

TALLER DE ALTAS ENERGÍAS 2011 Spanish Graduate School on High Energy Physics 2011 University of the Basque Country, Bilbao July 18th-19th 2011

Heavy-Ion Collisions (I)

Néstor Armesto Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela nestor.armesto@usc.es

Contents:

I. QCD: asymptotic freedom, confinement and chiral symmetry.

2. QCD at finite temperature: perturbative and lattice techniques.

3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.

4. Particle production.

- 5. Fundamentals of QGP signatures: soft, hard and EM probes.
- 6. Hadrochemistry: different temperatures.
- 7. Quarkonium production and suppression.

See Ynduráin, The theory of quark and gluon interactions, Springer; Wong, Introduction to HEHIC, World Scientific; Quark-Gluon Plasma I to 4, World Scientific; students talks at QM2011, http://indico.cern.ch/ conferenceTimeTable.py?confld=30248#20110522.

Heavy-Ion Collisions (I).

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory

QCD (II):

• QCD is the theory of strong interactions: it describes the interactions between hadrons and nuclei.

• The Lagrangian, though, is written in terms of non-asymptotic states: partons i.e. quarks and gluons.

QCD (II):

• QCD is the theory of strong interactions: it describes the interactions between hadrons and nuclei.

Heavy-Ion Collisions (I): I. QCD.

QCD (III):

• The strength of the interaction is smaller at smaller distances: asymptotic freedom.

$$\alpha_{s} = g^{2}/(4\pi)$$

$$\beta(g) = \frac{\partial g}{\partial \log(\mu)} = \frac{g^{3}}{(4\pi)^{2}} \left\{ \left[\frac{1}{3} - 4 \right] N_{c} + \frac{2}{3} N_{f} \right\} < 0$$
• P
whi
con

Partons carry color SU(3)
 which is not visible (singlets):
 confinement.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

Mass of light mesons and baryons has mainly a dynamical origin.

```
m_N=890\,{\rm MeV}+45\,{\rm MeV}
```

(QCD, 95%) + (Higgs, 5%)

	mass (GeV)	$\sum q_m$ (GeV)
р	\sim 1	$2m_u + m_d \sim 0.03$
π	~0.13	$m_u + m_d \sim 0.02$

- The Lagrangian, for 2 massless quarks, is $SU(2)_L \times SU(2)_R$ invariant: chiral symmetry. $\langle \bar{\psi}_L^f \psi_R^g + \bar{\psi}_L^f \psi_R^g \rangle \simeq -(230 \text{ MeV})^3 \delta^{fg}$
- This symmetry is not observed: SSB, Goldstone bosons (pions), <qqbar>≠0 ⇒ dynamical mass. $m_O = 300 \,\mathrm{MeV} \gg m_a$

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• Mass of light mesons and baryons has mainly a dynamical origin.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• Mass of light mesons and baryons has mainly a dynamical origin.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• Mass of light mesons and baryons has mainly a dynamical origin.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• Mass of light mesons and baryons has mainly a dynamical origin.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

• Mass of light mesons and baryons has mainly a dynamical origin.

• The qqbar potential contains a linear term: string, which breaks when $V(r_{crit})=m_q+m_{qbar}$.

$$V(r) = -\frac{A(r)}{r} + Kr$$

Mass of light mesons and baryons has mainly a dynamical origin.

```
m_N=890\,{\rm MeV}+45\,{\rm MeV}
```

(QCD, 95%) + (Higgs, 5%)

	mass (GeV)	$\sum q_m$ (GeV)
р	\sim 1	$2m_u + m_d \sim 0.03$
π	~0.13	$m_u + m_d \sim 0.02$

- The Lagrangian, for 2 massless quarks, is $SU(2)_L \times SU(2)_R$ invariant: chiral symmetry. $\langle \bar{\psi}_L^f \psi_R^g + \bar{\psi}_L^f \psi_R^g \rangle \simeq -(230 \text{ MeV})^3 \delta^{fg}$
- This symmetry is not observed: SSB, Goldstone bosons (pions), <qqbar>≠0 ⇒ dynamical mass. $m_O = 300 \,\mathrm{MeV} \gg m_a$

• The Lagrangian, for 2 massless quarks, is $SU(Z)_L \propto SU(Z)_R$ invariant: chiral symmetry. $\langle \bar{\psi}_L^f \psi_R^g + \bar{\psi}_L^f \psi_R^g \rangle \simeq -(230 \,\mathrm{MeV})^3 \,\delta^{fg}$

• This symmetry is not observed: SSB, Goldstone bosons (pions), $\langle qqbar \rangle \neq 0 \Rightarrow$ dynamical mass. $m_O = 300 \text{ MeV} \gg m_a$

Heavy-Ion Collisions (I): I. QCD.

- This is what happens at normal conditions of T(=0) and $\rho(\sim 0.17 \text{ nucleons/fm}^3)$.
- Is it there a regime where these symmetries are restored?: Quark-Gluon Plasma.

- Asymptotic freedom: smaller distances or higher momenta \rightarrow increase density or temperature.
- Where?:
 in the Universe ~ 10⁻⁵ s after the Big-Bang;
 in the core of neutron stars;
 in ultra-relativistic heavy ion collisions.

 Heavy-Ion Collisions (I): 1. QCD.

QCD (VI):

$$V(r) \sim -\frac{e^2}{r}$$
 $V(r) \sim -\frac{e^{-mr}}{r}$ $V(r) \sim kr$

QCD: High T phase

High μ phase

Low T,μ phase

Heavy-Ion Collisions (I): I. QCD.

QCD (VI):

URHIC: interdisciplinary field where QFT is applied to collective phenomena, transition between microscopic description and macroscopic language. Understanding confinement and chiral symmetry breaking is the ultimate

goal.

	Accelerator	Collisions	
	SPS	pp to PbPb at E _{cm} =17-30 AGeV	
$V(r) \sim$ -	RHIC	рр to AuAu at E _{cm} =20-200 AGeV	$V(r) \sim kr$
QCD: High T ph	LHC	pp to PbPb at E _{cm} =2.76-14 ATeV	w T, μ phase

Heavy-Ion Collisions (I): I. QCD.

Contents:

- I. QCD: asymptotic freedom, confinement and chiral symmetry.
- 2. QCD at finite temperature: perturbative and lattice techniques.
- 3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.
- 4. Particle production.
- 5. Fundamentals of QGP signatures: soft, hard and EM probes.
- 6. Hadrochemistry: different temperatures.
- 7. Quarkonium production and suppression.

Finite-T QFT:

• In the grand-canonical ensemble, the thermodynamical properties of a system in thermodynamical equilibrium are given by (see Karsch, Lecture Notes in Physics '02):

$$Z(T, V, \mu_i) = \operatorname{Tr} \exp\{-\frac{1}{T}(H - \sum_i \mu_i N_i)\}$$

 $P = T \frac{\partial \ln Z}{\partial V}, \quad S = \frac{\partial (T \ln Z)}{\partial T}, \quad N_i = T \frac{\partial \ln Z}{\partial \mu_i} \qquad \langle \mathcal{O} \rangle = \frac{\text{Tr}\mathcal{O} \exp\{-\frac{1}{T}(H - \sum_i \mu_i N_i)\}}{\text{Tr} \exp\{-\frac{1}{T}(H - \sum_i \mu_i N_i)\}}$

• With a rotation to Euclidean space -it \rightarrow I/T and imposing (anti)periodic boundary conditions for (fermions) bosons,

$$Z(T,V,\mu) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A^{\mu} \exp\{-\int_0^{1/T} dx_0 \int_V d^3x(\mathcal{L}_E - \mu\mathcal{N})\}$$

• The partition function may be computed perturbatively, or by discretization and Monte Carlo methods: lattice QCD.

Heavy-Ion Collisions (I): 2. Finite-T QCD.

pQCD at finite T:

 Very slow convergence until T>>T_c; problems close to T_c. At LO:

$$\mu^2 = 4\pi\alpha_s T^2$$

$$\rho_g = \frac{16}{\pi^2} \zeta(3) T^3$$

$$\sigma_T^{gg} \simeq \frac{N_c}{C_F} \frac{2\pi\alpha_s^2}{\mu^2} \ln\left(1/\alpha_s\right)$$

$$1/\lambda_g = \rho_g \sigma_T^{gg} \simeq \frac{18}{\pi^2} \zeta(3) \alpha_s T$$

• Thermal masses for q and g, $m \propto gT$.

Heavy-Ion Collisions (I): 2. Finite-T QCD.

Heavy-Ion Collisions (I): 2. Finite-T QCD.

Lattice QCD (II):

Temperatures for deconfinement and χ SB approximately equal, T_c=150-190 MeV.

Heavy-Ion Collisions (I): 2. Finite-T QCD.

Phase diagram:

Heavy-Ion Collisions (I): 2. Finite-T QCD.

Phase diagram:

Order of the transition:

First order: discontinuity in the order parameter.

Second order: discontinuity in the derivative.

Crossover: Continuous function.

Heavy-Ion Collisions (I): 2. Finite-T QCD.

Order of the transition:

Heavy-Ion Collisions (I): 2. Finite-T QCD.

Contents:

- I. QCD: asymptotic freedom, confinement and chiral symmetry.
- 2. QCD at finite temperature: perturbative and lattice techniques.
- 3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.
- 4. Particle production.
- 5. Fundamentals of QGP signatures: soft, hard and EM probes.
- 6. Hadrochemistry: different temperatures.
- 7. Quarkonium production and suppression.

Stages of a HIC:

Stages of a HIC:

Glauber model (I):

• The Glauber model provides the number of nucleons involved in the collision and how many times they collide one each other.

• It results in a probabilistic interpretation but is a QFT result, based on the factorization of the nuclear scattering amplitudes.

Glauber model (II):

• The number of binary NN collisions and of participants (P3):

$$\langle N_{coll}(b) \rangle \sigma_{in}^{pA(AB)}(b) = A(B) \sigma T_{A(B)}(b), \quad \langle N_{coll} \rangle = \frac{A(B)\sigma}{\sigma_{in}^{pA(AB)}} \propto \frac{A(B)}{A^{2/3}(+B^{2/3})}$$

$$P(n, m, \vec{b}, \vec{s}) = \frac{1}{\sigma} C_n^A \ [\sigma T_A(s)]^n \ [1 - \sigma T_A(s)]^{A-n} \ C_m^B \ [\sigma T_B(\vec{b} - \vec{s})]^n \ [1 - \sigma T_B(\vec{b} - \vec{s})]^{B-m}$$

$$\langle N_{coll}(\vec{b}, \vec{s}) \rangle = \frac{A}{\sigma} \sum_{n=1}^{A} \sum_{n=1}^{B} P(n, m, \vec{b}, \vec{s}) = AT_{coll}(s) \sigma_{n}^{pB}(\vec{b} - \vec{s}) - (N_{coll}(s)) = AB^{2/3}$$

$$\langle N_A(\vec{b},\vec{s})\rangle = \sum_{n=1}^{N} n \sum_{m=1}^{D} P(n,m,\vec{b},\vec{s}) = AT_A(s)\sigma_{in}^{pB}(\vec{b}-\vec{s}), \quad \langle N_A\rangle \propto \frac{AB^{2/3}}{A^{2/3} + B^{2/3}}$$

 In practice one goes beyond simplified (optical) expressions for AB and does MC.

Glauber model (II):

• The number of binary NN collisions and of participants (P3):

$$\langle N_{coll}(b) \rangle \sigma_{in}^{pA(AB)}(b) = A(B) \sigma T_{A(B)}(b), \quad \langle N_{coll} \rangle = \frac{A(B)\sigma}{\sigma_{in}^{pA(AB)}} \propto \frac{A(B)}{A^{2/3}(+B^{2/3})}$$

$$P(n,m,b,\vec{s}) = \frac{1}{\sigma} C_n^A \left[\sigma T_A(s) \right]^n \left[1 - \sigma T_A(s) \right]^{A-n} C_m^B \left[\sigma T_B(b-\vec{s}) \right]^n \left[1 - \sigma T_B(b-\vec{s}) \right]$$
$$\langle N_A(\vec{b},\vec{s}) \rangle = \sum_{n=1}^A n \sum_{m=1}^B P(n,m,\vec{b},\vec{s}) = A T_A(s) \sigma_{in}^{pB}(\vec{b}-\vec{s}), \quad \langle N_A \rangle \propto \frac{A B^{2/3}}{A^{2/3} + B^{2/3}}$$

 In practice one goes beyond simplified (optical) expressions for AB and does MC.

Equilibration:

• Data on collective flow are well reproduced by ideal hydro if it is initialized very early, $\tau_0 < 1$ fm/c.

- (Ideal) hydro requires $\lambda = (\rho \sigma)^{-1} < R$: large opacities for the particles, equilibrium/isotropization.
- Parton transport is only able to reproduce collective flow if opacities are very large, non-perturbative.
- If the system is initially anisotropic, instabilities appear that accelerate isotropization.

 Alternatively, non-perturbative mechanisms may be at work: strong coupling. Heavy-Ion Collisions (I): 3. Dynamics of heavy-ion reactions.

Hydrodynamics (I):

 $\frac{dN_k}{dydp_T^2d\phi} = \frac{dN_k}{dydp_T^2} \frac{1}{2\pi} \left[1 + 2v_1 \cos\left(\phi - \phi_R\right) + 2v_2 \cos 2\left(\phi - \phi_R\right) + \ldots\right]$

$$v_2 = \langle \cos 2 \left(\phi - \phi_R \right) \rangle = \left\langle \frac{p_x^2 - p_y^2}{p_T^2} \right\rangle$$
$$\epsilon_x = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

• v_2 , also called elliptic flow, is usually interpreted in terms of a final momentum anisotropy dictated by an initial space anisotropy.

Heavy-Ion Collisions (I): 3. Dynamics of heavy-ion reactions.

Hydrodynamics (II):

• Ideal hydro: EOS (5+M variables, 4+M equations), initial conditions and hadronization prescription: $\frac{1}{29}$ of [

$$u^{\mu} = \gamma (1, v_x, v_y, v_z)$$

$$T^{\mu\nu}_{(0)}(x) = \left(e(x) + p(x)\right) u^{\mu}(x) u^{\nu}(x) - p(x) g^{\mu\nu}$$

$$\partial_{\mu} T^{\mu\nu}_{(0)}(x) = 0, \qquad (\nu = 0, \dots, 3)$$

$$\partial_{\mu} j^{\mu}_{i}(x) = 0, \qquad i = 1, \dots, M$$

• Non-ideal hydro: dissipative (viscous) corrections.

 $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$

 Π^{μν} introduces bulk viscosity plus gradients of u: 1st order (shear viscosity), 2nd order (5 constants for a CFT),...

Hydrodynamics (II):

 Ideal hydro: EOS (5+M variables, 4+M equations), initial conditions and hadroni:
 Ideal (0th order): relativistic Euler equation.

$$u^{\mu} = \gamma (1, v) \bullet \text{ Ist order: relativistic Navier-Stokes.}$$

$$T_{(0)}^{\mu\nu}(x) = \begin{pmatrix} e \\ \bullet \text{ 2nd order: Müller-Israel-Stewart.} \\ \bullet \eta/s = 1/(4\pi) \text{ and } \zeta = 0 \text{ in CFT.} \\ \bullet \eta/s = 0.1 \text{ - 1 in pure glue lattice QCD.} \\ \bullet \eta/s = 0.1 \text{ - 1 in pure glue lattice QCD.} \\ \bullet \zeta \text{ has a peak around } T_c \text{ in QCD.}$$

Transport models:

• Ideal hydro is the extreme version of transport for very large opacities. If thermalization/isotropization is not achieved, small deviations can be dealt with through viscous corrections, but large deviations require transport: relativistic Boltzmann equation.

$$f(\vec{p},t,\vec{x}) \propto \frac{dN}{d^3 p \, d^3 x} \qquad p^{\mu} \partial_{\mu} f = -\mathcal{C}[f]$$
Collision term $C[f_p] = C_{gain} - C_{loss}$

• Parton transport now includes $2\leftrightarrow 2$ and $2\leftrightarrow 3$ reactions (BAMPS):

accelerates isotropization.

• Hadron transport includes many reactions/species (AMPT, UrQMD). Heavy-lon Collisions (I): 3. Dynamics of heavy-ion reactions.

appendence a properties of properties of the second

Freeze-out:

• The results from hydro (or a parton cascade) have to be projected onto hadrons.

• For hydro: decoupling using the Cooper-Fry formula for an isothermal freeze-out surface $\Sigma(T_{dec}) \Rightarrow \lambda=0 \rightarrow \infty$ instantaneously.

$$\begin{split} E\frac{dN}{d^3p} &= \int_{\Sigma} f(x,p,t)p \cdot d\sigma(x) \xrightarrow{\text{viscous}} f(p^{\mu},x^{\mu}) = f_{\text{eq}}\left(\frac{p^{\mu}u_{\mu}}{T}\right) \left[1 + \frac{1}{2a_{42}}p^{\alpha}p^{\beta}\pi_{\alpha\beta}\right] \\ &= \frac{d}{(2\pi)^3} \int_{\Sigma} \frac{p \cdot d\sigma(x)}{\exp\left[(p \cdot u(x) - \mu(x))/T(x)\right] \pm 1} \end{split}$$

- Other prescriptions exist (e.g. isochronous).
- You can use hydro for the hadron phase.

• Or you can also link to a hadron cascade: done for parton cascades (AMPT, UrQMD). Heavy-Ion Collisions (I): 3. Dynamics of heavy-ion reactions.

Contents:

- I. QCD: asymptotic freedom, confinement and chiral symmetry.
- 2. QCD at finite temperature: perturbative and lattice techniques.
- 3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.
- 4. Particle production.
- 5. Fundamentals of QGP signatures: soft, hard and EM probes.
- 6. Hadrochemistry: different temperatures.
- 7. Quarkonium production and suppression.

Different scales:

regions, comparing the typical soft parton momenta (Λ_{QCD} ,T) with the momenta of the observable (Q) and the total energy $\sqrt{s=E_{cm}}$.

• The ideal case relies on factorization theorems: universal pieces associated with initial hadrons and final observables, and others hadron-independent (and computable in pQCD). Initial (with the other constituents of the initial hadrons) and final (with other produced hadrons/observables/medium) state interactions break it.

Heavy-Ion Collisions (I): 4. Particle production.

Hard scales: collinear

• Collinear factorization used in the region $E_{cm} \sim Q >> \Lambda_{QCD}, T$.

- Parton densities (pdf's) and fragmentation functions unknown but its evolution given by DGLAP in the dilute (e.g. pp) case.
- Power corrections are process-dependent and enhanced by nuclear size.
- No proof of DGLAP in the dense (AB) case: looks plausible for pdf's, fragmentation functions?
- Ex.: jets (collinear and IR safe), high-mass DY, highly energetic hadrons/γ, EW bosons. Heavy-lon Collisions (I): 4. Particle production.

Semihard scales: k_T

• k_T factorization used in the region $E_{cm} >> Q >> \Lambda_{QCD}$, T. Note that this is the small-x($\sim Q/E_{cm}$) region.

 $\sigma^{pp \to g} = \phi_A(x_1, k_{T,1}) \otimes \phi_B(x_2, k_{T,2}) \otimes \hat{\sigma}(x_1, k_{T,1}, x_2, k_{T,2}, \mu)$

- Unintegrated parton densities (updf's) unknown but its evolution given by BFKL in the dilute (e.g. pp) case; fragmentation functions?
- All power corrections included.
- Colliding partons no longer collinear: intrinsic kt.
- Ex.: particle production in the region of a few GeV.
- It works for gluon production in pp (BFKL) and pA (BK evolution), not for quark production or in AB \rightarrow more involved.

Heavy-Ion Collisions (I): 4. Particle production.

Soft scales: models

- Models used in the region $E_{cm} >> Q_{AQCD}$, T: confinement at work.
- Alternatives (the most popular ones):
 - * String models (Lund, DPM): particle production through string (color flux tubes) formation and breaking.
 - * Cluster formation: color neutralization by formation of colorful partons (HERWIG, statistical models, recombination in HI). * Local Parton-Hadron Duality (LPHD): a parton evolved to a low scale ($\sim \Lambda_{QCD}$) gives K hadrons, K energy-independent.

Heavy-Ion Collisions (I): 4. Particle production.

Contents:

- I. QCD: asymptotic freedom, confinement and chiral symmetry.
- 2. QCD at finite temperature: perturbative and lattice techniques.
- 3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.
- 4. Particle production.
- 5. Fundamentals of QGP signatures: soft, hard and EM probes.
- 6. Hadrochemistry: different temperatures.
- 7. Quarkonium production and suppression.

Probes of the medium:

Signatures which would allow to identify the medium created in URHIC with a phase of matter built of quasi-free partons:

I) Signatures from the medium itself (soft, momenta \sim T):

Thermalization/collective behavior: elliptic flow, thermal photon/dilepton emission, statistical hadronization.

For Chiral-symmetry restoration: strangeness enhancement, broadening of resonances (ρ).

Phase transition: fluctuations and correlations.

2) Probes whose comparison measured/expected (in perturbative QCD - Q>> Λ_{QCD} , T; hard) characterizes the medium:

Suppression of QQbar bound states: quarkonium linear potential becomes Debye screened.

Suppression of high energy particles: jet quenching. Heavy-lon Collisions (I): 5. QGP signatures.

Probes of the medium:

Signatures which would allow to identify the medium created in q: fast color triplet Induced **URHIC** with a phas e partons: gluon radiation? g: fast color octet I) Signatures from menta \sim T): Q: slow color triplet Energy tic flow, thermal **Thermaliza** Loss? QQbar: slow color photon/dilept nization. singlet/octet Dissociation? Chiral-sym ess enhancement, Virtual photon: colorless broadening of Controls Real photon: colorless Phase tran lations. 2) Probes whose co ed (in perturbative Unknown Medium

QCD - Q>> Λ_{QCD} , T; hard) characterizes the medium:

Suppression of QQbar bound states: quarkonium linear potential becomes Debye screened.

Suppression of high energy particles: jet quenching. Heavy-Ion Collisions (I): 5. QGP signatures.

Heavy-Ion Collisions (I): 5. QGP signatures.

Photons and dileptons (II):

 Photons and dileptons (EM probes) may be produced by decays and by direct sources:

* Thermal (black-body) radiation, direct proof of T.

* From the hard parton scattering: benchmark.

- * From fragmentation of partons: affected by medium.
- * From jet conversions: determined by the medium.

Heavy-Ion Collisions (I): 5. QGP signatures.

Fluctuations/correlations:

- In a 2nd order phase transition, the correlation length diverges at T_c: long range correlations and fluctuations.
- Around the tri-critical point, systems which go around it turn to show large fluctuations.
- Fluctuations in baryon number, in charge,...; correlations in p_T , in rapidity,..., have been proposed.

Heavy-Ion Collisions (I): 5. QGP signatures.

Strangeness/masses:

Strangeness (heavy flavor) production is suppressed by:
 * The larger constituent quark mass (m_s~450 MeV, m_{u,d}~300 MeV), 1:1:0.25.

* The larger hadron mass e.g. K(600) versus $\pi(140)$, in the hadronic gas reactions.

• Deconfinement implies pair production at parton level; χ SB implies a reduction of constituent masses \Rightarrow strangeness

enhancement and resonance mass reduction/broadening (ρ). Broadening may be collisional, though.

Heavy-Ion Collisions (I): 5. QGP signatures.

Strangeness/masses:

Strangeness (heavy flavor) production is suppressed by:
 * The larger constituent quark mass (m_s~450 MeV, m_{u,d}~300

enhancement and resonance mass reduction/broadening (ρ). Broadening may be collisional, though.

Contents:

- I. QCD: asymptotic freedom, confinement and chiral symmetry.
- 2. QCD at finite temperature: perturbative and lattice techniques.
- 3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.
- 4. Particle production.
- 5. Fundamentals of QGP signatures: soft, hard and EM probes.
- 6. Hadrochemistry: different temperatures.
- 7. Quarkonium production and suppression.

The statistical model (I):

$$n_i(T) = \frac{1}{(2\pi)^3} \int_0^\infty \frac{4\pi p^2 dp}{e^{\sqrt{p^2 + m_i^2}/T} - 1}$$

$$n_{q(\bar{q})}(T,\mu_q) = \frac{N_c N_s}{(2\pi)^3} \int_0^\infty \frac{4\pi p^2 dp}{e^{(\sqrt{p^2 + m_q^2} \mp \mu_q)/T} + 1}$$

Heavy-Ion Collisions (I): 6. Hadrochemistry.

• Within the grand-canonical ensemble, equilibrium hadron/ parton densities can be computed: T, μ, V . • K/ π ratio ~0.4>> values for pA: suppression factor γ_s to include chemical nonequilibrium effects.

• Within the statistical model, strangeness enhancement points to chemical equilibrium. At parton level it can be used

as input for clustering.

The statistical model (II):

• The statistical model gives an good description of particle ratios in AB, with $T_{-}T_{c}$ (and $\gamma_{s} \sim I$ at RHIC): hint of partonic equilibrium.

• It also works (though not so well) in e^+e^- and pp(bar): statistical nature of hadronization (cluster models do work).

The statistical model (II):

• The statistical model gives an good description of particle ratios in AB, with $T_{-}T_{c}$ (and $\gamma_{s} \sim I$ at RHIC): hint of partonic equilibrium.

• It also works (though not so well) in e^+e^- and pp(bar): statistical nature of hadronization (cluster models do work).

Heavy-Ion Collisions (I): 6. Hadrochemistry.

Reactions, temperatures:

• At a partonic level, the strangeness enhancement reactions which lead to chemical equilibrium are $qqbar \rightarrow ssbar$ and $gg \rightarrow ssbar$.

 In the evolution of the created matter, there are two freeze-out temperatures:

*That at which inelastic reactions, $a+b \rightarrow X$, $X \neq a+b$, stop: chemical freeze-out.

*That at which elastic reactions, $a+b \rightarrow a+b$, stop: kinetic freezeout.

• In the plasma, conversions may change the hadrochemistry at large p_T : fast q or g + s(bar) from the plasma \rightarrow fast s(bar) + X \Rightarrow information about the medium at large p_T .

Heavy-Ion Collisions (I): 6. Hadrochemistry.

Contents:

I. QCD: asymptotic freedom, confinement and chiral symmetry.

2. QCD at finite temperature: perturbative and lattice techniques.

3. Dynamics of heavy-ion reactions: initial state (Glauber theory), equilibration, hydrodynamics, transport models, freeze-out.

- 4. Particle production.
- 5. Fundamentals of QGP signatures: soft, hard and EM probes.

6. Hadrochemistry: different temperatures.

7. Quarkonium production and suppression. (See e.g. Kluberg and Satz, arXiv:0901.3831 [hep-ph] and refs. therein).

Quarkonium

• From Matsui and Satz's proposal ('86), the suppression of QQbar bound states plays a central role in the discussion of QGP formation.

• Debye screening due to the free color charge in the plasma modifies the linear part of the QQbar potential.

Heavy-Ion Collisions (I): 7. Quarkonium production and suppression.

Quarkonium: the baseline

- e⁺e⁻: 60-80 % of J/psi produced with more charm (Belle, BaBar): higher orders in NRQCD?, additional mechanisms.
- pp(bar): polarization puzzle goes on: NRQCD?
- pA: smaller absorption at RHIC than at SPS, negative x_F (HERA-B).

Heavy-Ion Collisions (I): 7. Quarkonium production and suppression.

Quarkonium: the baseline

• e⁺e⁻: 60-80 % of J/psi produced with more charm (Belle, BaBar). higher orders in NROCD?

Heavy-Ion Collisions (I): 7. Quarkonium production and suppression.

Quarkonium: HI data

a ₹

- SPS data show anomalous suppression.
- Data show 'scaling' versus the number of participants.
- At RHIC, larger suppression at forward rapidities, opposite to expected from a density effect.

Heavy-Ion Collisions (I): 7. Quarkonium production and suppression.

Nuclear modification factor

PHENIX, Au+Au, [y]e[1.2.2.2], ± 7% syst.

O PHENIX, Au+Au, |y|<0.35, ± 12% syst</p>

NA50, Pb+Pb, 0<y<1, ± 11% syst.</p>

Quarkonium: theoretical interpretation

• Lattice suggests a sequential picture of quarkonia melting (potential models?).

- Other explanations rely on dissociation + recombination of Q's and Qbar's in a deconfined medium, eventually combined with shadowing.
- Initial state effects may also explain the larger suppression at higher rapidities.

Heavy-Ion Collisions (I): 7. Quarkonium production and suppression.

Heavy-Ion Collisions (I).

Strong coupling calculations (I):

- Strong coupling is suggested by:
 - → The quasi-ideal fluid behavior ($\lambda = (\rho\sigma)^{-1} < < R$).
 - \rightarrow The early isotropization/thermalization, difficult to explain in pQCD (Romatschke et al '04, Xu et al '05).
 - \rightarrow The strong quenching of high-energy particles.
- AdS/CFT correspondence: dynamics of N=4 SUSY QCD for

 $N_c, \lambda = g^2 N_c \rightarrow \infty$ can be computed using classical gravity in AdS₅×S⁵.

- → Temperature through black-hole metric.
- → No confinement, no asymptotic freedom, no quarks,...

$$\mathscr{Z}_{\text{string}}\left[\Phi_{i}(z,x^{\mu})\Big|_{z=0} = \varphi_{i}(x^{\mu})\right] = \left\langle \exp\left(\int d^{4}x \; \varphi_{i}\mathscr{O}_{i}\right) \right\rangle_{\text{SYM}}$$

 O_i is the SYM operator associated with the supergravity field $\Phi_i.$

. Minkowski

boundary

Ζ

Strong coupling calculations (II):

 AdS/CFT has been applied to several aspects of HIC (see the review by Casalderrey et al. '10 and Janik's lectures):

 \rightarrow The energy loss of fast and slow partons.

→ The energy deposition and medium disturbance created by the energetic particle.

- → The early isotropization/thermalization problem.
- → The hydrodynamical behavior.

$$\tilde{g}_{\mu\nu}(x,z) = \tilde{g}^{(0)}_{\mu\nu}(x) + z^2 \,\tilde{g}^{(2)}_{\mu\nu}(x) + z^4 \,\tilde{g}^{(4)}_{\mu\nu}(x) + \dots \quad \langle T_{\mu\nu} \rangle = \frac{N_c^2}{2 \,\pi^2} \,\tilde{g}^{(4)}_{\mu\nu}(x)$$

 \rightarrow The initial conditions for a HIC.

Heavy-Ion Collisions (I): Backup.