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Basics of renormalization

In the perturbative calculation of amplitudes, the expansion in the number of
loops is an expansion in powers of 7.

We see this in a ¢" theory. Restoring the powers of 71 we have |Exercise: restore
the powers of 71
ih \/

p?—m?+ie /\

The power of 7 of a diagram with E external lines, I internal propagators and V
vertices is

#(h)=1-V=L—1

|

L=1-V+1

Hence, a diagram with L loops scales like pl—1
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Generically, the calculation of quantum corrections to the tree level
(semlcla55|cal) amplitudes leads to divergent integrals. For example, in the case
ofa ¢ theory the one-loop four-point amplitude diagram,

3
B AZJ d*k 1 1 L o f
o 2 (23-5)4 k2_m2—|—i8 (k‘l‘p] +p2)2_m2+i8 ” (logarlthmlcaIIyN

The same problem occurs in QED, for example in the process ¢ ¢ — u u”

All one-loop diagrams are divergent, and these divergences does no cancel

between different diagrams.
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To handle these divergent expressions and extract physics out of
them we need to renormalize the theory.

The underlying idea is simple: the parameters in the Lagrangian
(masses, couplings constants...) are not physical. The physical »
Hendrik A. Kramers

quantities, whose values are experimentally fixed, are computed in (18941952,
terms of these parameters.

Divergences in Feynman diagrams are then reabsorbed in the Lagrangian
parameters in such a way that the physical quantities remain finite.

The renormalization procedure proceeds in two steps:

® | oop integrals have to be regularized (so they are finite and we can
handle them in a mathematically sound way).

® Physical quantities have to be properly defined, using an appropriate
renormalization prescription.

M.A.Vazquez-Mozo
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A Word on Regularization

To discuss the different regularization methods, we look at a typical integral like

1—&f p : " pd
"2 ) Cr)t PP —m2 i R

In order to make sense of this integral (i.e., regularize it) we have several
alternatives. For example:

® TJo introduce a cutoff in the integration momentum

1(A) /\JA d*p 1
2 ) (2m)* p?2—m?+ie

A drawback of this method is its breaking of Lorentz invariance (and gauge
invariance in gauge theories as well).
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® TJo introduce a number of fictitious fields with a propagator with the
“wrong sign” (Pauli-Villars method)

d* -
i p Z
2J(2n)4 p —m2—|—18 2—M2—|—z$

i=1

This method preserves Lorentz and gauge invariance, although its
implementation can be rather cumbersome.

To define the integral in dimension d and continue the result to complex
values of the dimension (dimensional regularization).

W is introduced to keep the
dimensions right while
mantaining A dimensionless.

Dimensional regularization preserves Lorentz and gauge invariance. lts
implementation in chiral theories requires some care.

® TJo define the theory on a lattice (see Istvan’s lectures).
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Renormalization and Running Coupling Constants

To illustrate how renormalization works, we focus on the (amputated) photon
self-energy diagram in QED

1" (q) = MMQW %

Let’s have a look at the issue of gauge invariance. Contracting the external
legs with the polarization vectors ¢,(q), ¢,(q), we require that the amplitude is
invariant under the gauge transformations

en(q) = €u(q) + gy e.(q) — €.(q) +2'qy
This implies that the polarization tensor has to satisfy
quI1""(q) =0 = g, 11" (q)
and therefore it has the transverse form
v (9) = (¢*Muy — quav) T (q°)
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We compute the polarization tensor using the QED Feynman rules,

d*k  Tr[H+mo)y* W+ +m.)y"]
(2m)* [k2 —m2 +ie] [(k+q)? —m2 + ie]

=11""(q) =i

For simplicity we set the electron mass to zero. Regularizing this integral with
a momentum cutoff is delicate: it is quadratically divergent and has the
structure

I,v(gq) ~ Aznw + transverse part

The term quadratic in /1 spoils gauge invariance but can be subtracted adding
a local counterterm. The transverse part is logarithmically divergent and gives

2

2
e q .
(g% ~ 72 log (A_z) + finite terms.

To follow the renormalization program we should reabsorb this divergence in
the redefinition of some of the parameters of the theory.
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To deal with this logarithmic divergence, we look at the process ¢ ¢™ = u u™

proceeding by the interchange of “corrected” photon propagator

_ e _ _
= MNap (Vey“ue) 474> (VMY[))MM> + Nagp (Vey“ue)

€

2 —
4nq2H(q ) (V“Yﬁ u“)

2

2 2
_ e e q .
Nap (Ve ite) {4716]2 [1 T o2 108 (F)] } (V“yﬁ”“>

This looks pretty much like the tree-level scattering, but with the electric

charge replaced by an effective coupling. If « denotes the typical energy of the
process

= Nap (Ver®ue) [Z(ij)j] (Vuyﬁuu)

This effective coupling is observables and therefore cutoff independent.
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Since the energy-dependent effective coupling is observable in principle, the

logarithmic cutoff dependence has to be compensated by a dependence on the
“bare charge” on A

()

This relation can be inverted to obtain the bare coupling

ol = eu)? [1 = S rog (5) |+ o1etw

and evaluated at a reference scale Uo. Substituting back in e(1t)”

() = el | 1+ 10g ()]

12772 M(%

Thus, as a consequence of the need to renormalize the theory we find that the

effective electric charge depends on the energy scale at w

nich it is measured.
For example:

To get this result

e(m,) we have to include

a(me) = A in the loop of all SM
" “light” fermions.
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The running of the coupling constant in a quantum field theory is measured by
the beta function

For QED we have

Ne— =
3

N, = number of colors
Nf>

Ny = number of flavors

For “real” QCD with three colors and N, the number of “active” flavors, the
beta function is negative.

This means that the QCD coupling constant tends to zero when the energy
scale increases, u —» o0 === asymptotic freedom

This explains scaling in DIS
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QED has a positive beta function and the opposite behavior as QCD. The

coupling constant grows with the energy. It becomes of order one at the so-
called Landau pole

Alandau ~ 10°% GeV (standard model)

Al anday =~ 1012 GeV (SUSY)

The UV and IR properties of a quantum field theory are determined by the fixed
points of the beta function, B(g*) =0 B(e)

[

® gi:“trivial”, UV stable

* o
® 2 :“nontrivial’, IR unstable

® g3:“nontrivial”’, UV stable

e.g., g=0 is a UV stable fixed point for

QCD and IR stable fixed point for
QED
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In the standard model, the three coupling constants get close but fail to meet at
a point:

From hep-ph/0012288

In the minimal supersymmetric standard model (MSSM), on the other hand, the
three couplings meet at an energy around 10'°-10'° GeV

(More about this in Christophe’s lectures)
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The renormalization program can be applied systematically to other QFTs by
reabsorbing the cutoff dependence of the amplitudes in the mass and coupling
constant parameters of the Lagrangian, as well as in the field normalizations.

The dependence of these parameters on the cutoff is fixed by the
renormalization prescriptions.Ve see how this works in a simple example:

In a qb4theory we consider the sum of all 2-point, |Pl (one particle irreducible)
diagrams

i1(p?) (P— — O + O 4 8 +o

()

The full two point function (propagator) can be formally written as

Substituting the contribution of each diagram we find

. . . . o0
l l

n
i i i
- n il (p* +...= il (p*
p*—m?+ic  p*—m?+ie (p)pz—mz—l—ie pz—mz—l—ie:];)[ (p)pz—mZ—I—is]

G(p°)
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We have arrived at a geometric series whose sum is

l
N p?—m? —1II(p?) +ie

G(p°)

All this is purely formal. Now we apply it to a computation at a given order in
perturbation theory. Regularizing the theory using, say, a cutoff /1 we find

l
G(p*) =
(r°) p?—m?—II(p? A) +ic

Naively, the limit A — 00 gives a meaningless result. The question, however, is:

How do we define the mass of the scalar particle!?

In a free theory we have

l

2 _
(P )iree = p?—m? +ie

so the mass of the particle is identified as the pole of the free propagator.
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We extend this definition to the regularized interacting theory and define the
renormalized mass parameter m as the pole of the propagator:

m* —my(A)* — I (m*,A) =0

Since the physical mass is cutoff-independent, we have to assume that the mass

parameter in the Lagrangian depends on the cutoff (not a problem, it’s just a
unphysical parameter).

The renormalized coupling constant can be defined using the four-point, |PI
diagrams

I'(p;)= @ + crossed diagrams + . ..

The final result is that all observable quantities can be written solely in terms
of the renormalized mass an coupling.

Different renormalization prescriptions give different definition of the

renormalized quantities, but observables are independent of the
renormalization scheme.
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Wilsonian renormalization

Kenneth Wilson
(b. 1936)

A very profound physical interpretation of the renormalization program in QFT
can be extracted from statistical mechanics.

Let us look at a “simple” statistical system: the Ising model with Hamiltonian

H:_stisj

<G,Jy

and compute its thermal partition function
¥ =Y e PH
{si}
In dimension larger than one, the system undergoes spontaneous magnetization
at a critical temperature 7.. Away from this, the correlation between spins
decreases exponentially,

_ bl
(sisjy~e ¢ (€ = correlation length)
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If we are interested in the long distance properties of the system we can
“integrate out” short distance physics. This can be done using Kadanoff’s
decimation method:

We replace each spin-block by an effective spin calculated using some rule (e.g., a
majority rule supplemented by some prescription in case of a draw)

1
b 1 - b . . ° _
{s;i i€ By} s, 1 s = 5sign ( E:Sl> with sign(0) =1

I€EB,

The partition function can be written now as

% = Ze_ﬁH[Si] = Sj Sl 0 |:Sa(1) — sign (Z s,-)] e PHIsi

{s} {s(1)Y {seBy} i€B,

Selected Topics in Quantum Field Theory, TAE-201 | Bilbao M.A.Vazquez-Mozo




The basic point now is that the sum over the spins inside each block can be
written itself as

Z o) [Sa(l) — sign (2 Si>:| e_/?)H[Si] _ e—[)’H(l)[chl)]

{SEBa} ZEBa

The new Hamiltonian will be very complicated, but it has the form

g — _ Z (1) (1)_|_ -« other interaction terms

i Jy

and only depends on the new variables. The partition function is now written as

(D[ (1)
Y = Z —BH
{s(1}

This decimation operation can be understood as a map in the space of all
Hamiltonians,

% H—HWY
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This operation can be written an arbitrary number of times, until a fixed point
is reached

HZ, g Z,g®» %,  Z. g

The fixed-point Hamiltonian is scale invariant, that we take to have § =

These transformations can be understood in terms of couplings by writing the
Hamiltonian as a combination of all possible operators

A ER
Hence, integrating out short distance physics results in a renormalization of
the couplings
R Mg —> A\

Our ignorance about the physics at short distances is parametrized in the

values of the coupling constants that characterize the Hamiltonian at long

distances (i.e, the couplings run with the scale).
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After this excursion in statistical mechanics, we proceed now back to QFT.
Suppose we have a quantum field theory defined at a scale /1 by an action

S[¢a, A] = Jd4x {fo[%] +Zgi(A)@[¢a]}

To know how the theory looks like at an energy u < A we compute

[%M J H @(/)a N[N

u<p<A

After integrating out the physics between the scales /1 and 4 we get an action
for the renormalized fields ¢, of the form

S[¢a,u] = Jd4x {fo[%] +Zgi(u)ﬁi[¢é]}

The couplings are different from their values at the cutoff scale.What happens
is that the running of the coupling constants encodes the physics at energies
above the scale u.
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The Wilsonian approach shows that renormalization cannot be seen as a
simple trick to “sweep infinities under the rug’. The running of the coupling

constants is the way in which the physics at high energies shows up when going
to lower energies.

It also offers a radically different view on the concept of renormalizability.
Nonrenormalizable theories are safe to use, provided we are only interested in
physics at low energies.

We will further ellaborate on all this in next VWednesday’s lecture (on effective
field theories).
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