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Non-extremal black holes

as interpolating solutions
in 4-dimensional N=2 Supergravity

study of several examples:

For each case first order flow equations exist and for some of them
the generalized superpotential can be explicitly written.

The macroscopic thermodynamical properties can be fully analyzed.
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e Black holes in Einstein-Maxwell theories.
e Black holes in N=2 four-dimensional supergravity.

@ The deformation procedure: non-extremal black holes

from an ansatz.

Non-extremal black holes as interpolating solutions

in 4-dimensional N=2 Supergravity

o Example: the CP" model.




Black hole basics



Charged black holes

They appear in Einstein-Maxwell theories where gravity is coupled

to e.m. fields:

1 174

Charges: poc/ F qoc/ *F
S2 S2

For static spherically symmetric asymptotically flat solutions the

ansatz is:
ds? = e?Vdt?> — e Yy, dxMdx"
YmndxMdx" = Ciidf%r C,j dQy)
sinh™ c7 sinh“ c7




Charged black holes
ds? = 2V a2 — e 2V (c*sinh=*(c7)d7? + 2 sinh=2(c7)dQ?)

c is extremality parameter and it holds (ciseons kaLLosHkoL: ¢2 = 25T .
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Charged black holes
ds? = 2V a2 — e 2V (c*sinh™*(c7)dr? + 2 sinh™2(c7)dQ?)

c is extremality parameter and it holds [ciBBoNS KALLOSH KOL]: c® =2ST.
The relation 7 «» ris: sinh 2(c7) = (r — r=)(r — r*)
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inner: r~ & 77— +00




Charged black holes
ds? = 2V a2 — e 2V (c*sinh™*(c7)dr? + 2 sinh™2(c7)dQ?)

c is extremality parameter and it holds [ciBBoNS KALLOSH KOL]: c® =2ST.
The relation 7 «» ris: sinh 2(c7) = (r — r=)(r — r*)
rf=mtc

> General (non-extremal) Reisnerr-Nordstrém solution:

» Static extremal BHs: ¢ =0, eV=1- Y1 "%  +~~ _Z

o« M2 =2+ p?
e Finite non-vanishing entropy but zero temperature
e 52 ® AdS, near horizon geometry

An extremal static BH is utterly defined by Q = (q, p)




Black holes in N=2, D=4
ungauged superqgravity



N=2 Supergravity in 4D

» Multiplet content of the full theory:

e Supergravity multiplet: (e/"l7 1/),’:‘, A?,) A=1,2

o n, Vector multiplets: (A7, XA 27 a=1,...ny
o ny Hypermultiplets: (x“, ¢") a=1,..2ny, u=1 ., 4ny
Since irrelevant in our discussion, we put to zero the fermion

fields and omit the hypermultiplets
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» Multiplet content of the full theory:
e Supergravity multiplet: (e/"l7 1/),’:‘, A?,) A=1,2

o n, Vector multiplets: (A7, XA 27 a=1,...ny

o ny Hypermultiplets: (x“, ¢") a=1,..2ny, u=1,..,4ny
Since irrelevant in our discussion, we put to zero the fermion

fields and omit the hypermultiplets
» The Lagrangian we deal with is (ungauged theory):
L = —R(G)+28,5(2)0,2°0" 2P+ Im Ny (2) F' ., 7+ Re Niy(2) 7 F L P

= Structure of a Maxwell-Einstein-scalars theory




N=2 Supergravity in 4D
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N=2 Supergravity in 4D

L = —R(G)+2g,5(2)0u2°0" 2+ 1m Ny (2)F Ly F 4 Re Ny (2)e" P F Ly Foy

» Geometry of the scalar manifold: (very) special

F=F(X') 7= %
A
8ab = 972 93b K=-In [i(X”BX'F ) ((1) _é> (8X/F>
X!

Im(Ox10xk F) Im(Ox10xm F)XM XK
|m(axMOXK F)XMXK

My = 9x10x:F + 2i




N=2 Supergravity in 4D
L = —R(G)+28,5(2)0,2°0" 2+ Im N1y (2) F' ,, F " 4 Re Ny (2)e" 7 ' P,

» By assuming spherical symmetry and staticity, solving for the

vectors and integrating = effective 1D Lagrangian:
[FERRARA,GIBBONS,KALLOSH]

Eeff — (U(T))2 aF gagza(T)EB(T) = erVbh(Z. I') —+ C2
=4 r=(p"a)

—1 -1y J I
—Von = *%rArzM/\z = %(PI ar) ( (_j(;_—gl%;)um)” (9{(33—1))@ ) (5’>

_ 2 ab 5 B
= |21 + 46702 210552 Ry =ReNy, Jy=ImNy

central charge: 2 = eX/?(p'axi F — g X")




N=2 Supergravity in 4D

L = —R(G)+28.,5(2)0,2°0" 2+ Im Niy(2) F' 1 F*# + Re Niy(2) e *° F' 1y Fo

» By assuming spherical symmetry and staticity, solving for the

vectors and integrating = effective 1D Lagrangian:
[FERRARA,GIBBONS,KALLOSH]

Lot = (U(T))? + ,32°(7)22(7) — Y Vi (2,T) + 2

Field equations (second order):

U + e2UVbh =0
egm .. b -c-d 2U _ab
2%+ g% 0, 8,522 + g 05 Vo =0

constraint{ U2 + gaEéaEb + eV = ¢




Important to know

» First-order formalism:[cERESOLE,DALL'AGATA & PERZ ET AL/
—er Vinh = (8U Y)2 + 4gab82a Yaz’b Y — C2

Generalized Superpotential Y = Y(U,z;T) >0

= Le= U+ g,32°2" — Y Vi +
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Generalized Superpotential Y = Y(U,z;T) >0
= L= U? + ga[,ia?[’ + (Ou Y)2 + 4g’3582a YO0, Y ~
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Sum of squares (U + dy Y) + ‘ 27+ 2g%0,:Y
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Important to know

» First-order formalism:[cERESOLE,DALL'AGATA & PERZ ET AL/
—?Y Vi, = (BuY)? + 4870, YO, Y —

Generalized Superpotential Y = Y(U,z;T) >0

= L= U? + ga[,ia?l_’ + (Ou Y)2 + 4g3582a YO0, Y ~

Sum of squares (U + 8UY)2 + ‘f + 2g35825Y e
; o Y=¢YZ(z1)], c=0:
.. U==+Y extremal susy BHs
= Extremizing: ~
2* = 42g°b0,5Y o Y=eYW(z; N #£e% 2|, c=0:

extremal non-susy BHs

First-order flow equations o Y#eUIZ|#£eW, c#0:
sign depends on conventions non-extremal BHs




Important to know
» The egm are in general difficult to solve but for supersymmetric

BHs (= extremal xnuriorTing) they are equivalent to:

2. Im erfioc(\fK 2 X/ — pl
T ()X/F qi

l.Lh.s. total derivative, r.h.s. constant = direct integration gives

Supersymmetric U
stabilization equation 2 Im(e_ e_lo‘Q) =H
[BEHRNDT,LUST,SABRA & DENEF]
H=-T7+2 |m[eiaQ].,:o
vect of harmonic functions

10



Important to know

» The egm are in general difficult to solve but for supersymmetric

BHs (= extremal xnuriorTing) they are equivalent to:

2. Im erfioz(\fK 2 X/ — pl
i Oxi F qr

l.Lh.s. total derivative, r.h.s. constant = direct integration gives

Supersymmetric :
stabilization equation 2 Im(e_Ue_lo‘Q) =H
[BEHRNDT,LUST,SABRA & DENEF]
H=-T7+2 |m[eiaQ].,:o
Once one has solved for the vect of harmonic functions
components of Q' = e~Y~12Q
Q/a

the scalars are given by:  z7 = 0 eV =i(Q'Q - Q)




Non-extremal black holes from
deforming extremal ones



Non-extremal black holes
General prescription:

1. Consider the supersymmetric solution:
U(r) = Ue[H'(m)]  2°(7) = 2[H'(7)]
H'(r) = h' — T'7 = harmonic functions
2. Make the ansatz:
U(r) = UelH!(T)] + cr 2°(7) = 2[H'(7)]
Al(r) = Al 4+ Ble*"
3. Determine the coefficients A'. B' by plugging the ansatz in

the eqm and solving the resulting algebraic equations




Ezample: CP" model

@ Prepotential F = —in,JX’XJ ny = diag(+— - —)

a
@ nscalars z7 = — | with the assumption 20 = 1, defining:

X0’

7'=(@,2%, Z1=(1,z,) = (1,-27)
o n+ 1 electric (q;) and magnetic (p') charges combined in the

complex quantity v, =q; + %nUpJ
o K=—log(z'2)), g = —€ef (7735 - eKiaz;,)
@ Holomorphic symplectic section: Q = k2 (ZIIZI>

2

o BH potential:  —W,, = 2682/, > = 3l = 1212 + | 2)2

z=e"Zy, 2P =7 -




1. Consider the supersymmetric solution

Solving the stabilization equation 2Im(e"®e~YQ) = H yields:

77 = — e 2V = af{!H,

Hi=h—vt  v=q+inp’

2. Make the ansatz

2°[H] — 2°[H] =

;gn‘ ‘juif'

7:[/ — A/ + B/e2c7'
2V [H] = e 2V = 4R e




3. Determine the coefficients A, B! by plugging the ansatz in the
egm and solving the resulting algebraic equations

Original field equations:
U+e2YWy, =0
77+ gaBazcngzczd + e2Ug3582,-, Vin =0
0P + g,327% + YV, =C2
For the non-extremal ansatz (generic case):
U — (U.)? — g,52°3> =0
(2c)2 [e” U, + Ue} +e?Y% v, =0

(2C)2 [ecr <2a +gaEand5262d> + 22} + eQUegaBaE Vbh -0




3. Determine the coefficients A, B! by plugging the ansatz in the
egm and solving the resulting algebraic equations

And finally for our case (CP"):

Im(B'A;) =0

AlAle, =0

(A'BY + B'AY)¢), =0

B'B'¢), =0

(2¢)%(BaAo — BoA)A'A + (72A0 — F0As)Aly =0
—(2¢)*(BaAo — BoA3)B' By + (7.Bo — 70B5)B'v1 =0
(3aAo — F0Aa) A"y + (32Bo — 50Ba) By =0

where & =2 (v, +8c2AB)) — (’YK’7K + 8C2AK1_5’K>




3. Determine the coefficients A’, B! by plugging the ansatz in the
egm and solving the resulting algebraic equations

In addition, to fully express the coefficients in terms of the physical
parameters, one imposes ( NUT-eharge already implied by eqm):

o asymptotic flatness:  4(A’' + B')(A/+ B)) = 1

o definition of the mass:  4Re[B'(A/+B)]=1— M/c
. Al + B!

o definition of the asymptotic scalars: ﬁ = éo




3. Determine the coefficients A’, B! by plugging the ansatz in the
egm and solving the resulting algebraic equations

In addition, to fully express the coefficients in terms of the physical
parameters, one imposes ( NUT-eharge already implied by eqm):

o asymptotic flatness:  4(A’' + B')(A/+ B)) = 1
o definition of the mass:  4Re[B'(A/+B)]=1— M/c
. Al + B!
o definition of the asymptotic scalars: ﬁ = Zéo
= Final solution:
eoel2 [ (M? — M~ [ZL7,P)] | mZlAs
A== 5 { 0o |:1 + Me :| + M e }

B { [1 - e’<w|2:o%|2)} . ngc%}

2 M c M c




Non-extremal BHs in the CP" model

Solutions:
. 7:[3 /‘43 + Ba e2cr
I == = =""="""F"
7:20 AO + BO e2c7
e 2V = 4 H 1727 = 4(A! + B! e*7)(A| + Bje® ") e 2T
with:
Ke/2 [ (M* — *~1ZL7P) | | wZdA
Ar=£5m— 3 Zi |1+ Mec t M

B — :te’c“’n 1_ (M* — e~ 1ZL3P) | uZdA
! 2 foo M c M c




Non-extremal BHs in the CP" model

. Z 2 _ elC ZI 2
Solutions: . 2‘ cx;c‘ / 2|oo:YII|
7_;[3 ,_43—|—Ba 2cT |Zoo|™ = M Zml® =7
e
a
77 =—=— =

~

0 A0 + BO ¢2¢c7

e—2U — 47';[17:[[6_267— _ 4(/‘4/ + BleZCr)(AI + BI eZCT) e—2cr

with:

A = ieic:/z {Zoo 14 (M? — e};/;°c|zéo’712)] n VlAzjon}

B, — ie’c;m 7 [1 (M- e’;;lzéo’mz)] _ ’Y/Azjoc’_w}
Entropies: % = (M2 —|Z2.°) £ (M? — |Z.]°) £ 2Mc

+ = outer horizon, 7 — —0
— = inner horizon, 7 — 4+o0

Mass: M?c? = (M2 — | 2. 2)(M? — | Z2..?)




Extremal limats
From the expression of the mass
M?c? = (M? — | Zo])(M? — |2 %)
possible to see two extremal limits in which ¢ — 0:

1. SupersymmetriC' M? — \Zoo|2 = e]C°°|Z£O“//|2

'y M%|Z | sus, Zo
H, :I:—?—l V=4 — T
2. R
2. Non-supersymmetric: M? — |Z,|? = e*=|Z! /|2 — 7',
5 Koo /2
~ M2 € = _
H — {Zloo_| |[ Zy o7 vs + 25, VJ}T}
OO

The non-extremal BH will evaporate until its mass equals the biggest

between |Z,.| and |Z.| = depending on the charges the final

extremal BH will be susy (|2 > |Zo0]) or non-susy (| Zo0| > |Z0]).




—~n .
CP" flow equations
» First-order formalism:

—er Vionh = (8U Y)2 + 4g3582a Yaz’b Y — C2

20



CP" flow equations

» First-order formalism:
—e2U Vi, = 17 + 4 %P0, 0 — 2

where:

eU\/ - - 2 -
T = Z2+ Z2+€72UC2+ Z2+ZQ+672UC2 —4|Z|2|Z|2
V122412 V12l +12] ) - 412P12

_ ewZDaz

v,
T

21



CP" flow equations

» First-order formalism:
—V Wy = T7 + 4g%P0,0; — 2

where:

eU\/ : ; 2 p
T="2\I1Z2P+ 22 +e2U2 4/ (|Z?+ |22+ e72VUc?) —4|Z]2|Z?
S V1Er+12 Viizk+ 12 ) - 42P12]

e2UZDaZ

v, =
T

such that: OV, — 0T = 0,V — 0V, = 05V, — O W5 =0

= There exists a superpotential, whose gradient generates the vector
field (T, W,, W3) and the first-order equations:

U

T
2g

E‘T’E




CP" flow equations

» First-order formalism:
—e2 Vo = T7 + 4 g7V, 05 — ¢

where:

eU\/ - - 2 -
T=="2\IZP+ |27 +e U2+ \/(|Z]?+|Z]2 + e 2Uc?)” — 4| Z]?|Z)?
V12k+ 12 V12l +12] ) - 412P12

ZD,Z
\Ua _ a2V a
T
such that: OyV, — 0,17 = 0,V — 8217\“3 =05V — 8th1— =0

= There exists a superpotential, whose gradient generates the vector
field (T, W,, W3) and the first-order equations:

U="r
2% =270

susy: T=¢"Z|, V,=¢Y9,:/2|

extremal limit: Ul U -
non-susy: T =e"|Z|, V,=¢e"0,:|Z|




Non-extremal black holes

The following models have been studied:

v Axion-dilaton model: F = —ix%x!

v CP" models: F = —in,JX’XJ
X1x2x3
V' Axion free stu model: F = 0
5 (X1)3
3 . _

v t° model: F_—6 X0
V" Quantum corrected t* model (work in progress):

5(X1)3 11, 15 25 001 K, uow

The deformation procedure has been proved to work also in N = 2,

D =5 supergravity [MEEsseN,ORTIN].




Conclusions and outlook
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Conclusions

Now we should be convinced that (for all the model considered):
» There exists a procedure that allows to find non-extremal
black holes by deforming (through an ansatz) susy solutions.
» Non-extremal BHs interpolate smoothly between
supersymmetric and the non-supersymmetric extremal BHs.
» The macroscopic thermodynamical properties of non-extremal
BH solutions can be fully analyzed.

> It is possible to write first order flow equations for the scalars

and prove the existence of the generalized superpotential.




BUT...




ARE WE SURE
THAT THE ANSATZ

(THE DEFORMATION PROCEDURE)

IS GENERAL ENOUGH?
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Outlook

We know that :

» The extremal limits of H' = A’ + B'e2°™ are harmonic

functions.

» The functional form of the solution is not changed by the

deformation procedure or the extremal limits.

Good for solutions without NUT charge (static <+ our assumption)

= for more general solutions a different approach is needed




Outlook

In this direction:

> Rewrite the effective action in terms of real H-functions (no
assumption on their form) and calculate the equivalents of the

field eqm [MEEsSEN,ORTIN,PERZ SHAHBAZI.

> Reformulate the Kahler geometry in terms of real variables,
dimensional reduce the theory, find and solve the eqm and

then uplift the solutions MoHauPT vauGHAN].
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