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Prelude: Noether’s theorem

Emmy Noether
(1882-1935)

In classical mechanics and classical field theory, one of the most 
important consequences of the existence of symmetries is spelled 
out by Noether’s theorem: associated with each continuous 
symmetry there is a conserved charge.

Chapter 7
Symmetries I: Continuous Symmetries

The concept of symmetry is paramount in modern Physics. In this chapter we are
going to deal with the implementation of symmetries in quantum field theory. After
reviewing the relation between continuous symmetries and conservations laws, we
study how symmetries are realized quantum mechanically and in which way dif-
ferent realizations reflect in the spectrum of the theory. Our aim is to describe the
concept of spontaneous symmetry breaking, which is crucial to our current under-
standing of how particle masses emerge in the standard model. A number of sub-
tleties in how and when spontaneous symmetry breaking can occur are described
towards the end of the chapter. The focus of the present chapter centers on contin-
uous symmetries. The physics of discrete symmetries will be taken up in chapter
11.

7.1 Noether’s Theorem

In classical mechanics and classical field theory there is a basic result relating sym-
metries and conserved charges. This is called Noether’s theorem and states that for
each continuous symmetry of the system there is a conserved current. In its simplest
version in classical mechanics it is easy to prove. Let us consider a system whose ac-
tion S qi invariant under a transformation qi t qi t,! labelled by a continuous
parameter ! . This means that, without using the equations of motion, the Lagrangian
changes at most by a total time derivative

L q ,q L q,q
d
dt
f q,! , (7.1)

where f q,! is a function of the coordinates. If ! 1 we can consider an infinites-
imal variation of the coordinates "!qi t and the transformation (7.1) of the La-
grangian implies
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When !"qi is applied on a solution to the equations of motion the term inside the
square brackets vanishes and we conclude that there is a conserved quantity

Q 0 with Q
L
qi
!"qi f q,!" . (7.3)

Notice that in this derivation it is crucial that the symmetry depends on a continuous
parameter since otherwise the infinitesimal variation of the Lagrangian in eq. (7.2)
does not make sense.
In classical field theory a similar result holds. Let us consider for simplicity a

theory of a single field # x . We say that the variation !"# depending on a continu-
ous parameter " is a symmetry of the theory if, again without using the equations of
motion, the Lagrangian density changes by

!"L µKµ . (7.4)

If this happens then the action remains invariant and so do the equations of motion.
Working out now the variation ofL under !"# we find

!"L
L

µ#
µ!"#

L
#
!"#

µ
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µ#
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L
# µ

L

µ#
!"# (7.5)

µKµ .

If # x is a solution to the equations of motion, the last term in the second line
disappears, and we find a conserved current

µJµ 0 with Jµ
L

µ#
!"# Kµ . (7.6)

A conserved current implies the existence of a charge

Q d3xJ0 t,x (7.7)

which is conserved

dQ
dt

d3x 0J0 t,x d3x iJi t,x 0, (7.8)

with
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In classical mechanics:

In classical field theory:
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The associated conserved charge is given by
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Quantum Mechanical Realization of Symmetries

Quantum mechanically, a symmetry acts on states in such a way that both 
probabilities and transition amplitudes are left invariant, i.e. if 
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measures, in the quantum theory, the number of fermions minus the number of an-
tifermions. It commutes with the other N2 1 charges associated with the nontrivial
SU(N) part of the global symmetry group.
As an example of these internal unitary symmetries we mention the approxi-

mate flavor symmetries in hadron physics. Ignoring charge and mass differences,
the QCD Lagrangian is invariant under the following unitary symmetry acting on
the quarks u and d

u
d M u

d , (7.24)

where M U(2) = U(1)B SU(2). The U(1)B factor corresponds to the baryon
number, whose conserved charge assigns 1

3 to quarks and antiquarks respectively.
On the other hand the SU(2) part mixes the u and d quarks. Since the proton is a
bound state of two quarks u and one quark d, while the neutron is made out of one
quark u and two quarks d, this symmetry reduces at low energies to the well-known
isospin transformations of nuclear physics mixing protons and neutrons.

7.2 Quantum Mechanical Realizations of Symmetries

In a quantum theory physical symmetries are maps in the Hilbert space of the theory
perserving the probability amplitudes. In more precise terms, a symmetry is a one-
to-one transformation that, acting on two arbitrary states ! , " H

! ! , " " , (7.25)

satisfies

! " ! " . (7.26)

Wigner’s theorem states that these transformations are implemented by operators
that are either unitary or antiunitary. Unitary operators are well-known objects from
any quantum mechanics course. They are linear operatorsU satisfying1

U ! U " ! " , (7.27)

for any two states in the Hilbert space. In addition, the transformation of an operator
O underU is

O O U OU 1, (7.28)

from where it follows that ! O " ! O " .
Antiunitary operators, on the other hand, have the property

1 Here we use the notation U ! U ! and U ! ! U .
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unitary or antiunitary operators:

Unitary Antiunitary 
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U ! U " ! " (7.29)

and are antilinear, i.e.

U a ! b " a U ! b U " , a,b C. (7.30)

To find the transformation of operator matrix elements under an antiunitary trans-
formation we compute

! O " O ! " U " U O ! . (7.31)

Writing now U O ! U O ! and inserting the identity we arrive at the final
result

! O " " U O U 1 ! . (7.32)

Continuous symmetries are implemented only by unitary operators. This is be-
cause they are continuously connected with the identity, which is a unitary operator.
Discrete symmetries, on the other hand, can be implemented by either unitary or
antiunitary operators. An example of the latter is time reversal, that we will study in
detail in chapter 11.
In the previous section we have seen that in canonical quantization the conserved

chargesQa associated with a continuous symmetry by Noether’s theorem are opera-
tors generating the infinitesimal transformations of the quantum fields. The conser-
vation of the classical charges Qa,H PB 0 implies that the operatorsQa commute
with the Hamiltonian

Qa,H 0. (7.33)

The symmetry group generated by the operators Qa is implemented in the Hilbert
space of the theory by a set of unitary operators U ! , where !a (with a
1, . . . ,dimg) labels the transformation2. That the group is generated by the con-
served charges means that in a neighborhood of the identity, the operators U !
can be written as

U ! ei!
aQa . (7.34)

A symmetry group can be realized in the quantum theory in two different ways,
depending on how its elements act on the ground state of the theory. Implementing
it in one way or the other has important consequences for the spectrum of the theory,
as we now learn.

2 A quick survey of group theory can be found in Appendix B.
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Continuous symmetries are always implemented by unitary operators. Exercise

Discrete symmetries be implemented both by unitary and antiunitary operators.
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In the presence of continuous symmetries the conserved charges    are 
converted upon quantization in operators such that
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Monday for important 
counterexamples!

These charges generate the action of the symmetry on the Hilbert space

132 7 Symmetries I: Continuous Symmetries

U ! U " ! " (7.29)

and are antilinear, i.e.

U a ! b " a U ! b U " , a,b C. (7.30)

To find the transformation of operator matrix elements under an antiunitary trans-
formation we compute

! O " O ! " U " U O ! . (7.31)

Writing now U O ! U O ! and inserting the identity we arrive at the final
result

! O " " U O U 1 ! . (7.32)

Continuous symmetries are implemented only by unitary operators. This is be-
cause they are continuously connected with the identity, which is a unitary operator.
Discrete symmetries, on the other hand, can be implemented by either unitary or
antiunitary operators. An example of the latter is time reversal, that we will study in
detail in chapter 11.
In the previous section we have seen that in canonical quantization the conserved

chargesQa associated with a continuous symmetry by Noether’s theorem are opera-
tors generating the infinitesimal transformations of the quantum fields. The conser-
vation of the classical charges Qa,H PB 0 implies that the operatorsQa commute
with the Hamiltonian

Qa,H 0. (7.33)

The symmetry group generated by the operators Qa is implemented in the Hilbert
space of the theory by a set of unitary operators U ! , where !a (with a
1, . . . ,dimg) labels the transformation2. That the group is generated by the con-
served charges means that in a neighborhood of the identity, the operators U !
can be written as

U ! ei!
aQa . (7.34)

A symmetry group can be realized in the quantum theory in two different ways,
depending on how its elements act on the ground state of the theory. Implementing
it in one way or the other has important consequences for the spectrum of the theory,
as we now learn.

2 A quick survey of group theory can be found in Appendix B.

8

W Z0 (0.94)

AL

AL

AL

AL

AL

AL

AL

AL

(0.95)

(0.96)

AL

AL

AL

AL

(0.97)

U a ! b " aU ! bU " , a,b C (0.98)

# x # x $%# x (0.99)

U ! HU ! H (0.100)

There are, however, two ways in which this symmetry can be realized on the 
spectrum of the theory:

• Wigner-Weyl realization. The ground state is invariant under the 
symmetry

7.2 Quantum Mechanical Realizations of Symmetries 133

Wigner-Weyl realization.

In this case the ground state of the theory 0 is invariant under all the elements
of the symmetry group U ! 0 0 . eq. (7.34) implies then that the vacuum is
annihilated by them

Qa 0 0. (7.35)

The field operators of the quantum theory have to transform according to some
irreducible representation of the symmetry group. It is easy to see that the finite
form of the infinitesimal transformation (7.9) is given by

U ! "iU ! 1 Ui j ! " j, (7.36)

where the matricesUi j ! form the group representation in which the field "i trans-
forms. If we consider now the quantum state associated with the operator "i

i "i 0 (7.37)

we find that, due to the invariance of the vacuum (7.35), the states i have to trans-
form in the same representation as "i

U ! i U ! "iU ! 1U ! 0 Ui j ! " j 0 Ui j ! j . (7.38)

Therefore the spectrum of the theory is classified in multiplets of the symmetry
group.
Any two states within a multiplet can be “rotated” into one another by a symme-

try transformation. Now, since H,U ! 0 the conclusion is that all states in the
same multiplet have the same energy. If we consider one-particle states, then going
to the rest frame we see how all states in the same multiplet have exactly the same
mass.

Nambu-Goldstone realization.

In our previous discussion we have seen how the invariance of the ground state of
a theory under a symmetry group has as a consequence that the spectrum splits into
multiplets transforming under irreducible representations of the symmetry group.
This shows in degeneracies in the mass spectrum.
The condition (7.35) is not mandatory and can be relaxed by considering theories

where the vacuum state is not preserved by the symmetry

ei!
aQa 0 0 Qa 0 0. (7.39)

The symmetry is said to be spontaneously broken by the vacuum.
To illustrate the consequences of (7.39) we consider the example of a number of

scalar fields # i (i 1, . . . ,N) whose dynamics is governed by the Lagrangian
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(at least for some a’s)

In this case there is a very important result known as Goldstone’s theorem:

For every generator broken by the vacuum, the spectrum of the theory 
contains a massless mode (called the Nambu-Goldstone mode)

Jeffrey Goldstone
(b. 1933)

Yoichiro Nambu
(b. 1921)

In particle physics, the typical example of Nambu-Goldstone 
bosons is provided by the pions. Let us consider two-flavor 
QCD
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At low energies, the strong interaction between quarks produces quark-
antiquark condensates 

These condensates only preserve the “diagonal” SU(2) where            . Then the 
global                        is spontaneously broken

8

W Z0 (0.94)

AL

AL

AL

AL

AL

AL

AL

AL

(0.95)

(0.96)

AL

AL

AL

AL

(0.97)

U a ! b " aU ! bU " , a,b C (0.98)

# x # x $%# x (0.99)

U ! HU ! H (0.100)

L
1
2
Tr Fµ&Fµ& u iD mu u d iD md d (0.101)

mu md 0 (0.102)

SU(2)L SU(2)R (0.103)

uL
dL

ML
uL
dL

uR
dR

MR
uR
dR

(0.104)

ML,MR SU(2) (0.105)

ML MR (0.106)

According to Goldstone’s theorem, there will be one massless mode for each 
of the three broken generators, with the same quantum numbers as the 
broken currents
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9

SU(2)L SU(2)R SU(2)V SU(2)A SU(2)V (0.107)

qq qLqR qRqL 0 (0.108)

Jµa u,d !µ
"a
2

u
d (0.109)

Jµa5 u,d !µ!5
"a
2

u
d (0.110)

SU(2)A (0.111)

0 Jµa5 x #b p i f#$ abpµe iEpt ip x 0 (0.112)

Exercise: prove that 
these are the conserved 
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            and   
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At low energies, the strong interaction between quarks produces quark-
antiquark condensates 

These condensates only preserve the “diagonal” SU(2) where            . Then the 
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According to Goldstone’s theorem, there will be one massless mode for each 
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Thus, the three pions can be identified as the Nambu-Goldstone bosons 
associated with the spontaneous symmetry breaking of chiral symmetry.

But then, why are they not massless?

The u and d quarks have small but nonzero masses. Therefore, chiral symmetry 
is only approximate and the (pseudo)Goldstone bosons are not strictly 
massless. 

Still, they are the lightest hadrons. The reason is that the pion mass goes to 
zero with the quark masses    , whereas the proton mass is determined 
by         .

Goldstone bosons appear as well in other fields such as condensed matter 
physics. For example, in the case of a Heisenberg ferromagnet with 
Hamiltonian

7.3 Some Applications of Goldstone’s Theorem 137

the scalar field are orthogonal 01 02 0 and, moreover, cannot be connected by
any local observable O x , 01 O x 02 0. Heuristically this can be understood
by thinking that in the infinite volume limit switching from one vacuum into another
requires changing the vacuum expectation value of the field everywhere in space at
the same time, something that cannot be done by any local operator of the theory.
Notice that this is radically different from our expectations based on the quantum
mechanics of a system with a finite number of degrees of freedomwhere symmetries
do not break spontaneously, i.e., the ground state is always symmetrical.
Let us make these arguments a bit more explicit since they are very important in

understanding how symmetry breaking works. Consider a relatively simple system:
a set of spin- 12 magnets, the Heisenberg ferromagnet model, with nearest neighbors
interactions. Space is replaced by a lattice with spacing a and lattice vectors x
n1a,n2a,n3a . At each lattice site x there is a spin- 12 degree of freedom

s 1
2
!1,

1
2
!2,

1
2
!3 , (7.55)

with ! i the Pauli matrices. The Heisenberg Hamiltonian is defined by

H J
x,x

s x s x with J 0, (7.56)

where the symbol x,x indicates that we are summing over nearest neighbors on
the lattice.
At each lattice site we have a two-dimensional Hilbert space whose basis we can

take to be the two s3 x eigenstates x; , x; }. The state corresponding to the
spin at the site x being aligned along the direction r̂

r̂ s x x; r̂ 1
2
x; r̂ , (7.57)

can be written in this basis as

x; r̂ cos
"
2

x; ei# sin
"
2

x; , (7.58)

where " and # are the polar an azimuthal angle associated with the unit vector r̂.
Using rotational invariance it is an easy exercise to show that

x; r̂ x; r̂ cos
$
2

, (7.59)

where $ is the angle between the unit vectors r̂ and r̂ , i.e., r̂ r̂ cos$ .
We can construct now the ground states of the Hamiltonian (7.56). They cor-

respond to states where all spins in the ferromagnet are aligned along the same
direction, that we indicate by the unit vector r̂. Thus we write

with
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Although the Hamiltonian is invariant under rotations, the ground state breaks 
it because of spontaneous magnetization.

The spin waves (magnons) are the associated Goldstone bosons.
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Nambu-Goldstone bosons play a very important role in the Brout-Englert-
Higgs mechanism (remember the first lecture)

202 10 The Origin of Mass

Replacing (10.30) by (10.31) does not solve our ultraviolet problems. The theory
is still ill-defined at energies of orderM gYM and should be completed by specifying
the dynamics ofU x at high energies. Here we are faced with various alternatives.
One of them is the Brout-Englert-Higgs mechanism presented: a gauge invariant
potential implementing symmetry breaking is added

V U U
!
4

M
gYM

4 1
2
Tr U U 1

2
, (10.32)

and the fieldU x is linearized around the vacuum

U x U0 x 1 gYM
M

h x , (10.33)

where U0 x SU(2) and h x is the Higgs field of mass m2H 2!M2 g2YM. At en-
ergies below mH the Higgs field is frozen, U x U0 x , and the Stückelberg La-
grangian (10.31) provides a reliable phenomenological description.
This linear realization is the simplest, and historically the first one used. Many

other scenarios have been proposed as alternative ultraviolet cures of the mass gener-
ation mechanism. Among them, technicolor, whereU x is a bound state (analogous
to the pion) of a set of strongly coupled new fermions. There is a large collection of
alternatives to the standard Higgs mechanism (for a clear exposition see [2]), how-
ever they all share the same mechanism of giving masses to the vector bosons by
absorbing the relevant Nambu-Goldstone bosons. This is reasonable, the masses of
the W and Z0 bosons are infrared properties of the theory and their origin is not
necessarily related to the high energy fate of the ”Higgs”-mode.
This discussion should help clarifying the statement contained in the closing

paragraph of section 5.5. The Lagrangian (10.30) can be used to describe the physics
of a nonabelian massive gauge field chirally coupled to massive fermions, as long
as we restrict our attention to energies below the mass scales of the problem. In this
regime, the absence of gauge invariance is no big deal. As the reader has repeatedly
been reminded along the book, gauge invariance is not a real symmetry but rather a
redundancy. The point of Stückelberg’s trick is to “fake” this redundancy, allowing
to write a formally gauge invariant Lagrangian.
The situation is different if we aim at constructing a theory whose predictions

can be trusted to arbitrary high energies, in the spirit of good old QED4. In this case
gauge invariance is a crucial ingredient for consistency. The Brout-Englert-Higgs
mechanism provides a renormalizable, gauge invariant ultraviolet completion of the
massive low energy theory. Historically, this explains the enormous effect the proof
of renormalizability of spontanously broken gauge theories by ’t Hooft and Veltman
[5] had on the acceptance of the Glashow-Weinberg-Salam theory.

4 Let us forget for the moment about the presence of the Landau pole.

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

The “angular” part of the field         corresponds to 
the massless excitations along the “valley” of the 
potential

10.1 The Masses in the Standard Model 201

Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian

L
1
2
Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
1
2
Tr Fµ"Fµ" M2

g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.

Thus, the three Goldstone bosons associated with the spontaneous symmetry 
breaking of SU(2) are contained in the Stückelberg field.

When it is gauge away (i.e., in the unitary gauge         ) these Goldstone 
bosons are transmuted into the longitudinal components of the three massive 
SU(2) gauge fields.
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Discrete Symmetries

We begin with the equations for the electromagnetic field coupled to a 
number of charged particles

• Parity: it reverses the sign of the spatial coordinates leaving time invariant210 11 Symmetries II: Discrete Symmetries

P : x0,x x0, x . (11.3)

Physically, this transformation corresponds to mirror reflection combined with a
rotation of ! around an axis normal to the plane of the mirror. The corresponding
transformation of the electromagnetic field is then

P :
A0 x0,x A0 x0, x

A x0,x A x0, x
. (11.4)

Charge conjugation acts by reversing the signs of all charges

C : qa qa, (11.5)

and the electromagnetic potential

C : Aµ x Aµ x . (11.6)

Finally, the effect of time reversal is to reverse the sign of the time coordinate

T : x0,x x0,x , (11.7)

while acting on the electromagnetic field potential as

T :
A0 x0,x A0 x0,x

A x0,x A x0,x
. (11.8)

This transformation implies that the electric field is invariant while the magnetic
field changes sign, as it is heuristically expected: the magnetic field is generated by
moving charges whose momenta are reversed by T. This changes the sign of the
magnetic field and leaves the electric field unmodified.
Discrete symmetries can be implemented in classical field theory as well. Let us

take the simplest example of a complex scalar field " x coupled to a U(1) gauge
field with with action

S d4x Dµ" Dµ"
1
4
Fµ#Fµ# , (11.9)

where Dµ µ ieAµ is the covariant derivative (cf. section 4.3). Given the trans-
formation of the gauge field under the discrete symmetries found above, we have
to find out how the scalar field transforms under P, C and T in such a way that the
action, and hence the field equations, remain invariant. Since the Maxwell action is
invariant under these transformations we only have to take care of the first term in
(11.9).
Let us begin with parity. Given the transformation (11.4) we find the action to be

invariant provided

Chapter 11
Symmetries II: Discrete Symmetries

This is probably the most technical chapter of this book. Discrete symmetries play a
fundamental role in modern particle physics and cosmology. We have delayed their
study until now to be able to develop all the tools required to explore some or their
fascinating consequences. In particular we present an outline of the derivation of
the CPT theorem from first principles and some of the consequences of the proof,
in particular, the connection between spin and statistics.

11.1 Discrete Symmetries in Classical Mechanics and Field
Theory

In relativistic mechanics, the basic equations describing the dynamics of a system of
N charged particles coupled to the electromagnetic field are the Maxwell equations
supplemented by the Lorentz force

µFµ! j! ,

"µ!#$ !F#$ 0, (11.1)

mk
d2xµk
d%2

Fµ! xk j! xk ,

where k 1, . . . ,N and the current is given by

jµ x
N

k 1
qk d%

dxµk
d%

& 4 xµ xµk % . (11.2)

Besides their Lorentz covariance, these equations are preserved by three discrete
symmetries: parity (P), charge conjugation (C) and time reversal (T). Parity acts by
reversing the sign of the spatial coordinates
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where Dµ µ ieAµ is the covariant derivative (cf. section 4.3). Given the trans-
formation of the gauge field under the discrete symmetries found above, we have
to find out how the scalar field transforms under P, C and T in such a way that the
action, and hence the field equations, remain invariant. Since the Maxwell action is
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(11.9).
Let us begin with parity. Given the transformation (11.4) we find the action to be

invariant provided

              M. A. Vázquez-MozoSelected Topics in Quantum Field Theory, TAE-2011 Bilbao



• Charge conjugation: it reverses the sign of all charges

210 11 Symmetries II: Discrete Symmetries
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while reversing as well the sign of the electromagnetic field

• Time reversal: it reverses the flow of time, i.e.,
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Finally, the effect of time reversal is to reverse the sign of the time coordinate

T : x0,x x0,x , (11.7)

while acting on the electromagnetic field potential as

T :
A0 x0,x A0 x0,x

A x0,x A x0,x
. (11.8)

This transformation implies that the electric field is invariant while the magnetic
field changes sign, as it is heuristically expected: the magnetic field is generated by
moving charges whose momenta are reversed by T. This changes the sign of the
magnetic field and leaves the electric field unmodified.
Discrete symmetries can be implemented in classical field theory as well. Let us

take the simplest example of a complex scalar field " x coupled to a U(1) gauge
field with with action

S d4x Dµ" Dµ"
1
4
Fµ#Fµ# , (11.9)

where Dµ µ ieAµ is the covariant derivative (cf. section 4.3). Given the trans-
formation of the gauge field under the discrete symmetries found above, we have
to find out how the scalar field transforms under P, C and T in such a way that the
action, and hence the field equations, remain invariant. Since the Maxwell action is
invariant under these transformations we only have to take care of the first term in
(11.9).
Let us begin with parity. Given the transformation (11.4) we find the action to be

invariant provided
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The electric field E is reversed by P and C, and left invariant by T, while the 
magnetic field B changes sign under C and T but is left invariant by P.

Exercise: show that the equations shown in 
the previous transparency are indeed 
invariant under P, C and T
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Specially interesting are the action of P, C and T on a classical Dirac field. On 
general grounds the transformation has to be of the form
212 11 Symmetries II: Discrete Symmetries

!" x #"$!$ x or !" x #"$!$ x (11.16)

where x µ x0, x for P, x µ xµ for C and x µ x0,x for T. Viewing these as
active transformations on the fields, we require that the transformed spinors satisfy
the Dirac equation with respect to the coordinates xµ . Thus, the complex matrix #"$
has to be chosen such that

i%µ µ m ! x 0
i%µ µ m #! x 0

i%µ µ m #! x 0
. (11.17)

Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided

# 1%µ# %µ . (11.19)

The form of the matrix # depends on the representation of the Dirac algebra. For
the one in eq. (A.7) we can take # i%2 and the transformation of the spinor is
then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.
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BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
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In the case of parity, assuming                             we find that
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Hence, we can choose
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where x µ x0, x for P, x µ xµ for C and x µ x0,x for T. Viewing these as
active transformations on the fields, we require that the transformed spinors satisfy
the Dirac equation with respect to the coordinates xµ . Thus, the complex matrix #"$
has to be chosen such that

i%µ µ m ! x 0
i%µ µ m #! x 0

i%µ µ m #! x 0
. (11.17)

Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided

# 1%µ# %µ . (11.19)

The form of the matrix # depends on the representation of the Dirac algebra. For
the one in eq. (A.7) we can take # i%2 and the transformation of the spinor is
then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.

with      an arbitrary phase.
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P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided

# 1%µ# %µ . (11.19)

The form of the matrix # depends on the representation of the Dirac algebra. For
the one in eq. (A.7) we can take # i%2 and the transformation of the spinor is
then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.
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Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided
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The form of the matrix # depends on the representation of the Dirac algebra. For
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then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.
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Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided
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The form of the matrix # depends on the representation of the Dirac algebra. For
the one in eq. (A.7) we can take # i%2 and the transformation of the spinor is
then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.
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The transformation of the Dirac spinor under T also involves the complex conju-
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1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.

For charge conjugation, we assume                              . Then
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Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided

# 1%µ# %µ . (11.19)

The form of the matrix # depends on the representation of the Dirac algebra. For
the one in eq. (A.7) we can take # i%2 and the transformation of the spinor is
then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with
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Exercise:

Consider a complex scalar field coupled to electromagnetism

and show that 

with     ,      phases.
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P : x0,x x0, x . (11.3)

Physically, this transformation corresponds to mirror reflection combined with a
rotation of ! around an axis normal to the plane of the mirror. The corresponding
transformation of the electromagnetic field is then

P :
A0 x0,x A0 x0, x

A x0,x A x0, x
. (11.4)

Charge conjugation acts by reversing the signs of all charges

C : qa qa, (11.5)

and the electromagnetic potential

C : Aµ x Aµ x . (11.6)

Finally, the effect of time reversal is to reverse the sign of the time coordinate

T : x0,x x0,x , (11.7)

while acting on the electromagnetic field potential as

T :
A0 x0,x A0 x0,x

A x0,x A x0,x
. (11.8)

This transformation implies that the electric field is invariant while the magnetic
field changes sign, as it is heuristically expected: the magnetic field is generated by
moving charges whose momenta are reversed by T. This changes the sign of the
magnetic field and leaves the electric field unmodified.
Discrete symmetries can be implemented in classical field theory as well. Let us

take the simplest example of a complex scalar field " x coupled to a U(1) gauge
field with with action

S d4x Dµ" Dµ"
1
4
Fµ#Fµ# , (11.9)

where Dµ µ ieAµ is the covariant derivative (cf. section 4.3). Given the trans-
formation of the gauge field under the discrete symmetries found above, we have
to find out how the scalar field transforms under P, C and T in such a way that the
action, and hence the field equations, remain invariant. Since the Maxwell action is
invariant under these transformations we only have to take care of the first term in
(11.9).
Let us begin with parity. Given the transformation (11.4) we find the action to be

invariant provided

11.1 Discrete Symmetries in Classical Mechanics and Field Theory 211

P : ! x0,x "P! x0, x . (11.10)

Here we allow for a complex phase "P. For a real field this phase reduces to a global
sign, "P 1. Charge conjugation, on the other hand, reverses the sign of the gauge
field and therefore mapsDµ toDµ . To compensate this and leave the action invariant
charge conjugation has to interchange the scalar field with its complex conjugate
according to

C : ! x "C! x . (11.11)

Again a phase "C has been introduced. It is important to notice that in classical field
theory charge conjugation only acts on the fields and not on the parameters of the
Lagrangian, in particular e. This contrasts with what we saw in mechanics where
C reverses the sign of the particle electric charges. Finally, for time reversal the
transformation of the covariant derivative

T : µ ieAµ t,x µ ieAµ t,x (11.12)

suggests that T has to interchange the scalar field with its complex conjugate

T : ! t,x "T! t,x , (11.13)

where "T 1.
The nonabelian gauge theory action is invariant under parity with the same trans-

formation of the gauge field as in the abelian case (11.4). For charge conjugation
and time reversal, on the other hand, the invariance of the action requires that the
transformation also affects the gauge indices of the Lie algebra valued gauge field
potential. This can be seen by noticing that transforming Aµ t,x as in (11.6) and
(11.7) results in a change of the relative sign between the derivative and commutator
terms in the nonabelian field strength (4.51). This is compensated by a transposition
of the gauge indices in such a way that, under charge conjugation,

C : Aµ x Aµ x T . (11.14)

This results in Fµ# x Fµ# x T that leaves the action invariant. Similarly, for
time reversal we have

T :
A0 x0,x A0 x0,x T

A x0,x A x0,x T
. (11.15)

The nonabelian electric and magnetic fields E EaT a and B BaT a transform
with the same signs as their abelian counterparts plus a transposition in the gauge
indices.
Discrete symmetries become more interesting when applied to spinor fields. In

this case the transformation has to act on the spinor indices as well while preserving
the action. Thus, the transformation of a Dirac spinor under P, C and T has the form

with
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a constant. This invariance is broken as soon as one identifies ! with the position-
dependent gauge transformation parameter of the electromagnetic field.
To promote this global U(1) symmetry of the Dirac Lagrangian to a local one

" " e iq! x " it is enough to replace µ by a covariant derivative Dµ , also
transforming under a gauge transformationDµ Dµ , and satisfying

Dµ" Dµ e iq! x " e iq! x Dµ" . (4.35)

Such a covariant derivative can be constructed in terms of the gauge potential Aµ as

Dµ µ iqAµ. (4.36)

The gauge transformation of Aµ absorbs the derivative of the gauge parameter and
eq. (4.35) is satisfied. The electromagnetic field strength can be written in terms of
the commutator of two covariant derivatives as

Dµ ,D# iqFµ# . (4.37)

This identity will be useful in the construction of nonabelian gauge theories in the
next section.
The Lagrangian of quantum electrodynamics (QED), i.e., a spin- 12 field coupled

to electromagnetism,

LQED
1
4
Fµ#Fµ# " iD m " , (4.38)

is invariant under the U(1) gauge transformations

" e iq! x " , Aµ Aµ µ! x . (4.39)

Unlike the theories we encountered so far, QED is an interacting theory. By plugging
(4.36) into the Lagrangian we find that the interaction term between fermions and
photons has the form

L int
QED H int

QED qAµ"$µ" . (4.40)

This shows that, as anticipated in the previous chapter (see page 43), the electric
current four-vector is given by jµ q"$µ" . In the following we stick to the gen-
eral convention and denote the charge by e. In the case of electrons or muons, for
example, e is negative and equal to the elementary charge.
The quantization of interacting field theories like QED poses new problems that

we did not meet in the case of the free theories. In particular in most cases it is not
possible to solve the theory exactly. When this happens the physical observables
have to be computed in perturbation theory in powers of the coupling constant. An
added problem appears in the computation of quantum corrections to the classical
result, which is plagued with infinities that should be taken care of. All these issues
will be addressed in chapters 6 and 8.
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where "T 1.
The nonabelian gauge theory action is invariant under parity with the same trans-

formation of the gauge field as in the abelian case (11.4). For charge conjugation
and time reversal, on the other hand, the invariance of the action requires that the
transformation also affects the gauge indices of the Lie algebra valued gauge field
potential. This can be seen by noticing that transforming Aµ t,x as in (11.6) and
(11.7) results in a change of the relative sign between the derivative and commutator
terms in the nonabelian field strength (4.51). This is compensated by a transposition
of the gauge indices in such a way that, under charge conjugation,
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The nonabelian electric and magnetic fields E EaT a and B BaT a transform
with the same signs as their abelian counterparts plus a transposition in the gauge
indices.
Discrete symmetries become more interesting when applied to spinor fields. In

this case the transformation has to act on the spinor indices as well while preserving
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where x µ x0, x for P, x µ xµ for C and x µ x0,x for T. Viewing these as
active transformations on the fields, we require that the transformed spinors satisfy
the Dirac equation with respect to the coordinates xµ . Thus, the complex matrix #"$
has to be chosen such that

i%µ µ m ! x 0
i%µ µ m #! x 0

i%µ µ m #! x 0
. (11.17)

Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.
As in the case of the complex scalar field, the transformation of the Dirac spinor

under charge conjugation involves the complex conjugate spinor1, ! x #! x .
The transformed spinor satisfies the Dirac equation provided

# 1%µ# %µ . (11.19)

The form of the matrix # depends on the representation of the Dirac algebra. For
the one in eq. (A.7) we can take # i%2 and the transformation of the spinor is
then

C : ! x &C i%2 ! x , (11.20)

with &C 1. Applying this transformation to the Dirac Lagrangian we find

LDirac ! i m ! C LDirac total derivative. (11.21)

The signs correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity AB T

BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.

The solution depends on the representation of the Dirac algebra. Taking
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including an arbitrary phase. It can be immediately checked that this transformation
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BTAT , where the sign depends on whether the entries of the matrix A commute
( ) or anticommute ( ) with those of the matrix B. At the classical level it does
not matter whether the spinors are taken to commute or anticommute, since a global
sign in the action does not change the equations of motion. The relevance of this
sign for the quantum theory will be discussed in the next section.
The transformation of the Dirac spinor under T also involves the complex conju-

gate field, ! x #! x , with

1 Had we tried ! x #! x we would find, using Schur’s lemma, that the Dirac equation is
preserved only if # is proportional to the identity, so the transformation is trivial.
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P : ! x0,x "P! x0, x . (11.10)

Here we allow for a complex phase "P. For a real field this phase reduces to a global
sign, "P 1. Charge conjugation, on the other hand, reverses the sign of the gauge
field and therefore mapsDµ toDµ . To compensate this and leave the action invariant
charge conjugation has to interchange the scalar field with its complex conjugate
according to

C : ! x "C! x . (11.11)

Again a phase "C has been introduced. It is important to notice that in classical field
theory charge conjugation only acts on the fields and not on the parameters of the
Lagrangian, in particular e. This contrasts with what we saw in mechanics where
C reverses the sign of the particle electric charges. Finally, for time reversal the
transformation of the covariant derivative

T : µ ieAµ t,x µ ieAµ t,x (11.12)

suggests that T has to interchange the scalar field with its complex conjugate

T : ! t,x "T! t,x , (11.13)

where "T 1.
The nonabelian gauge theory action is invariant under parity with the same trans-

formation of the gauge field as in the abelian case (11.4). For charge conjugation
and time reversal, on the other hand, the invariance of the action requires that the
transformation also affects the gauge indices of the Lie algebra valued gauge field
potential. This can be seen by noticing that transforming Aµ t,x as in (11.6) and
(11.7) results in a change of the relative sign between the derivative and commutator
terms in the nonabelian field strength (4.51). This is compensated by a transposition
of the gauge indices in such a way that, under charge conjugation,

C : Aµ x Aµ x T . (11.14)

This results in Fµ# x Fµ# x T that leaves the action invariant. Similarly, for
time reversal we have

T :
A0 x0,x A0 x0,x T

A x0,x A x0,x T
. (11.15)

The nonabelian electric and magnetic fields E EaT a and B BaT a transform
with the same signs as their abelian counterparts plus a transposition in the gauge
indices.
Discrete symmetries become more interesting when applied to spinor fields. In

this case the transformation has to act on the spinor indices as well while preserving
the action. Thus, the transformation of a Dirac spinor under P, C and T has the form
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Finally, in the case of time reversal, assuming                              ,
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!" x #"$!$ x or !" x #"$!$ x (11.16)

where x µ x0, x for P, x µ xµ for C and x µ x0,x for T. Viewing these as
active transformations on the fields, we require that the transformed spinors satisfy
the Dirac equation with respect to the coordinates xµ . Thus, the complex matrix #"$
has to be chosen such that

i%µ µ m ! x 0
i%µ µ m #! x 0

i%µ µ m #! x 0
. (11.17)

Let us begin with parity. The invariance of the Dirac equation means that # has
to commute with %0 and anticommute with % i. This leads to

P : ! x0,x &P%0! x0, x , (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
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under charge conjugation involves the complex conjugate spinor1, ! x #! x .
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# 1%µ# %µ . (11.19)
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! 1"0! "0 , ! 1" i! " i . (11.22)

In the Dirac algebra representation (A.7) the matrix! "1"3 satisfies the required
property and therefore we have

T : # t,x $T "1"3 # t,x , (11.23)

with $T a phase. The Dirac Lagrangian, on the other hand, transforms as

# x i m # x T # x i m # x total derivative, (11.24)

where x µ x0,x and the signs corresponds respectively to commuting and
anticommuting spinor fields. Integrating we find that the action remains invariant up
to a global sign, SDirac SDirac.
In short we have shown that if # t,x is a solution of the Dirac equation so are

the transformed fields

#P x0,x $P"0# x0, x ,

#C x0,x $C i"2 # x0,x , (11.25)
#T x0,x $T "1"3 # x0,x .

This remains true also when they are coupled to the electromagnetic field, provided
it is also transformed according to (11.4), (11.6) or (11.8). The phases $P, $C and
$T cannot be determined a priori.
Finally, the question remains whether the transformed fields (11.25) do transform

as spinor under Lorentz transformations. To see that they do we only have to realize
that the following three sets of matrices

"µ "0"µ"0,

"µ i"2 "µ i"2 1, (11.26)
"µT "1"3 "µ "1"3 1

are three representations of the Dirac algebra. Then, using (3.39), one can construct
the corresponding representations of the generators of SO(1,3) in which #P x ,
#C x and #T x transform.

11.2 Parity and Charge Conjugation in Quantum Field Theory.

We turn now to the implementation of discrete symmetries in quantum field theory
and deal first with parity and charge conjugation. The case of time reversal involves
some important subtleties and will be deferred to the next section.
Wigner’s theorem establishes that symmetries in the quantum theory are realized

by unitary or antiunitary operators acting on the Hilbert space. Here we explore the
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11.2 Parity and Charge Conjugation in Quantum Field Theory. 213

! 1"0! "0 , ! 1" i! " i . (11.22)

In the Dirac algebra representation (A.7) the matrix! "1"3 satisfies the required
property and therefore we have

T : # t,x $T "1"3 # t,x , (11.23)

with $T a phase. The Dirac Lagrangian, on the other hand, transforms as

# x i m # x T # x i m # x total derivative, (11.24)

where x µ x0,x and the signs corresponds respectively to commuting and
anticommuting spinor fields. Integrating we find that the action remains invariant up
to a global sign, SDirac SDirac.
In short we have shown that if # t,x is a solution of the Dirac equation so are

the transformed fields

#P x0,x $P"0# x0, x ,

#C x0,x $C i"2 # x0,x , (11.25)
#T x0,x $T "1"3 # x0,x .

This remains true also when they are coupled to the electromagnetic field, provided
it is also transformed according to (11.4), (11.6) or (11.8). The phases $P, $C and
$T cannot be determined a priori.
Finally, the question remains whether the transformed fields (11.25) do transform

as spinor under Lorentz transformations. To see that they do we only have to realize
that the following three sets of matrices

"µ "0"µ"0,

"µ i"2 "µ i"2 1, (11.26)
"µT "1"3 "µ "1"3 1

are three representations of the Dirac algebra. Then, using (3.39), one can construct
the corresponding representations of the generators of SO(1,3) in which #P x ,
#C x and #T x transform.

11.2 Parity and Charge Conjugation in Quantum Field Theory.

We turn now to the implementation of discrete symmetries in quantum field theory
and deal first with parity and charge conjugation. The case of time reversal involves
some important subtleties and will be deferred to the next section.
Wigner’s theorem establishes that symmetries in the quantum theory are realized

by unitary or antiunitary operators acting on the Hilbert space. Here we explore the
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Exercise: prove it
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With this results we can now construct the P, C and T transformation of 
quantum fields. 

According to Wigner’s theorem, these symmetries are implemented by unitary 
or antiunitary operators. In the case of parity and charge conjugation they are 
unitary:

214 11 Symmetries II: Discrete Symmetries

case of Dirac fermions. Other types of fields can be treated in a similar fashion. In
the case of parity and charge conjugation the transformed field operators !P x and
!C x are related to ! x by a similarity transformation by unitary operatorsP and
C

P! x0,x P 1 "P#0! x0, x ,

C! x0,x C 1 "C i#2 ! x0,x . (11.27)

In the second identity the complex conjugation is understood to act as hermitian
conjugation on the creation-annihilation operators2.
From these relationswe can derive the transformations of the creation-annihilation

operators of particles and antiparticles. For this we use the expansion of the Dirac
field in terms of them given in eq. (3.52). At this point we have to take into account
that all c-numbers (i.e., parameters and wave functions) pass through the unitary op-
erators that only act on the creation-annihilation operators of particles and antiparti-
cles, b k,s and d k,s . The #-matrices on the right-hand side of (11.27), however,
act on the indices of the wave functions u$ k,s and v$ k,s .
We begin with parity. It is not difficult to check that

#0u k,s u k,s , #0v k,s v k,s . (11.28)

This leads to the following transformation of the annihilation operators

Pb k,s P 1 "Pb k,s
Pd k,s P 1 "P d k,s . (11.29)

The corresponding transformation of the creation operators is derived taking the
adjoint and using the unitarity of P . From this we infer that the parity operator
act on the single particle and antiparticle states by reversing the sign of the spatial
momentum and multiplying the state by "P (particles) or "P (antiparticles). This
phase is called the intrinsic parity of the state. It appears in the transformation of
the one-particle and -antiparticle states

P k,s "P k,s;0 , P 0;k,s "P 0; k,s . (11.30)

This is an elementary but important result: the intrinsic parity of spin- 12 particles
and antiparticles are opposite.
We proceed next to study the action of charge conjugation on the creation-

annihilation operators of the Dirac field. The relevant identity to be used here is

u k,s i#2v k,s , v k,s i#2u k,s . (11.31)

We find

2 Alternatively, the right-hand side of this expression can be written as i#0#2! x T .
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C b k,s C 1 !Cd k,s ,

C d k,s C 1 !C b k,s , (11.32)

so charge conjugation interchanges particles with antiparticles. At the level of the
single particle states this means

C k,s;0 !C 0;k,s , C 0;k,s !C k,s;0 . (11.33)

The example of the Dirac fermion serves as a template to derive the transforma-
tions of other fields under parity and charge conjugation. We only briefly mention
the case of the electromagnetic field. In particular the transformations of the clas-
sical electromagnetic potential fixes the phases !P and !C. Since photon physical
states have transverse polarizations the single photon state transform under parity as

P k," k, " , (11.34)

with " 1 the helicity of the state. Thus the intrinsic parity of the photon is
!P 1. Moreover, since Aµ x is a Hermitian field the photon is its own antiparticle

C k," k," . (11.35)

11.3 Majorana Spinors

In the light of the discussion of the previous section we have to entertain the pos-
sibility of a Fermi field being self-conjugate under C. These are called Majorana
spinors and by definition satisfy #C x # x , i.e.

# x !C i$0$2 # x T . (11.36)

Using the chiral decomposition of # x shown in (3.31) this Lorentz covariant con-
straint can be written as

u
u

!C
i%2u
i%2u

. (11.37)

This equation is solved by

#
1
2

u
i!C%2u

. (11.38)

The Majorana spinor depends on a single complex two-component function. It has
the same number of degrees of freedom as a Weyl spinor, since both of them are
related by the identity
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P k,s;0 (P k,s;0 (0.121)

intrinsic parity
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Time reversal, on the other hand, is implemented by an antiunitary operator. To 
see this, we notice that, by definition, it inverts time evolution

10

T e itHT 1 eitH (0.122)

10

T e itHT 1 eitH (0.122)

T iH T 1 iH (0.123)

If      is unitary, then 

10

T e itHT 1 eitH (0.122)

T iH T 1 iH (0.123)

T (0.124)

10

T e itHT 1 eitH (0.122)

T iH T 1 iH (0.123)

T (0.124)

T HT 1 H (0.125)

and the transformed system is unbounded from below. Hence, the time reversal 
operator is antiunitary (and therefore it leaves the Hamiltonian invariant).

The action on the spinor field operator is given by
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Let us briefly study the consequences of time reversal invariance in nonrelativis-
tic quantummechanics. From the transformation of the angular momentum operator

T JT 1 J (11.49)

we conclude that in the Hilbert space of spin- 12 particles the time reversal operator
can be written as3

T !2K e
i"
2 !

2
K . (11.50)

Hence, T is equivalent to a rotation of " and a complex conjugation. For its square
we have T 2 !2!2 1. This is expected, since from (11.50) we learn that T 2

is a rotation of 2" that multiplies the spin wave function by 1. The result can be
easily generalized to a system of N spin- 12 particles to give

T 2 1 N . (11.51)

An important result in this context is Kramers theorem. It states that in a theory
with an odd number of spin- 12 particles and invariant under time reversal the spec-
trum presents a double degeneracy. The proof is very simple. We have seen that if
#E is an energy eigenstate so is T #E and, moreover, with the same eigenvalue.
To show the double degeneracy of the spectrumwe only have to prove that these two
states are linearly independent. Assuming that they are not, i.e,T #E $ #E for
some complex $ 0 we find

1 N #E T 2 #E $ T #E $ 2 #E . (11.52)

Now, if N is odd this leads to a contradiction and, as a consequence, in this case
#E andT #E are linearly independent. Kramers’ degeneracy also appears in the
presence of an external electric field, but it is lifted by a magnetic field because it
breaks time reversal (remember that the transformation T preserves the electric field
and changes the sign of the magnetic field).
We move next to the implementation of time reversal in quantum field theory. As

an example we work out the case of Dirac fields in some detail, other fields being
treated in a similar fashion. The transformation of the field operator is

T # x0,x T 1 %T &1&3 # x0,x . (11.53)

When considering free fields we have to bear in mind that T not only acts on the
creation-annihilation operators but also complex conjugates the one-particle wave
functions. As for parity and charge conjugation we will need some identities for the
one-particle wave functions, in this case

3 For the sake of simplicity we ignore other degrees of freedom. Their inclusion does not change
the result.
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u k, s 1
1
2 s!1!3u k,s ,

v k, s 1
1
2 s!1!3v k,s . (11.54)

Using them we arrive at the following transformation for the annihilation operators
of particles and antiparticles

T b k,s T 1 1
1
2 s"T b k, s , (11.55)

T d k,s T 1 1
1
2 s"T d k, s .

We see how, up to a global phase factor, time reversal changes the signs of both
the momentum and the third components of spin. Using hermitian conjugation the
corresponding identities for creation operators are obtained. From them it is straight-
forward to prove that

T 2 1 F , (11.56)

with F the fermion number operator that counts the number of spin- 12 particles plus
antiparticles in the state.
In the discussion carried out in the last two sections we have focussed entirely on

the operator formalism. It is worthwhile to comment briefly on discrete symmetries
in the path integral formalism. Correlation functions are expressed as functional in-
tegrals over classical field configuration, with the proviso that fermionic fields are
taken to be anticommutative objects. For parity and charge conjugation we have
shown that the Dirac action is invariant under the replacement of all fields by their
transformed ones (remember that in the case of charge conjugation the anticommu-
tativity of the Dirac fields is crucial for this result), so the invariance of the quantum
theory is guaranteed. For time reversal, on the other hand, we found that when the
Dirac fields are anticommutative the action changes sign. This might seem to pose
a problem for the invariance of the quantum theory. It is not so, however, since the
change of sign in the action only results in a global phase after path integration.
This is irrelevant for the computation of the correlation functions and the theory is
invariant under T.

11.5 CP Symmetry and CP Violation

Having introduced parity, charge conjugation and time reversal we pass to study
now the discrete transformation obtained by combining the first two, called CP. Its
action on the quantum fields is easy to obtain from previous results. In the case of a
complex scalar field # x we have

C P # x0,x C P 1 "CP# x0, x , (11.57)
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change of sign in the action only results in a global phase after path integration.
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Having introduced parity, charge conjugation and time reversal we pass to study
now the discrete transformation obtained by combining the first two, called CP. Its
action on the quantum fields is easy to obtain from previous results. In the case of a
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and the transformation of the creation-annihilation operators is

It reverses the spin and the momentum.
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Majorana spinors

Having introduced charge conjugation, we can define spinors that are self-
conjugate under C, i.e., 

11.3 Majorana Spinors 215

C b k,s C 1 !Cd k,s ,

C d k,s C 1 !C b k,s , (11.32)

so charge conjugation interchanges particles with antiparticles. At the level of the
single particle states this means

C k,s;0 !C 0;k,s , C 0;k,s !C k,s;0 . (11.33)

The example of the Dirac fermion serves as a template to derive the transforma-
tions of other fields under parity and charge conjugation. We only briefly mention
the case of the electromagnetic field. In particular the transformations of the clas-
sical electromagnetic potential fixes the phases !P and !C. Since photon physical
states have transverse polarizations the single photon state transform under parity as

P k," k, " , (11.34)

with " 1 the helicity of the state. Thus the intrinsic parity of the photon is
!P 1. Moreover, since Aµ x is a Hermitian field the photon is its own antiparticle

C k," k," . (11.35)

11.3 Majorana Spinors

In the light of the discussion of the previous section we have to entertain the pos-
sibility of a Fermi field being self-conjugate under C. These are called Majorana
spinors and by definition satisfy #C x # x , i.e.

# x !C i$0$2 # x T . (11.36)

Using the chiral decomposition of # x shown in (3.31) this Lorentz covariant con-
straint can be written as

u
u

!C
i%2u
i%2u

. (11.37)

This equation is solved by

#
1
2

u
i!C%2u

. (11.38)

The Majorana spinor depends on a single complex two-component function. It has
the same number of degrees of freedom as a Weyl spinor, since both of them are
related by the identity
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Spinors satisfying this condition are called Majorana spinors. The equation is 
solved by
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The Majorana spinor depends on a single complex two-component function. It has
the same number of degrees of freedom as a Weyl spinor, since both of them are
related by the identity

Hence, a Majorana spinor has as many degrees of freedom as a Weyl spinor. In 
fact, 216 11 Symmetries II: Discrete Symmetries

! x
1
2
! x !C x with !

u
0

. (11.39)

The constraint (11.36) can be seen as a Lorentz covariant way to impose a reality
condition on the spinor. In fact it is possible to find a representation of the Dirac
algebra where all "-matrices are purely imaginary and where theMajorana condition
simply reads ! x ! x .
Imposing (11.36) on the expansion (3.52) of the field ! x leads to the iden-

tification of the creation and annihilation operators of particles and antiparticles,
b k,s #Cd k,s . Therefore Majorana fermions are their own antiparticles. It is
instructive now to write the Dirac Lagrangian for a Majorana spinor

LDirac ! i m !

i
2
u $ µ

µ u
m
2

#C u
T i$2 u h.c. (11.40)

Taking into account that i$2ab %ab we see that we have recovered the Majorana
mass term constructed in eq. (3.27) on purely group theoretical grounds. In terms of
the Weyl spinor ! of eq. (11.39) the Majorana mass term can be written as

&L
m
2

! !C !C! . (11.41)

The current jµ !"µ! can also be computed with the result

!"µ!
1
2
u $ µu uT $ µT u 0, (11.42)

where we have to use the anticommuting character of u . The vanishing of the
current indicates that a Majorana fermion has zero electric charge, as corresponds
to a particle that is its own antiparticle. In fact we can see that the condition (11.36)
is not preserved by a U(1) phase rotation of ! x .

11.4 Time Reversal

The implementation of time reversal in the quantum theory requires some additional
considerations. In the previous section we have seen how parity and charge conju-
gation are implemented by unitary operators acting on the Hilbert space. We will
see now that such a choice for the time reversal symmetry leads to inconsistencies.
We come back momentarily to classical mechanics. Time reversal changes the

sign of the canonical momenta while preserving that of the coordinates. If this is
a symmetry of the Hamiltonian, applying T to the initial conditions T : q0,p0
q0, p0 has to be equivalent to evolving the system a time t from q0,p0 , ap-
plying a time reversal and evolving again a time t. This is coded in the following
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Remember that we are using 
a representation where

10

T e itHT 1 eitH (0.122)

T iH T 1 iH (0.123)

T (0.124)

T HT 1 H (0.125)

!5
1 0
0 1 (0.126)
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We can write now the Dirac Lagrangian for a Majorana spinor [               ]
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278 A Notation, Conventions and Units.

Fµ!

0 Ex Ey Ez
Ex 0 Bz By
Ey Bz 0 Bx
Ez By Bx 0

, Fµ!

0 Bx By Bz
Bx 0 Ez Ey
By Ez 0 Ex
Bz Ey Ex 0

, (A.4)

with E Ex,Ey,Ez and B Bx,By,Bz the electric and magnetic fields. Similar
expressions are valid in the nonabelian case.

Pauli and Dirac matrices.

We have used the notation " µ 1, "i where "i are the Pauli matrices

"1
0 1
1 0 , "2

0 i
i 0 , "3

1 0
0 1 . (A.5)

They satisfy the identity

"i" j #i j1 $i jk"k, (A.6)

from where their commutator and anticommutator can be easily obtained.
Dirac matrices have always been used in the chiral representation

%µ
0 " µ

" µ 0 . (A.7)

The chirality matrix is normalized as %25 1 and defined by %5 i%0%1%2%3. In
many places we have used the Feynman’s slash notation a %µaµ .

Units.

Unless stated otherwise, we work in natural units h̄ c 1. Electromagnetic
Heaviside-Lorentz units have been used, where the Coulomb and Ampère laws take
the form

F
1
4&

qq
r3
r,

dF
d!

1
2&c2

II
d

. (A.8)

In these units the fine structure constant is

'
e2

4& h̄c
. (A.9)

The electron charge in natural units is dimensionless and equal to e 0.303.
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Majorana mass term

This mass term violates the global U(1) phase symmetry

10

T e itHT 1 eitH (0.122)

T iH T 1 iH (0.123)

T (0.124)

T HT 1 H (0.125)

!5
1 0
0 1 (0.126)

u ei"u (0.127)

A Majorana spinor represents a “neutral” fermion that is its own antiparticle,
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The constraint (11.36) can be seen as a Lorentz covariant way to impose a reality
condition on the spinor. In fact it is possible to find a representation of the Dirac
algebra where all "-matrices are purely imaginary and where theMajorana condition
simply reads ! x ! x .
Imposing (11.36) on the expansion (3.52) of the field ! x leads to the iden-

tification of the creation and annihilation operators of particles and antiparticles,
b k,s #Cd k,s . Therefore Majorana fermions are their own antiparticles. It is
instructive now to write the Dirac Lagrangian for a Majorana spinor
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T i$2 u h.c. (11.40)

Taking into account that i$2ab %ab we see that we have recovered the Majorana
mass term constructed in eq. (3.27) on purely group theoretical grounds. In terms of
the Weyl spinor ! of eq. (11.39) the Majorana mass term can be written as
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2
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The current jµ !"µ! can also be computed with the result

!"µ!
1
2
u $ µu uT $ µT u 0, (11.42)

where we have to use the anticommuting character of u . The vanishing of the
current indicates that a Majorana fermion has zero electric charge, as corresponds
to a particle that is its own antiparticle. In fact we can see that the condition (11.36)
is not preserved by a U(1) phase rotation of ! x .

11.4 Time Reversal

The implementation of time reversal in the quantum theory requires some additional
considerations. In the previous section we have seen how parity and charge conju-
gation are implemented by unitary operators acting on the Hilbert space. We will
see now that such a choice for the time reversal symmetry leads to inconsistencies.
We come back momentarily to classical mechanics. Time reversal changes the

sign of the canonical momenta while preserving that of the coordinates. If this is
a symmetry of the Hamiltonian, applying T to the initial conditions T : q0,p0
q0, p0 has to be equivalent to evolving the system a time t from q0,p0 , ap-
plying a time reversal and evolving again a time t. This is coded in the following

Exercise: prove it

It is possible to find a representation of the Dirac matrices in which the 
Majorana fermion is real (this is called the Majorana representation).
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CP and CPT

Parity is violated by weak interactions. This can be seen in the pion decay

5.2 Leptons and Quarks 85

weak neutral currents in which the hadrons or the same-flavor leptons do not change
their electric charge. One example is electron-neutrino scattering

e !µ e !µ , (5.9)

where the particles in each of the two same-flavor lepton pairs have the same electric
charge.
One of the most distinctive features of the weak interaction is that it violates

what once were cherished discrete symmetries. In the dominant decay channel of
the negatively-charged pion into a muon and a muonic neutrino

" !µ µ (5.10)

it is experimentally observed that the muon is always emitted with positive helicity
(i.e., it is right-handed). Since parity reverses the helicity of the particle this result
indicates that parity is violated by the weak interaction. Moreover, this violation is
maximal because all muons emitted in the " decay are right-handed. This shows
that any field-theoretical description of the weak interaction must necessarily be
chiral, that is, the weak interaction coupling of the fermions should depend on their
helicities. This feature singles out weak interaction among the fundamental forces in
that it is the only one that distinguishes left from right. Why this is the case remains
a mystery.
Charge conjugation, denoted by C, is a discrete operation that interchanges parti-

cles with their antiparticles. The properties of this discrete symmetry will be studied
in detail in chapter 11. Here we only need to know that the decay of the positively-
charged pion is obtained by charge-conjugating (5.10)

" !µ µ . (5.11)

An important property of the operation C is that it changes particles by antiparticles
but does not modify the helicity of the fermions. This means that if charge conju-
gation is a symmetry of the weak interaction the decay of the " has to proceed by
emission of a right-handed antimuon. Experimentally, however, it is observed that
the antimuon emitted by the decaying pion is always left-handed! This shows that
weak interactions not only violate parity but also charge conjugation and that this
violation is also maximal.
This is not the end of the story. Not only P and C are violated by the weak

interaction, but also their combination CP. How this happens is however more subtle
(see section 11.5).
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One of the glaring features of the host of particles produced in high energy collisions
is that there is only a small number of them that do not feel the strong nuclear force.
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does not happens. The violation is therefore maximal.
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However, the emitted antimuon always has negative helicity, the process that 
takes place is:
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CP

It was believed for some time that CP was a good symmetry of the weak 
interactions.
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In the case of a complex scalar field, the transformation under CP is given by
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u k, s 1
1
2 s!1!3u k,s ,

v k, s 1
1
2 s!1!3v k,s . (11.54)

Using them we arrive at the following transformation for the annihilation operators
of particles and antiparticles

T b k,s T 1 1
1
2 s"T b k, s , (11.55)

T d k,s T 1 1
1
2 s"T d k, s .

We see how, up to a global phase factor, time reversal changes the signs of both
the momentum and the third components of spin. Using hermitian conjugation the
corresponding identities for creation operators are obtained. From them it is straight-
forward to prove that

T 2 1 F , (11.56)

with F the fermion number operator that counts the number of spin- 12 particles plus
antiparticles in the state.
In the discussion carried out in the last two sections we have focussed entirely on

the operator formalism. It is worthwhile to comment briefly on discrete symmetries
in the path integral formalism. Correlation functions are expressed as functional in-
tegrals over classical field configuration, with the proviso that fermionic fields are
taken to be anticommutative objects. For parity and charge conjugation we have
shown that the Dirac action is invariant under the replacement of all fields by their
transformed ones (remember that in the case of charge conjugation the anticommu-
tativity of the Dirac fields is crucial for this result), so the invariance of the quantum
theory is guaranteed. For time reversal, on the other hand, we found that when the
Dirac fields are anticommutative the action changes sign. This might seem to pose
a problem for the invariance of the quantum theory. It is not so, however, since the
change of sign in the action only results in a global phase after path integration.
This is irrelevant for the computation of the correlation functions and the theory is
invariant under T.

11.5 CP Symmetry and CP Violation

Having introduced parity, charge conjugation and time reversal we pass to study
now the discrete transformation obtained by combining the first two, called CP. Its
action on the quantum fields is easy to obtain from previous results. In the case of a
complex scalar field # x we have

C P # x0,x C P 1 "CP# x0, x , (11.57)Exercise: prove it

It interchanges particles with antiparticles while reversing their helicities.

As it was the case with P and C, CP is also violated by weak interactions. To 
look for the possible sources of these violation, let us look at a theory with an 
interaction Hamiltonian of the form
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ond decay takes place. This was the first evidence that CP is violated in the standard
model.
Complex couplings in the action are a potential source of CP violation in a quan-

tum field theory. To see this let us consider a theory where the interaction Hamilto-
nian has the form

Hint d3x
i
giOi x

i
gi Oi x , (11.62)

where gi are the couplings and Oi x a series of operators. The CP transformation
interchanges them with their Hermitian conjugates and inverts the sign of the spatial
coordinates. The transformed Hamiltonian is then

C P Hint CP 1 d3x
i
giOi x

i
gi Oi x . (11.63)

Hence, the invariance of the theory requires the couplings to be real gi gi . This
notwithstanding, a theory with complex couplings can still be CP-invariant. If it
contains complex fields there is the possibility that the phases of the couplings can
be absorbed in a redefinition of the global (irrelevant) phase of the fields.
Let us see how this applies to the standard model. In chapter 10 (see page 198) we

learned that the electroweak Lagrangian contains complex couplings due to the pres-
ence of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This is a unitary three-by-
three matrix depending on nine real parameters and can be parametrized in terms of
three real “mixing angles” and six complex phases. Given this state of affairs CP
violation could still be avoided provided all six complex phases could be absorbed
in the arbitrary phases of the quark fields. Since there are six quark species it might
look like all six phases of the CKM matrix could be eliminated this way. This is
not the case because the standard model Lagrangian has a U(1) global symmetry
that acts as a phase rotation of all the quark fields by the same phase. This means
that there are only five independent phases we can play with. The consequence is
that there is a complex phase in the CKM matrix which cannot be eliminated and
therefore the CP symmetry is violated.
CP violation here is a direct consequence of the existence of three quark families.

Indeed, in a world with only two families the quark mixing matrix would be a two-
by-two unitary matrix depending on one mixing angle and three complex phases
(four real parameters in total). Since the number of quarks would be four all three
phases can be removed and we are left with a real matrix depending on one mixing
angle, the Cabibbo angle. In this case there would be no room for CP violation in
the electroweak sector.
The previous analysis has to be repeated in the leptonic sector of the standard

model. If the neutrino masses are of the Dirac type then repeating the same argu-
ments as above we conclude that the leptonic CKM matrix has a complex phase
that cannot be eliminated by a phase redefinition of the lepton fields. For Majo-
rana neutrinos the situation is very different since the Majorana condition (11.36)

CP is unitary and acts on the operators by hermitian conjugation. Hence we 
find
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The conclusion is that CP is violated unless all couplings are real.
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The standard model Lagrangian contains the Cabibbo-Kobayashi-Maskawa 
mixing matrix:

3x3 unitary matrix 3 mixing angles + 6 complex phases

Since there are six quarks, some phases could be absorbed in the quark fields. 
The simultaneous phase shift of all quarks is a global symmetry of the 
standard model Lagrangian, hence only five phases can be absorbed.

1 remaining complex phase CP violation

There is another source of CP violation in the strong interaction sector of the 
standard model. There is no reason to exclude from the QCD action a term 
of the form
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is incompatible with a phase redefinition of the field. This means that the complex
couplings in the weak lepton-neutrino current can only be absorbed by changing the
phase of the three charged leptons. As a result only three of the six complex phases
of the leptonic CKM matrix can be disposed of4.
Another source of CP violation in the standard model comes from the strong

interaction sector. As explained in chapter 4 (see page 72) there is the possibility of
adding to the QCD action the term

S!
!g2YM
32"2

d4xFA
µ#F

µ# A !g2YM
16"2

d4xEA BA. (11.64)

Looking at the transformations of the chromoelectric and chromomagnetic fields
under P and C derived in section 11.1 we find the action of the CP transformation to
be EA x0,x EA x0, x and BA x0,x BA x0, x . This implies that (11.64)
changes sign. This has very important consequences since S! adds to the QCD ac-
tion constructed from (5.27), which indeed preserves CP. Then we have found that

SQCD S!
CP SQCD S! . (11.65)

Hence, if ! 0 CP is also violated by the strong interaction.
One of the consequences of the presence of the term (11.64) in the QCD action is

that it generates a nonvanishing electric dipole moment for the neutron [1]. The fact
that this is not observed experimentally can be used to impose a very strong bound
on the value of the ! -parameter,

! 10 9. (11.66)

From a theoretical point of view it is still to be fully understood why ! either van-
ishes or has a very small value. This is called the strong CP problem.

11.6 The CPT Theorem

The CPT transformation, the combination of parity, charge conjugation and time re-
versal, acts on the quantum fields by replacing them by their Hermitian conjugates
while, at the same time, reversing the sign of the space-time coordinates. Since the
three discrete symmetries commute with each other there is no ambiguity in the
definition of this transformation. It inherits from T the property of being imple-
mented by an antiunitary operator that we denote by$ CPT . For example, for
a complex scalar field we have

4 We should bear in mind that the Majorana neutrino break the global U(1) phase symmetry of the
Lagrangian and therefore all three arbitrary phases of the charged leptons are independent. Notice
also that in this case there is CP violation even with only two families, since having two charged
leptons only allows for the elimination of two of the three phases of the mixing matrix.

where
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!
n Z

e in! n with ! R, (4.109)

transforming under a gauge transformation by a global phase

U g1 ! ei! ! . (4.110)

We have concluded that the nontrivial topology of the gauge group has very im-
portant physical consequences for the quantum theory. In particular it implies an
ambiguity in the definition of the vacuum. This can also be seen in a Lagrangian
analysis. In constructing the Lagrangian for the nonabelian version of the Maxwell
theory we only considered the term FA

µ"Fµ" A. However this is not the only Lorentz
and gauge invariant term containing just two derivatives. We can write the more
general action

S
1
2

d4xTr Fµ"Fµ" !g2YM
16#2

d4xTr Fµ"Fµ" , (4.111)

where Fµ" is the dual of the field strength defined by

Fµ"
1
2
$µ"%&F%& . (4.112)

The constant ! is dimensionless in natural units. The extra term in (4.111), propor-
tional to EA BA, is a total derivative and does not change the equations of motion
or the quantum perturbation theory.
This, however, does not mean that the addition of the second piece in the action

(4.111) does not change the physics. It can be directly checked that

g2YM
16#2

Tr Fµ"Fµ"
µJ µ (4.113)

with

J µ g2YM
16#2

$µ"%&Tr F"%A&
2igYM
3

A"A%A& . (4.114)

Thus, the contribution of the second term in (4.111) can be computed using Gauss’
theorem. To ensure the convergence of the integral we assume that A t,x ap-
proaches a pure gauge configuration both at spatial infinity and at late and early
times t . To be more precise we assume that

A t ,x
1

igYM
g x 'g x 1, (4.115)

while A t,x is taken to vanish at t . This last condition implies no loss of
generality, since it can always be achieved by an appropriate gauge transformation.
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222 11 Symmetries II: Discrete Symmetries

is incompatible with a phase redefinition of the field. This means that the complex
couplings in the weak lepton-neutrino current can only be absorbed by changing the
phase of the three charged leptons. As a result only three of the six complex phases
of the leptonic CKM matrix can be disposed of4.
Another source of CP violation in the standard model comes from the strong

interaction sector. As explained in chapter 4 (see page 72) there is the possibility of
adding to the QCD action the term

S!
!g2YM
32"2

d4xFA
µ#F

µ# A !g2YM
16"2

d4xEA BA. (11.64)

Looking at the transformations of the chromoelectric and chromomagnetic fields
under P and C derived in section 11.1 we find the action of the CP transformation to
be EA x0,x EA x0, x and BA x0,x BA x0, x . This implies that (11.64)
changes sign. This has very important consequences since S! adds to the QCD ac-
tion constructed from (5.27), which indeed preserves CP. Then we have found that

SQCD S!
CP SQCD S! . (11.65)

Hence, if ! 0 CP is also violated by the strong interaction.
One of the consequences of the presence of the term (11.64) in the QCD action is

that it generates a nonvanishing electric dipole moment for the neutron [1]. The fact
that this is not observed experimentally can be used to impose a very strong bound
on the value of the ! -parameter,

! 10 9. (11.66)

From a theoretical point of view it is still to be fully understood why ! either van-
ishes or has a very small value. This is called the strong CP problem.

11.6 The CPT Theorem

The CPT transformation, the combination of parity, charge conjugation and time re-
versal, acts on the quantum fields by replacing them by their Hermitian conjugates
while, at the same time, reversing the sign of the space-time coordinates. Since the
three discrete symmetries commute with each other there is no ambiguity in the
definition of this transformation. It inherits from T the property of being imple-
mented by an antiunitary operator that we denote by$ CPT . For example, for
a complex scalar field we have

4 We should bear in mind that the Majorana neutrino break the global U(1) phase symmetry of the
Lagrangian and therefore all three arbitrary phases of the charged leptons are independent. Notice
also that in this case there is CP violation even with only two families, since having two charged
leptons only allows for the elimination of two of the three phases of the mixing matrix.

Under CP this new term changes sign, whereas the QCD action remains 
invariant

Exercise: prove this. You need first 
to find the C and P transformations 
of a nonabelian gauge field.

The  coupling     can be bounded experimentally to be
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Lagrangian and therefore all three arbitrary phases of the charged leptons are independent. Notice
also that in this case there is CP violation even with only two families, since having two charged
leptons only allows for the elimination of two of the three phases of the mixing matrix.

It is not understood why this is so small (this is called the strong CP problem).

CP violation is needed for explaining baryon asymmetry (Sakharov condition). 
It is also a promising window to new physics.

Additional sources of CP violation are present in various extensions of the 
standard model. For example, if the neutrinos have Dirac masses there is an 
additional phase in the leptonic mixing matrix. For Majorana neutrinos the 
number of phases is bigger (no phase redefinition possible).
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CPT is the combination of the three discrete symmetries we studied. For 
example, on a complex scalar and a Dirac field it acts respectively as

11.6 The CPT Theorem 223

!" x ! 1 " x , (11.67)

and for a Dirac spinor

!# x ! 1 i$5# x . (11.68)

In the latter equation we have to bear in mind that the complex conjugation sym-
bol acts as Hermitian conjugation on the creation-annihilation operators. As in eq.
(11.27) we refrained from using the dagger symbol to avoid giving the wrong im-
pression that the CPT operation transposes the spin indices.
Acting on the single particle states the CPT operator interchanges particles with

antiparticles and reverses the sign of the helicity. The precise form of the transfor-
mation can be found using that the field (resp. its Hermitian conjugate) interpolates
between the vacuum and the one-particle (resp. one-antiparticle) state. In the case
of a Dirac spinor, for example,

% #& t,x p,s;0 u& p,s e iEpt ip x,

% #& t,x 0;p,s v& p,s e iEpt ip x. (11.69)

Applying eq. (7.32) to the CPT operator and using (11.68) we arrive at the following
expression for the CPT-transformed one-particle states

% #& t,x p,s;0 ! i 1
1
2 sv& p, s e iEpt ip x,

% #& t,x 0;p,s ! i 1
1
2 su& p, s e iEpt ip x. (11.70)

In deriving this expression we have combined the wave function identities (11.28),
(11.31) and (11.54). Comparing now (11.69) with (11.70) we finally arrive at the
CPT transformation of the single particle states

! p,s;0 i 1
1
2 s 0;p, s ,

! 0;p,s i 1
1
2 s p, s;0 . (11.71)

The analysis for other types of fields can be carried out along the same lines.
The CPT operator satisfies a number of other interesting properties. It squares to

the fermion number,! 2 1 F . Since it involves time reversal it is rather intuitive
that! has to transform “in” into “out” states and vice versa, namely

! &; in !&;out , (11.72)

where by !& we indicate the CPT-transformed state. Using the antiunitarity of !
we arrive at the following transformation of the S-matrix elements

&;out ' ; in !' ;out !&; in . (11.73)

Now, taking into account that S &; in &;out , we arrive at the following identity
for the S-matrix
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In the case of the fermion, we find
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Unlike C, P, T and CP, there are very strong reasons to believe that CPT is a 
preserved symmetry of Nature. It can be proved that any local field theory 
that is Poincaré invariant is also invariant under CPT (this is known as the 
CPT  theorem)
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i.e., it interchanges particles with antiparticles and reverse the sign of the spin.

One of the consequences of the CPT theorem is that the lifetimes and widths 
of a particle and its antiparticle are equal (Lüders-Zumino theorem).
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