NDT}_{\mu=0}(\mathbf{k})\right]=\mathbb{L}^{\frac{1}{2}} \chi_{Q}(\mathbf{k}, \mathbf{k}) \frac{\left[f_{\mathbf{k}}^{-1}(0)\right]-\left[f_{\mathbf{k}}^{-1}(1)\right]}{\left[G_{\mathbf{k}}\right]}
$$

- With the motivic wall-crossing formula one can study directly the Hilbert space across the moduli space and the algebra of BPS states

Conclusions

- We have developed a formalism to study the spectrum of BPS states on toric CY
- Our formalism is very efficient in certain chambers (such as at large radius or the NCCR)
- It can be generalized to study wall-crossing. motivic invariants, cluster algebra structures, noncommutative mirror symmetry and defects (which I haven't mentioned)
- yet, still a small piece of the puzzle...

