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Introduction

Quantum Field Theory: infinite (continuum) number of degrees of freedom.

Mathematical definition is given by “discretization”: infinite volume limit and

continuum limit required.

In Euclidean space time (i.e. with imaginary time) QFT is equivalent to the

statistical physics of fields. The “Boltzmann-factor” is the Euclidean action.

In lattice discretization (“regularization”) the quantum fields are defined on the

points (elements) of the lattice.
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Continuum limit: the (bare) parameters of the Euclidean action have to be

tuned to a fixed point in such a way that the ratio of physical length scales to

the discretization scale (“lattice spacing”) tends to infinity.

If such a fixed point exists experience in statistical physics suggests

“universality”: many different lattice actions can be tuned to the same

continuum limit.

Quantum Chrome Dynamics:

QFT of the gluon (= SU(3)-colour gauge) field and six quark fields.

In many applications only the three “light” quarks (u, d and s) are relevant.

The free parameters are: the quark masses, more precisely

mu/ΛQCD, md/ΛQCD, ms/ΛQCD, ...

QCD is a mathematically closed highly predictive theory of strong interactions.
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Lattice actions of QCD

4x4 periodic lattice

a

plaquette in LQCD

UxµΨx Ψx
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Plaquette action for the gluon field

Notations: I.M., G. Münster, Quantum Fields on a Lattice, Cambridge, 1994.

The gluon field is described by the parallel transporter of SU(3) colour on links:

Uxµ ∈ SU(3) on the link (x −→ x+ µ̂).

The gauge variables Axµ are elements of the SU(3) Lie algebra.

They are defined by Uxµ = exp(−aAxµ) where a is the lattice spacing and

Axµ = −igAb
µ(x)1

2λb (here g is the bare gauge coupling).

The field strength can be represented by

Ux;µν ≡ U †x,νU
†
x+ν̂,µUx+µ̂,νUx,µ = exp[−a2Gµν(x)]

where
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Gµν(x) = Fµν(x) +O(a) ,

Fµν(x) = ∆f
µAν(x)−∆f

νAµ(x) + [Aµ(x), Aν(x)]

and the lattice forward derivative is defined by ∆fϕ(x) ≡ ϕ(x+ µ̂)− ϕ(x).

Because of
ReTrUx;µν = Nc +

a4

2
TrFµν(x)

2 +O(a5)

the Wilson (plaquette) gauge field action for the SU(Nc) gauge field can be

defined as EXERCISE

Sgauge ≡ Sg =
∑

x

∑

1≤µ<ν≤4

β

{

1− 1

Nc
ReTr (Ux;µν)

}

= − β

4Nc

∑

xµν

a4 TrFµν(x)Fµν(x) +O(a5)

(

β ≡ 2Nc

g2

)

6



I. Montvay QFTMC

Gauge invariance:

the Wilson action is gauge invariant since the gauge transformation of the

gauge (link) variables is U ′xµ = Λ−1(x+ µ̂) Uxµ Λ(x) [Λ(x) ∈ SU(Nc)].

Expectation values:

in terms of the invariant group (Haar-) measure dUxµ we have

〈O〉 =
1

Z

∫

∏

xµ

dUxµ exp{−Sgauge[U ]} O[U ] ≡
∫

[dU ] e−Sgauge[U ] O[U ]

where the partition function for the gauge field is defined as

Z =

∫

∏

xµ

dUxµ exp{−Sgauge[U ]} ≡
∫

[dU ] e−Sgauge[U ]

This shows that in the Euclidean path integral formulation lattice gauge theory

is equivalent to the statistical physics of gauge fields.

7



I. Montvay QFTMC

Lattice actions for the quark field

The Dirac equation for fermions can also be similarly discretized.

A simple choice is the Wilson action for fermions:

SWilson
q =

∑

x







µ0ψxψx −
1

2

∑

µ

ψx+µ̂γµUxµψx −
r

2

∑

µ

[ψx+µ̂Uxµ − ψx]ψx







Here ψx, ψx are anticommuting Grassmann variables. EXERCISE

The lattice spacing is set to unity: a ≡ 1 (which is often done in the literature),

µ0 is the bare quark mass in lattice units, the Wilson parameter is r 6= 0 and

the summation runs over both positive and negative directions:
∑

µ ≡
∑±4

µ=±1

(by definition we have γ−µ = −γµ).

The rôle of the Wilson term proportional to r will be discussed next.
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Often used notations:

after redefining the field normalizations according to

(µ0 + 4r)1/2 ψx ⇒ ψx , (µ0 + 4r)1/2 ψx ⇒ ψx

and introducing the hopping parameter by κ ≡ (2µ0 + 8r)−1 the Wilson action

can be rewritten as

SWilson
q =

∑

x







(ψxψx)− κ
∑

µ

(ψx+µ̂Uxµ[r + γµ]ψx)







≡
∑

xy

(ψyQyxψx)

where the Wilson fermion matrix is (without explicit colour- and Dirac-indices)

Qyx = δyx − κ
∑

µ

δy,x+µ̂ Uxµ (r + γµ)
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Wilson fermion propagator: the inverse of the free fermion matrix is defined by
∑

y

∆zyQyx = δzx , ∆yx = ∆y−x =
1

Ω

∑

k

eik·(y−x)∆̃k

here Ω = N1N2N3N4 is the number of lattice points and the values of the

momenta for periodic and antiperiodic boundary conditions, respectively, are

apµ ≡ kµ =
2π

Nµ
νµ , kµ =

2π

Nµ

(

νµ +
1

2

)

(νµ ∈ {0, 1, 2, . . . , Nµ− 1})

Using the notations k̂µ ≡ 2 sin
kµ

2 , k̄µ ≡ sin kµ the solution is EXERCISE

∆̃k =
1− rκ(8− k̂2)− 2iκγ · k̄
[1− rκ(8− k̂2)]2 + 4κ2k̄2

= (2κ)−1 µ0 + (r/2)k̂2 − iγ · k̄
[µ0 + (r/2)k̂2]2 + k̄2

The non-zero value of r is required in order to avoid particle poles at kµ = π,

besides the physical ones at kµ = 0, but for r 6= 0 chiral symmetry is broken

also for zero fermion mass!!!
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Kogut-Susskind staggered lattice fermions:

the “naive” free fermion action without the Wilson term (r = 0) describes 16

fermion “flavours”

Snaive
q =

∑

x







µ0ΨxΨx +
1

2

4
∑

µ=1

[

ΨxγµΨx+µ̂ −Ψx+µ̂γµΨx

]







One can perform spin diagonalization by Ψx = Axψx, Ψx = ΨxA
†
x,

A†xγµAx = αxµ 14= (−1)x1+···+xµ−1 14 (µ = 1, 2, 3, 4).

One out of four identical components gives the “staggered” fermion action

Sstaggered
q =

∑

x







µ0ψxψx +
1

2

4
∑

µ=1

αxµ

[

ψxψx+µ̂ − ψx+µ̂ψx

]







This describes four degenerate flavours with components scattered on the points

of 24 hypercubes. (There are no Dirac spinor indices.) EXERCISE

At zero mass µ0 = 0 there is an exact chiral symmetry Ueven(1)⊗ Uodd(1).
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Improved lattice actions

The freedom of choosing the lattice action in the universality class of the same

limiting theory in the continuum can be used for:

• accelerating the convergence to the continuum limit,

• achieving enhanced symmetries already at non-zero lattice spacings.

The basic tools are:

renormalization group block transformations (Wilson, ..., Hasenfratz)

and the local effective theories at non-zero cut-off (Symanzik, ..., Lüscher,

Weisz).

In QCD particularly interesting is the improvement of chiral symmetry at

non-zero lattice spacings which implies simpler renormalization patterns for

composite (e.g. current-) operators.
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Improved actions with smeared links:

smoothed gauge fields for moving closer to the continuum limit.

The links Ux,µ in the fermion action can be replaced by stout-smeared links.

This has the advantage that short range topological defects of the gauge field

and the corresponding small eigenvalues of the fermion matrix are removed.

The stout smeared links are defined as (Morningstar, Peardon):

U (1)
x,µ ≡ Ux,µ exp

{

1

2

(

Ωx,µ − Ω†x,µ

)

− 1

2Nc
Tr
(

Ωx,µ − Ω†x,µ

)

}

.

Here Ux,µ denotes the original “thin” gauge links and

Ωx,µ ≡ ρU †x,µCx,µ

with the sum of “staples”

Cx,µ ≡
∑

ν 6=µ

(

U †x+µ̂,νUx+ν̂,µUx,ν + Ux−ν̂+µ̂,νUx−ν̂,µU
†
x−ν̂,ν

)

.
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Twisted-mass LQCD

Chiral rotation of the Wilson term in SWilson
q : Frezzotti, Grassi, Sint, Weisz

For two equal mass quark flavours (Nf = 2) the unbroken SU(2) subgroup

of the SU(2) ⊗ SU(2) chiral symmetry can be partly rotated to axialvector

directions. In addition, “automatic” O(a) improvement is possible.

The “twisted mass” lattice fermion action is:

Stm
q =

∑

x







µqψxψx −
1

2

∑

µ

ψx+µ̂γµUxµψx

+µcrψxe
−iωγ5τ3ψx −

r

2

∑

µ

[ψx+µ̂Uxµ − ψx]e−iωγ5τ3ψx







Here ω is the twist angle, µq the bare quark mass in lattice units and

µcr = (1
2κ
−1
cr − 4r) < 0 the critical bare quark mass where µphysical

q = 0.
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The twist can be moved to the mass term by a chiral transformation

χx = exp(− i
2ωγ5τ3)ψx, χx = ψx exp(− i

2ωγ5τ3)

(hence the name “twisted mass”) EXERCISE

The quark determinant in the path integral over the gauge field is

det
[

(Dcr + µq cosω)†(Dcr + µq cosω) + µ2
q sin2 ω

]

where the single-flavour critical fermion matrix is

Dcr
yx = µcrδyx −

1

2

∑

µ

[δy,x+µ̂γµUxµ + r(δy,x+µ̂Uxµ − δyx)]

The fermion matrix Dcr +µq(cosω+ iγ5τ3 sinω) cannot have zero eigenvalues

for non-zero quark mass if ω 6= 0, π: there are no spurious zero modes and

no exceptional gauge configurations with anomalously small eigenvalues of the

fermion matrix.
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Chiral SU(2)⊗ SU(2) Ward-Takahashi-identities:

the conserved SU(2) subgroup is also “twisted”.

Exactly conserved axialvector currents can be achieved with ω = 1
2π.

In this special case the conserved currents are (j = 1, 2):

Acon
jxµ =

1

2

{(

ψx+µ̂γµγ5
τj
2
Uxµψx

)

+
(

ψxγµγ5
τj
2
U †xµψx+µ̂

)

+r

(

ψx+µ̂

τ j

2
Uxµψx

)

− r
(

ψx

τ j

2
U †xµψx+µ̂

)}

with τ1 ≡ τ2 and τ2 ≡ −τ1 , and

V con
3xµ =

1

2

{(

ψx+µ̂γµ
τ3
2
Uxµψx

)

+
(

ψxγµ
τ3
2
U †xµψx+µ̂

)

−ir
2

(

ψx+µ̂γ5Uxµψx

)

+
ir

2

(

ψxγ5U
†
xµψx+µ̂

)

}
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The invariance of the path integral with respect to the change of variables

ψ′x = (1 + i
2αV rxτr + i

2αArxγ5τr)ψx, ψ
′
x = ψx(1 − i

2αV rxτr + i
2αArxγ5τr)

implies the WT-identities: EXERCISE

〈

O ∆b
µA

con
jxµ

〉

+

〈

O
←
∂

∂ψx
γ5
τj
2
ψx + ψxγ5

τj
2

→
∂ O
∂ψx

〉

= µq

〈

O ψxγ5τjψx

〉

〈

O ∆b
µV

con
3xµ

〉

+

〈

O
←
∂

∂ψx

τ3
2
ψx − ψx

τ3
2

→
∂ O
∂ψx

〉

= 0

with the backward lattice derivative defined as ∆b
µϕ(x) ≡ ϕ(x)− ϕ(x− µ̂).

O(a) improvement (Frezzotti, Rossi): for the Wilson fermion action one can show

〈O〉WA
(mq)
≡ 1

2

[

〈O〉(r,mq) + 〈O〉(−r,mq)

]

∝ 〈O〉cont
(mq)

+O(a2)

This is averaging over opposite sign Wilson parameters (“Wilson average”).
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In tmLQCD changing the sign of r is equivalent to shifting the twist angle

by π. In the special case of ω = 1
2π this is equivalent to ω → −ω, therefore

expectation values even in ω are “automatically” O(a) improved, without any

averaging!

Automatically O(a) improved physical quantities are, for instance:

• the energy eigenvalues, hence the masses

• on-shell matrix elements at zero spatial momenta

• matrix elements of operators with formal parity equal to the product of the

parities of the external states

Note: in case of non-zero twist parity (as well as some vector flavour symmetries)

are broken by lattice artifacts.
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Domain wall fermions

The chiral symmetry of massless fermions can be realized (at non-zero

lattice spacing) by introducing a fifth “extra” dimension: Kaplan, Shamir.

In the fifth direction there is a “defect”: either the mass term changes sign

(Kaplan) or there are the “walls” at the two ends (Shamir).

There are chiral fermion solutions which are exponantially localized in the fifth

dimension near these defects.

The gauge field remains four-dimensional (independent on the fifth dimension).

In the limit of infinitely large fifth dimension the positive and negative chirality

solutions (at opposite walls or at opposite sign changes on a torus) have zero

overlap with each other and the chiral symmetry becomes exact.
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The domain wall fermion action can be written (with 1 ≤ s ≤ Ns) as

SF =
∑

s,s′
Ψxs(DF )xs,x′s′Ψx′s′

where in an s-block form EXERCISE

DF =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

σ + D −σPL 0 0 . . . 0 0 mfPR

−σPR σ + D −σPL 0 . . . 0 0 0

0 −σPR σ + D −σPL . . . 0 0 0

... ... ... ... . . . ... ... ...

0 0 0 0 . . . −σPR σ + D −σPL

mfPL 0 0 0 . . . 0 −σPR σ + D

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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The chiral projectors are, as usual, PR,L ≡ 1
2(1± γ5), the quark mass in lattice

units is mf , the ratio of lattice spacings is σ = a/as and the four-dimensional

Wilson-Dirac matrix with negative mass (0 > −m0 > −2) is (r = 1)

Dxx′ = (4−m0)δxx′ −
1

2

4
∑

µ=1

[

δx′,x+µ̂(1 + γµ)Uxµ + δx′+µ̂,x(1− γµ)U †x′µ

]

The hermitean fermion matrix: useful e.g. for Monte Carlo simulations.

Since with an s-reflection (R5)ss′ ≡ δNs+1−s,s′ we have DF = R5γ5D
†
FR5γ5,

the hermitean fermion matrix can be defined as

D̃F ≡ R5γ5DF = D̃†F

The chiral symmetry is broken by a non-zero overlap of the opposite chirality

wave functions. Enhanced symmetry breaking occurs if D has small eigenvalues.
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Neuberger overlap fermions

Another (related) possibility to achieve chiral symmetry of the lattice fermion

action is the Neuberger (overlap) fermion action.

Let us rewrite the (free) Wilson fermion action for r = 1 and µ0 ≡ am0 as

SWilson
q =

∑

x

a4ψx[m0+DW ]ψx , DW ≡
4
∑

µ=1

[

1

2
γµ(∇µ +∇∗µ)− a

2
∇∗µ∇µ

]

where the lattice derivatives are ∇µ ≡ a−1∆f
µ, ∇∗µ ≡ a−1∆b

µ.

The Neuberger lattice fermion operator with zero mass is given by

DN ≡
1

a

(

1− A 1√
A†A

)

, A ≡ 1− aDW

The inverse square-root can be defined by polynomial or rational approximations.

Note that A is proportional to the Wilson operator with bare mass −a−1.
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An important feature of DN is that V ≡ 1− aDN is unitary: V †V = 1.

The spectrum of DN = a−1(1− V ) is on a circle going through the origin.

Ginsparg-Wilson relation: the Neuberger operator satisfies the relation

γ5DN +DNγ5 = aDNγ5DN

This is equivalent to the condition introduced by Ginsparg and Wilson (GW)

γ5D
−1 +D−1γ5 = 2aRγ5. The GW-relation is the optimal approximation to

chiral symmetry which can be realized by a lattice fermion operator (a→ 0).

R is in general a local operator, for D = DN we have R = 1
2. EXERCISE

Lattice chiral symmetry: it can be shown (Lüscher) that

δψ = γ5

(

1− a
2
D
)

ψ , δψ = ψ
(

1− a
2
D
)

γ5

is an exact chiral symmetry (for any a) if the GW-relation is satisfied.
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Lattice actions satisfying the GW-relation:

• the fixed point action, which is the fixed point of some renormalization group

transformation (Hasenfratz),

• Neuberger action DN

• the effective (four-dimensional) action of the light fermion field of the domain

wall fermion (Neuberger, Kikukawa)

Note: the inverse of the effective Dirac operator of the light fermion field of

the domain wall fermion is equivalent to the inverse of the truncated overlap

Dirac operator (except for a local contact term).

Using GW-fermions one can prove the index theorem about topological charge

(Hasenfratz, Laliena, Niedermayer) and introduce the θ-parameter, etc.
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How did we avoid the Nielsen-Ninomiya theorem?

Theorem: there is no (free) lattice fermion action

Sf = a4
∑

xy

ψyD(y − x)ψx

which would satisfy

• D(x) is local (bounded by e−γ|x|)

• its Fourier-transform is D̃(p) = iγµpµ +O(ap2) for p≪ π/a

• D̃(p) is invertible for p 6= 0 (no massless doubler poles)

• γ5D +Dγ5 = 0 (chiral symmetry)
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The lattice chiral symmetry is defined differently:

it is non-ultralocal (involves neighbouring lattice sites).

The last requirement in the Nielsen-Ninomiya theorem is replaced by the

Ginsparg-Wilson relation.

The question of locality:

locality can be proven if the gauge field is smooth enough (“admissible”),

namely if every plaquette value is close to unity. (Hernandez, Jansen, Lüscher)

In actual simulations there are always plaquettes with small values.

The lattice spacing has to be small enough in order to avoid the “Aoki phase”

with lots of small eigenvalues of DW : the small eigenvalues make DN non-local

and the “residual mass” breaking the chiral symmetry of domain wall fermions

large (Golterman, Shamir).
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Monte Carlo simulations

The goal of numerical simulations is to estimate the expectation value of some

functions A[ϕ] of the field variables generically denoted by [ϕ] ≡ {ϕxα}. This

is given by path integrals as

〈A〉 = Z−1

∫

[dϕ]e−S[ϕ]A[ϕ] , Z =

∫

[dϕ]e−S[ϕ]

S[ϕ] is the lattice action, which is assumed to be a real function of the field

variables. (For the moment we only consider bosonic path integrals.)

A typical lattice action contains a summation over the lattice sites.

Since the number of lattice points Ω is large, in the path integral only a

small vicinity of the minimum of the “free energy” density will substantially

contribute. → Monte Carlo integration (see e.g. C. Morningstar, hep-lat/0702020)
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Simple Monte Carlo integration:

consider a continuous real function f(X) of a continuous random variable X

having probability distribution pX(s) and hence the expectation value

〈f(X)〉 =
∫

ds f(s) pX(s)

Using pX(s) to obtain N outcomes X1,X2, . . . ,XN then the random variables

Yj = f(Xj) give

lim
N→∞

1

N

N
∑

j=1

Yj = 〈Y 〉 = 〈f(X)〉 =
∫

ds f(s) pX(s)

With a short notation:

f ≡ 1

N

N
∑

j=1

f(Xj), lim
N→∞

f = 〈f〉 =
∫

ds f(s) pX(s)

28



I. Montvay QFTMC

For large N , the central limit theorem tells us that the error in approximating

〈f(X)〉 is given by the variance V [f(X)] as
√

V [f(X)]/N .

The Monte Carlo estimate of the variance is:

V [Y ] =
〈

(Y − 〈Y 〉)2
〉

≈ (f − f)2 = f2 − f2

Generalising this to several (D) integration variables:

simple Monte Carlo integration is acomplished by

∫

V
dDx p(~x) f(~x) ≈ f ±

(

f2 − f2

N

)
1
2

f ≡ 1

N

N
∑

i=1

f(~xi), f2 ≡ 1

N

N
∑

i=1

f(~xi)
2

where the points ~x1, ~x2, . . . , ~xN are chosen independently and randomly with

probability distribution p(~x) in the D-dimensional volume V .
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Importance sampling:

Simple Monte Carlo integration works best for flat functions but is problematic

if the integrand is sharply peaked or rapidly oscillating.

Therefore, a good procedure is to apply importance sampling: find a positive

function g(x) with integral norm
∫

dx g(x) = 1 such that h(x) ≡ f(x)/g(x) is

as close as possible to a constant and then calculate
∫ b

a

dx f(x) =

∫ b

a

dx g(x)h(x) ≈ (b− a)
N

N
∑

j=1

h(xj)

where the points xj are chosen with probability density g(x) and we used simple

Monte Carlo integration with a constant probability in an interval
∫ b

a

dx f(x) ≈ (b− a)
N

N
∑

j=1

f(xj)

It is assumed: one can find g(x) and generate points with it.
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Monte Carlo using a Markov process:

How can one generate the desired (possibly complicated) distribution?

Rejection method for (low-dimensional) integrals: sampling with pX(x) for

x ∈ [b, a] is equivalent to choosing a random point uniformy in two dimensions

in the area under the curve pX(x).

Multi-dimensional integrals can be handled by exploiting Markov processes.

Markov process (“Markov chain”): generating a sequence of states with

probabilities depending only on the current state of the system.

For simplicity, for discrete states s1, s2, . . . , sR the transition probability is pij.

The matrix P with elements pij is called transition (Markov-) matrix.
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Properties of Markov chains: among others

• The product of two Markov matrices P1P2 is again a Markov matrix.

• Every eigenvalue of a Markov matrix satisfies |λ| ≤ 1.

• Every Markov matrix has at least one eigenvalue λ = 1.

Fundamental limit theorem for (irreducible, aperiodic) Markov chains:

they have a unique stationary distribution satisfying w
T = w

T
P which is

identical to the limiting distribution wj = limn→∞ p
(n)
ij .

Autocorrelation: points depend on previous points in the Markov chain.

The autocorrelation function for some observable Oi is defined by

ρ(t) ≡
(

〈OiOi+t〉 − 〈Oi〉2
) /(

〈O2
i 〉 − 〈Oi〉2

)

Decreasing autocorrelations decrease the Monte Carlo error.
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The Monte Carlo integration in QFT by “importance sampling”:

the distribution of configurations generated during the Monte Carlo integration

process follows the Boltzmann factor e−S[ϕ] (“canonical distribution“).

A configuration sequence {[ϕn], 1 ≤ n ≤ N} is generated by a Markov process.

In this sample the expectation value is approximated by the sample average:

A ≡ 1

N

N
∑

n=1

A[ϕn] −→ 〈A〉

The updating (Markov) process: a stochastic process where the transition from a

configration to the next one [ϕ]→ [ϕ′] happens with probability P ([ϕ′]← [ϕ]).

In order to generate the canonical distribution e−S[ϕ] a sufficient condition is

P ([ϕ′]← [ϕ]) e−S[ϕ] = P ([ϕ]← [ϕ′]) e−S[ϕ′]

This condition is called detailed balance.
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Metropolis algorithm: the “ancestor” of updating processes. EXERCISE

For a system with N possible configurations the transition probability for

[ϕ′] 6= [ϕ] is defined by

P ([ϕ′]← [ϕ]) = N−1 min

{

1,
e−S[ϕ′]

e−S[ϕ]

}

This transition matrix is realized by the following numerical procedure:

i.) choose first a trial configuration randomly from N configurations and

ii.) accept it as the next configuration in any case if the Boltzmann factor

is increased (the action is decreased). If the Boltzmann factor is decreased

(the action is increased), then accept the change with probability equal

to the ratio of the Boltzmann factors.

The accept–reject step can be implemented by comparing the ratio of the

Boltzmann factors to a pseudo-random number between 0 and 1. EXERCISE
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Quarks (fermions) in numerical simulations:

The lattice action has the form S[U,ψ, ψ] = Sg[U ] + Sq[U,ψ, ψ] where Sq is

quadratic in the Grassmann-variables: Sq =
∑

xy(ψyQyxψx) . The expectation

values have the form

〈F 〉 =

∫

[dU dψ dψ]e−Sg−SqF [U,ψ, ψ]
∫

[dU dψ dψ]e−Sg−Sq
≡ Z−1

∫

[dU dψ dψ]e−Sg−SqF [U,ψ, ψ]

After performing the Grassmann integration:
〈

ψy1ψx1
ψy2ψx2

· · ·ψynψxn
F [U ]

〉

= Z−1

∫

[dU ]e−Sg[U ] detQ[U ] F [U ]

·
∑

z1···zn

ǫz1z2···zn
y1y2···yn

Q[U ]−1
z1x1

Q[U ]−1
z2x2
· · ·Q[U ]−1

znxn

Here Q[U ]−1 is an (external) quark propagator and detQ[U ] generates the

virtual quark loops.

“Quenched approximation”: detQ[U ]⇒ 1 (this implies unphysical “ghosts”).
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Updating with dynamical fermions (“unquenching”):

The fermion determinant is non-local: it is a great challenge for computation.

Pseudofermion representation: (Petcher, Weingarten)

det (Q†Q) ∝
∫

[dφ dφ+] exp







−
∑

xy

(φ+
y [Q†Q]−1

yxφx)







Because of Q† = γ5Qγ5 and detQ† = detQ this describes two degenerate

quark flavours. In the Hybrid Monte Carlo algorithm this is implemented using

molecular dynamics equations. (Duane, Kennedy, Pendleton, Roweth)

For single quark flavours HMC is not applicable.

One can, however, use Polynomial HMC (PHMC) or Rational HMC (RHMC).
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HMC updating algorithm

HMC = Hybrid Monte Carlo

S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Phys. Lett. B195 (1987) 216

The basic idea of HMC is to employ molecular dynamics equations in order to

collectively move the field configuration in the whole volume.

Since discretised molecular dynamics equations are used, at the end of a

trajectory a Metropolis accept-reject step is implemented.

The equations of motion are derived from a Hamiltonian (here for the colour

gauge field Ux,µ ∈ SU(3)):

H[P,U ] =
1

2

∑

xµj

P 2
xµj + Sg[U ]
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The real variables Pxµj, j = 1, . . . , 8 (conjugate momenta) are Gaussian:

Pxµj ∝ exp







−1

2

∑

xµj

P 2
xµj







≡ PM [P ]

They are the expansion coefficients of the Lie algebra element

Px,µ ≡
∑

j

iλjPxµj

The expectation values are defined by

〈F 〉 =

∫

[dP ][dU ] exp(−H[P,U ])F [U ]

/
∫

[dP ][dU ] exp(−H[P,U ])

By a proper choice of the discretised trajectories one can achieve that the

transition probability from a configuration to the next satisfies detailed balance.

Therefore, the correct canonical distribution is reproduced.
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The Hamiltonian equations of motion are:

dPxµj

d τ
= −DxµjSg[U ] ,

d Uxµ

d τ
= iPx,µUx,µ

where the derivative with respect to the gauge field is defined as

Dxµjf [U ] ≡ d

dα

∣

∣

∣

∣

α=0

f
(

eiαλj Ux,µ

)

Proof of detailed balance:

the discretised trajectories TH provide the following transition probability

distribution at the end of the trajectory:

PH ([P ′, U ′]← [P,U ]) = δ ([P ′, U ′]− TH[P,U ])

We assume that the trajectories satisfy reversibility:

PH ([P ′, U ′]← [P,U ]) = PH ([−P,U ]← [−P ′, U ′])
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The Metropolis acceptance step is described by the well known probability

distribution:

PA ([P ′, U ′]← [P,U ]) = min
{

1, e−H[P ′,U ′]+H[P,U ]
}

The total transition probability is then

P ([U ′]← [U ]) =

∫

[dP dP ′]PA ([P ′, U ′]← [P,U ])PH ([P ′, U ′]← [P,U ])PM [P ]

Using the relation

e−H[P,U ] min
{

1, e−H[P ′,U ′]+H[P,U ]
}

= e−H[P ′,U ′] min
{

1, e−H[P,U ]+H[P ′,U ′]
}

one shows

e−H[P,U ]PA ([P ′, U ′]← [P,U ]) = e−H[P ′,U ′]PA ([P,U ]← [P ′, U ′])

= e−H[−P ′,U ′]PA ([−P,U ]← [−P ′, U ′])
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Therefore, due to reversibility we have with Wc[U ] ∝ exp {−Sg[U ]}:

Wc[U ]

∫

[dP dP ′]PA ([P ′, U ′]← [P,U ])PH ([P ′, U ′]← [P,U ])PM [P ]

= Wc[U
′]

∫

[dP dP ′]PA ([−P,U ]← [−P ′, U ′])PH ([−P,U ]← [−P ′, U ′])PM [−P ′]

Taking into account that [dP dP ′] = [d(−P ) d(−P ′)], this is just the detailed

balance condition.

Leapfrog trajectories: satisfy reversibility.

First we update the conjugate momente with a step size ∆τ = 1
2δτ .

This is followed by (n−1) update steps with ∆τ = 1
2δτ for the gauge variables,

alternating with the momentum variables.

Finally, the gauge variables are updated with ∆τ = δτ and the momentum

variables with ∆τ = 1
2δτ .
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The explicit formulae for these steps are:

P ′xµj = Pxµj −DxµjSg[U ]∆τ

U ′x,µ = exp







∑

j

iλj Pxµj ∆τ







Ux,µ

The single steps cause a discretisation error of the order δτ3.

Therefore, the action for the final configuration is expected to differ from the

initial configuration by an error of order δτ2.

Functions of SU(3) matrices: one can show for A ∈ SU(3) that EXERCISE

A3 =

(

1

2
TrA2

)

A+

(

1

3
TrA3

)

I

Therefore any analytic function f(A) can be written as

f(A) = a2A
2 + a1A+ a0 I

For the exponential function a0,1,2 can be calculated by recursion relations.
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HMC for QCD:

The fermionic (quark) fields are replaced by bosonic pseudofermion fields.

First let us consider two equal mass quarks. By using an auxiliary complex

scalar field φqxαc, which has the same number of components as the fermion

field ψqxαc, we have

det (Q+Q) ∝
∫

[dφ dφ+] exp







−
∑

xy

(φ+
y [Q+Q]−1

yxφx)







This means that the fermion determinant induces an effective action for the

gauge field

Seff [U ] ≡
∑

xy

(φ+
y {Q[U ]+Q[U ]}−1

yxφx)

which has to be added to the pure gauge action: Sg → Sg + Seff .
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PHMC updating algorithm

R. Frezzotti and K. Jansen, Phys. Lett. B402 (1997) 328; hep-lat/9702016

I. Montvay and E. Scholz, Phys. Lett. B 623 (2005) 73; hep-lat/0506006

This is applicable for any number of quark flavours, provided that the fermion

determinant is positive, which is the case for positive quark mass.

(For negative quark masses there is a sign problem!)

For Nf degenerate quarks one uses

|det(Q)|Nf =
{

det(Q†Q)
}Nf/2

=
{

det(Q̃2)
}Nf/2

≃ 1

detPn(Q̃2)

where the Hermitean fermion matrix is Q̃ ≡ γ5Q and the polynomial Pn satisfies

limn→∞Pn(x) = x−Nf/2 in an interval [ǫ, λ] covering the spectrum of Q†Q.
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The effective gauge action representing the fermions in the path integral is now

Seff [U ] =
∑

xy

(φ+
y Pn(Q̃2)yxφx)

Determinant break-up:

sometimes it is more effective to simulate several fractional quark flavours
(

det Q̃2
)Nf/2

=

[

(

det Q̃2
)Nf/(2nB)

]nB

In this case we need a polynomial approximations Pn(x) ≃ x−α

with α ≡ Nf/(2nB) (positive integer nB).

The effective gauge action is then

Seff [U ] =

nB
∑

k=1

∑

xy

(φ+
kyPn(Q̃2)yxφkx)
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Multi-step stochastic correction:

Polynomial approximations with a finite n cannot be exact. One can show that

for small fermion masses in lattice units the (typical) smallest eigenvalue of Q̃2

behaves as (am)2 and for a fixed quality of approximation within the interval

[ǫ, λ] the degree of the polynomial is growing as n ∝ √ǫ ∝ (am)−1.

This would require very high degree polynomials with n ≥ 103-104.

The way out is to perform stochastic corrections.

For improving the approximation a second polynomial is introduced:

P1(x)P2(x) ≃ x−α , x ∈ [ǫ, λ]

The first polynomial P1(x) gives a crude approximation P1(x) ≃ x−α.

The second polynomial P2(x) gives a good approximation according to

P2(x) ≃ [xαP1(x)]
−1
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During the updating process P1 is realized by PHMC updates whereas P2 is

taken into account stochastically by a noisy correction step:

one generates a Gaussian random vector with distribution

e−η†P2(Q̃[U ]2)η

∫

[dη]e−η†P2(Q̃[U ]2)η

and accepts the change [U ]→ [U ′] with probability min {1, A(η, [U ′]← [U ])},
where

A(η, [U ′]← [U ]) = exp
{

−η†P2(Q̃[U ′]2)η + η†P2(Q̃[U ]2)η
}

This update procedure satisfies the detailed balance condition. EXERCISE
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The Gaussian noise vector η can be obtained from η′ distributed according to

the simple Gaussian distribution
e−η′†η′

∫

[dη′]e−η′†η′

by setting it equal to
η = P2(Q̃[U ]2)−

1
2η′

In order to obtain the inverse square root on the right hand side one can proceed

with a polynomial approximation

P̄2(x) ≃ P2(x)
−1

2 , x ∈ [ǭ, λ]

The interval [ǭ, λ] can be chosen differently, usually with ǭ < ǫ, from the

approximation interval [ǫ, λ] for P2.
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The polynomial approximation with P2 can only become exact in the limit

when the degree n2 of P2 is infinite. Instead of investigating the dependence

of expectation values on n2 by performing several simulations, one fixes n2 to

some high value and performs another correction in the expectation values by

still finer polynomials. This is done by reweighting the configurations. This

measurement correction is based on a further polynomial approximation P ′ with

degree n′ which satisfies

lim
n′→∞

P1(x)P2(x)P
′(x) = x−α , x ∈ [ǫ′, λ]

The interval [ǫ′, λ] can be chosen such that ǫ′ = 0, λ = λmax, where λmax is

an absolute upper bound of the eigenvalues of Q̃2.

49



I. Montvay QFTMC

In practice it is more effective to take ǫ′ > 0 and determine the eigenvalues

below ǫ′ and the corresponding correction factors exactly.

For the evaluation of P ′ one can use recursive relations, which can be stopped

by observing the required precision of the result.

After reweighting the expectation value of a quantity A is given by

〈A〉 =
〈A exp {η†[1− P ′(Q̃2)]η}〉U,η

〈exp {η†[1− P ′(Q̃2)]η}〉U,η

,

where η is a simple Gaussian noise.

Here 〈. . .〉U,η denotes an expectation value on the gauge field sequence, which

is obtained in the two-step process described before, and on a sequence of

independent η’s of arbitrary length.
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tmLQCD is easier: the quark determinant of a degenerate quark doublet

becomes det (Q̃2 + µ2
s) where µs ≡ µq sinω with µq the quark mass in

lattice units and ω the twist angle.

The polynomials P1,n1(x) and P2,n2(x) now satisfy

lim
n2→∞

P1,n1(x)P2,n2(x) = (x+ µ2
s)
−Nf/2 , x ∈ [ǫ, λ]

In case of ω ≃ π
2 the polynomial approximations have lower orders and the

updating is faster due to the absence of exceptional configurations with very

small eigenvalues originating from topological defects at the cutoff scale.

We need Tflops: an example (for the near future) is

Ω = 503 · 100 = 1.25 · 107 and amq = 0.005,

for instance, a = 0.1 fm, mq = 10 MeV, L = 5 fm, mπ ≃ 200 MeV.
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Error estimates

In numerical simulations the updating process creates a configuration sample

[ϕn], (n = 1, 2, . . . , N).

The task is to determine the expectation value of different quantities.

The simplest kind of quantities are defined by a function of the field variables

A[ϕ]. An estimator of their expectation values is given by the sample average

A ≡ 1

N

N
∑

n=1

A[ϕn] .

wich gives for N →∞ the true expectationtation value A→ 〈A〉.
These quantities can be called primary quantities.
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The secondary quantities are functions of the primary quantities.

For instance, the correlation of two primary quantities A[ϕ], B[ϕ], which is

defined as

(AB) ≡ 〈AB〉 − 〈A〉〈B〉

In the ideal case, when the configurations contained in a sample are all

statistically independent, the sample average A is normally distributed around

the mean value A, with variance

σ2
A

=
A2 −A2

N − 1
=

(A−A)2

N − 1

This is the consequence of the central limit theorem.

In this case the error on the sample average of a primary quantity would be

A = A± σA.
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The above error estimate in is usually too optimistic, because the subsequent

configurations have lots of similarities, they are by no means independent. This

correlation in the sequence of generated configurations is called autocorrelation.

For a primary quantity A the autocorrelation is defined as

(AnAn+τ) ≡ 〈AnAn+τ〉 − 〈An〉〈An+τ〉

= 〈AnAn+τ〉 − 〈A〉2 = 〈(An −A)(An+τ − A)〉

In terms of the autocorrelation the true variance of A is EXERCISE

σ2
A

=

〈[

1

N

N
∑

n=1

(An − 〈A〉)
]2〉

=
N
∑

τ=−N

N − |τ |
N2

(AnAn+τ)

N→∞−→ (AA)
2τint,A

N
≃ (A2 −A2

)
2τint,A

N
,
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where the integrated autocorrelation time τint,A is defined as

τint,A ≡
1

2

+∞
∑

τ=−∞

(AnAn+τ)

(AA)
.

One can see that due to the autocorrelation the effective number of independent

measurements is N/(2τint,A).

In practice one can numerically determine the autocorrelation with a truncation

in the sum over time differences.

The continuum limit of lattice quantum field theories is defined near critical

points, that is near second order phase transitions in the bare parameter space.

This causes a difficulty because the autocorrelation (usually) diverges near

critical points.
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Error estimates for secondary quantities: one can use the jackknife analysis

Consider a sample of measurements of a primary quantity A. The measured

values are A1, A2, . . . , ANs, and the sample average is

A ≡ 1

Ns

Ns
∑

s=1

As

The best estimate of a secondary quantity is y = y(A) (not y(A)). A stable

error estimator for y can be derived from the jackknife averages obtained by

omitting a single measurement from the sample in all possible ways:

A(J)s ≡
1

Ns − 1

∑

r 6=s

Ar
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The corresponding values of the secondary quantity are the jackknife estimators

y(J)s ≡ y(A(J)s), with an average

y(J) ≡
1

Ns

Ns
∑

s=1

y(J)s

The variance of the jackknife estimators can be obtained as

σ2
(J)y ≡

Ns − 1

Ns

Ns
∑

s=1

(

y(J)s − y(J)

)2

For primary quantities this is equivalent to the simple variance. EXERCISE

For secondary quantities the jackknife variance estimator gives as an error

estimate y = y ± σ(J)y.
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Fitting simulation data

The simplest way to determine the masses is to fit some of the correlators by

an exponential function in time intervals for distant time-slices.

In case of small enough statistical errors one can also obtain good fits with a

sum of two (or more) exponentials.

The best results can be achieved, however, by taking a set of some operators

in a given channel and calculate the correlator matrix among them.

The correlator matrix can be approximated by the sum of contributions of

eigenstates of the Hamiltonian (i. e. of the transfer matrix). In general, a real

symmetric D×D correlator matrix C(t2, t1) between time-slices t1 and t2 > t1

is defined by the matrix elements of D operators Oa,Ob, . . . ,Od.
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If the energy eigenstates are |n〉, n = 1, 2, . . . ,M then in a shorthand notation

C(t2, t1) =

















C(t2, t1)aa C(t2, t1)ab . . . C(t2, t1)ad

C(t2, t1)ab C(t2, t1)bb . . . C(t2, t1)bd

... ... . . . ...

C(t2, t1)ad C(t2, t1)bd . . . C(t2, t1)dd

















where the matrix elements can be written as, for instance,

C(t2, t1)ab = (a|1)t2(b|1)t1 + (a|2)t2(b|2)t1 + . . .+ (a|M)t2(b|M)t1

with
(c|k)t ≡ 〈0|Oc(t)|k〉 = 〈k|Oc(t)|0〉 ,

for c = a, b, . . . , d and k = 1, 2, . . . ,M .
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Assuming that we consider bosonic (fermionic) operators, we have periodic

(anti-periodic) time dependence with the time extension of the lattice L4.

This implies

(a|k)t2(b|k)t1 = (a|k) (b|k) {exp[−tEk]± exp[−(L4 − t)Ek]} .

where the positive and negative sign stands for periodicity and anti-periodicity,

respectively. Here t ≡ t2 − t1, Ek is the energy (e.g. mass) corresponding to

the state |k〉 and (a|k) ≡ (a|k)0, (b|k) ≡ (b|k)0.

Fitting the correlator matrix by the expression given above one can obtain the

energies we are looking for.
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If correlators can be determined to a very good precision, one can perform

least-square fits by minimising the correlated chi-squared. In order to obtain a

good starting point for the minimisation, one can first minimise the uncorrelated

chi-squared defined by

χ2
n =

NC
∑

i=1

(

fi(p)−Xi

δXi

)2

where the index i runs over the independent matrix elements to be fitted, Xi

and δXi are the mean value and error of the matrix element i, respectively, and

fi(p) is the fitting function of NP parameters (p1, p2, . . . , pNP
).
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The best fit obtained in this way can be taken as a starting point to minimise

the correlated chi-squared

χ2
c =

NC
∑

i,j=1

(

fi(p)−Xi

)

Mij

(

fj(p)−Xj

)

,

where Mij = NC−1
ij , with the number N of input data and the correlator

matrix
Cij =

1

N − 1

N
∑

n=1

(

Xi,n −Xi

) (

Xj,n −Xj

)

.
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Recent developments in numerical simulations of QCD

The smallness of the u-, d- and s-quark masses implies:

the numerical simulation (with dynamical quarks) is a great challenge for

computations.

International collaborations in LQCD:

• USA: MILC, RBC, ... Collaboration

• Japan: CP-PACS, JLQCD, ... Collaboration

• Europe: UKQCD, Alpha, QCDSF, ETM, BMW ... Collaboration
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European Twisted Mass Collaboration:

about 30 physicists from

• Cyprus: University of Cyprus

• France: Université de Paris Orsay

• Germany: DESY, Universität Münster, TU München

• Italy: Università di Roma I,II,III, INFN, ECT∗

• Spain: Universidad València

• Switzerland: ETH Zürich

• United Kingdom: University of Liverpool

see e.g. Results from ETMC in the light-quark sector. P. Dimopoulos et al.

PoS CD09 (2009) 006
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fit to 4 points
fit to 5 points

(amPS)
2

(aµ)

0.0160.0120.0080.0040

0.08

0.06

0.04

0.02

0

L =∞
L = 24

(am2
PS/µ)

(aµ)

0.0160.0120.0080.0040

5

4.8

4.6

4.4

Left: (amπ)
2 as a function of the twisted mass aµ.

Right: (amπ)
2/(aµ) versus aµ. The finite volume ChPT-fit is shown,

together with the infinite volume limit (dashed line): l̄3 = 3.65(12).
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L =∞
L = 24

(afPS)

(aµ)

0.0160.0120.0080.0040

0.09

0.08

0.07

0.06

0.05

fit to 5 points
fit to 4 points

(afPS)

(aµ)

0.0160.0120.0080.0040

0.09

0.08

0.07

0.06

0.05

ChPT fits to afπ versus aµ. Left: the point with largest aµ left out (the

dashed line is the infinite volume limit);

Right: compared to finite volume fit to every point.

The fit gives: a = 0.087(1) fm, (a−1 = 2264(26) MeV), l̄4 = 4.52(06).
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The physical consequence of the smallness of three quark masses is the existence

of eight light pseudo-Goldstone bosons: π,K, η.

In the low-energy pseudo-Goldstone boson sector there is an SU(3) ⊗ SU(3)

chiral flavour symmetry and the dynamics can be described by Chiral

Perturbation Theory (ChPT).

In an expansion in powers of momenta and light quark masses several low energy

constants – the Gasser-Leutwyler constants – appear which parameterize the

strength of interactions in the low energy chiral Lagrangian.

An eminent task for Monte Carlo simulations in Lattice-QCD is to describe the

pseudo-Goldstone boson sector.
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The Gasser-Leutwyler constants are free parameters which can be constrained

by analyzing experimental data.

In the framework of lattice regularization they can be determined from first

principles by numerical simulations.

In numerical simulations, besides the possibility of changing momenta, one can

also change the masses of the quarks.

ChPT can be extended by changing the valence quark masses in quark

propagators independently from the sea quark masses in virtual quark loops.

In this way one arrives at Partially Quenched Chiral Perturbation Theory

(PQChPT, Bernard, Golterman).

68



I. Montvay QFTMC

Ratio tests of PQChPT for m2
π and fπ

Taking ratios at fixed gauge coupling (β) is advantageous because the Z-factors

of mutiplicative renormalization cancel (for instance, in mq and fπ).

Also: some types of lattice artifacts may cancel.

ChPT for Wilson-type lattice actions: taking into account lattice artifacts in

the Chiral Lagrangian one can reach the continuum limit faster.

Effective continuum theory (Symanzik):

cutoff effects (of the lattice regularized theory) can be described by O(a, a2, . . .)

terms in a local effective Lagrangian.
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This idea can be applied to low energy LQCD (Lee, Sharpe, Singleton, Rupak, Shores):

In case of the Wilson quark action the leading O(a) effects have a simple chiral

transformation property, identical to those of the quark masses.

At leading order of ChPT an additional O(a) parameter appears:

χ ≡ 2B0mq

f2
0

, ρ ≡ 2W0a

f2
0

(

η ≡ ρ

χ

)

At next to leading order (NLO):

the Gasser-Leutwyler constants L1, . . . , L8 are doubled by the (bare parameter

dependent) coefficients W1, . . . ,W8 describing O(a) effects.

(Extension to O(a2) is possible.)
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Variables to be used in ratio tests of PQChPT:

ξ ≡ mqV

mqS
=
χV

χS
, ηS ≡

ρS

χS
, σi ≡

m
(i)
qS

m
(R)
qS

=
χS

χR

For the pion decay constants the appropriate ratios are:

RfV V ≡
fV V

fSS
, RfV S ≡

fV S

fSS
, RRf ≡ f2

V S

fV V fSS

and for the pion mass-squares (dividing by the leading order behaviour)

RnV V ≡
m2

V V

ξm2
SS

, RnV S ≡
2m2

V S

(ξ + 1)m2
SS

, RRn ≡ 4ξm4
V S

(ξ + 1)2m2
V Vm

2
SS

For the sea quark mass dependence

RfSS ≡
fSS

fRR
, RnSS ≡

m2
SS

σm2
RR

are appropriate.
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Examples of the NLO formulas: for Ns degenerate sea quarks

RfV V = 1 + 4(ξ − 1)χSLS5 +
NsχS

32π2
(1 + ηS) log(1 + ηS)

−NsχS

64π2
(1 + ξ + 2ηS) log

1 + ξ + 2ηS

2
,

RRf = 1 +
χS

32Nsπ2
(ξ − 1)− χS

32Nsπ2
(1 + ηS) log

ξ + ηS

1 + ηS
,

RfSS = 1 + 4(σ − 1)χR(NsLR4 + LR5) + 4(ηSσ − ηR)χR(NsWR4 +WR5)

−NsχR

32π2
σ(1 + ηS) log[σ(1 + ηS)] +

NsχR

32π2
(1 + ηR) log(1 + ηR)

and similarly for Rn . . ..
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LSk denote Gasser-Leutwyler constants renormalized at the scale f0
√
χS.

They are related to L̄k defined at the scale f0 and L′k defined at the generic

scale µ according to

LSk = L̄k − ck log(χS) = L′k − ck log(
f2
0

µ2
χS)

with some (known) constants ck.

The corresponding relations for the coefficients WSk are:

WSk = W̄k − dk log(χS) = W ′k − dk log(
f2
0

µ2
χS)

NNLO corrections (Sharpe, van de Water): in the valence quark mass dependence

the “counterterm insertion” contributions have the form

DX χ2
S(ξ − 1) +QX χ2

S(ξ − 1)2

which can also be taken into account in the fits.
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Recent numerical simulations (qq+q Collaboration, DESY-Münster):

164 and 163 · 32 lattices, Ns = 2 light quark flavours.

Gauge coupling: β = 5.1;

hopping parameter: κ0 = 0.176 , κ1 = 0.1765 , κ2 = 0.177.

Configuration sample: between 750 and 1800 per point.

Lattice spacing determined from r0/a: a = 0.189(5) fm ≃ (1.04 GeV)−1

giving lattice extensions L ≃ 3 fm.

Pion masses: amπ = 0.6747(14), 0.6211(22), 0.4354(68), 0.3676(23)

which correspond to mπ ≃ 702, 646, 452, 415 MeV.

Sea quark masses: approximately 60 MeV to 25 MeV.

Valence quark masses: 1
2msea ≤ mvalence ≤ 2msea.
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163 · 32 lattice at (β = 5.1, κ = 0.177): one parameter fit of

(RRn− 1) = χS(1− ξ + log ξ)/(32π2) (“pure chiral log“).

First estimates of L-G constants:

renormalized at scale f0
√

χR with

χR = 33.5(2.4)

LR5 = 3.00(19) · 10−3
,

(2LR8 − LR5) = −6.25(52) · 10−4

From the sea quark mass dependence:

(2LR4 + LR5) = 4.34(28) · 10−3 ,

(4LR6 + 2LR8 − 2LR4 − LR5)

= −9.1(6.4) · 10−5
,

Λ3

f0

= 6.51(57) ,
Λ4

f0

= 22.9(1.5)

75



I. Montvay QFTMC

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
nV

V-
1

ξ

Valence quark mass dependence of RnVV

164 lattice

β=5.10

κ=0.1760

χR = 33.5(2.4)

σ = 1.0

η = 0.07

fit
eta

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
nV

V-
1

ξ

Valence quark mass dependence of RnVV

164 lattice

β=5.10

κ=0.1765

χR = 33.5(2.4)

σ = 0.836

η = 0.03

fit
eta

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
nV

V-
1

ξ

Valence quark mass dependence of RnVV

164 lattice

β=5.10

κ=0.1770

χR = 33.5(2.4)

σ = 0.413

η = 0.02

fit
eta

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
R

n-
1

ξ

Valence quark mass dependence of RRn

164 lattice

β=5.10

κ=0.1760

χR = 33.5(2.4)

σ = 1.0

η = 0.07

fit
eta

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
R

n-
1

ξ

Valence quark mass dependence of RRn

164 lattice

β=5.10

κ=0.1765

χR = 33.5(2.4)

σ = 0.836

η = 0.03

fit
eta

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
R

n-
1

ξ

Valence quark mass dependence of RRn

164 lattice

β=5.10

κ=0.1770

χR = 33.5(2.4)

σ = 0.413

η = 0.02

fit
eta

PQChPT fits of (RnV V − 1) and (RRn− 1) for three different sea quark mass values.
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Budapest-Marseille-Wuppertal (BMW) Collaboration

Z. Fodor et al. arXiv:1011.2403 [hep-lat], arXiv:1011.2711 [hep-lat]

Lattice QCD at the physical point:

quark masses down to 120 MeV, lattice volume up to 6 fm.

Improved lattice action:

HEX-smeared clover (Wilson-) fermions, Symanzik-improved gauge action.

Results for light quark masses: values for MS(2 GeV)

mu,d = 3.47(10) MeV

ms = 95(3) MeV.
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Outlook

Custom-designed supercomputers for lattice QCD (2004...):

QCDOC, apeNEXT, ..

QPACE: QCD Parallel Computing on the Cell,

Jülich-Wuppertal(-Regensburg): designed in 2009, based on IMB PowerXCell8i.

9 cores/CPU, network: Field-Programable-Gate-Arrays (FPGS),

1 TByte/rack, 4 racks.

Green500 list: QPACE has lead in 2009-2010

with 773 Mflops/W (57.5 kW → 44 Tflops).

QPACE is used, for instance, by the BMW-Collaboration: (H. Baier et al., PoS

LAT2009 (2009) 001. [arXiv:0911.2174 [hep-lat]].)
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GPU’s: up to 1 TFlops (double precision) in peak (NVIDIA, AMD).

Massively parallel architecture (512 cores, thousands of registers).

Programming environement (NVIDIA): CUDA.

First LQCD codes are available, also used in LHC experiments (ATLAS, Alice:

offline track reconstruction, trigger).

TOP500 list: Tianhe-1A (2.6 PFlops).

General purpose supercomputers: BlueGeneP, Nehalem based Supercomputer,..

Well suited for LQCD simulations, costumer friendly programming environemt.

The goal is to perform dynamical quark simulations with light quarks in large

volumes.
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