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In the perturbative calculation of amplitudes, the expansion in the number of 
loops is an expansion in powers of    .

Basics of renormalization
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We see this in a     theory. Restoring the powers of     we have
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The power of     of a diagram with E external lines, I internal propagators and V 
vertices is
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Exercise: restore 
the powers of     
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Hence, a diagram with L loops scales like 
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Hence, a diagram with L loops scales like 
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Generically, the calculation of quantum corrections to the tree level 
(semiclassical) amplitudes leads to divergent integrals. For example, in the case 
of a      theory the one-loop four-point amplitude diagram,
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12.3 The ! 4 Theory: A Case Study 239

vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant " in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function

1
2
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p2 m2 i$

1
2
"µ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4

i
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16#2
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d 4
finite part. (12.32)

To cancel this divergencewe add a counterterm 1
2%m

2!2 to the Lagrangian density
where %m2 is given by

%m2
"m2

16#2
1

d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

i%m2 2# 4% 4 p1 p2 . (12.34)

Its contribution to the two point function to order " exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the !4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order " 2
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The same problem occurs in QED, for example in the process                     :
146 8 Renormalization

positron pair to create a muon-antimuon pair e e µ µ . To lowest order in the
electric charge e the only diagram contributing is
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In order to compute the renormalization of the charge we consider the first dia-
gram taking into account the first correction to the propagator of the virtual photon
interchanged between the pairs due to vacuum polarization. We begin by factoring
out the propagators associated with the external photon legs
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+ higher loop diagrams
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All one-loop diagrams are divergent, and these divergences does no cancel 
between different diagrams.
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In order to compute the renormalization of the charge we consider the first dia-
gram taking into account the first correction to the propagator of the virtual photon
interchanged between the pairs due to vacuum polarization. We begin by factoring
out the propagators associated with the external photon legs
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+ higher loop diagrams

11

e e µ µ (0.135)

All one-loop diagrams are divergent, and these divergences does no cancel 
between different diagrams.
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Hendrik A. Kramers
(1894-1952)

To handle these divergent expressions and extract physics out of 
them we need to renormalize the theory.

The underlying idea is simple: the parameters in the Lagrangian 
(masses, couplings constants...) are not physical. The physical 
quantities, whose values are experimentally fixed, are computed in 
terms of these parameters.

Divergences in Feynman diagrams are then reabsorbed in the Lagrangian 
parameters in such a way that the physical quantities remain finite.

The renormalization procedure proceeds in two steps:

• Loop integrals have to be regularized (so they are finite and we can 
handle them in a mathematically sound way).

• Physical quantities have to be properly defined, using an appropriate 
renormalization prescription.
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A Word on Regularization

To discuss the different regularization methods, we look at a typical integral like

In order to make sense of this integral (i.e., regularize it) we have several 
alternatives. For example:

• To introduce a cutoff in the integration momentum

A drawback of this method is its breaking of Lorentz invariance (and gauge 
invariance in gauge theories as well).
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• To introduce a number of fictitious fields with a propagator with the 
“wrong sign” (Pauli-Villars method)
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Exercise: prove that the regularization 
of this integral requires two Pauli-
Villars fields. Compute    .
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This method preserves Lorentz and gauge invariance, although its 
implementation can be rather cumbersome.

• To define the integral in dimension d and continue the result to complex 
values of the dimension (dimensional regularization).

12.3 The ! 4 Theory: A Case Study 239

vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant " in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function
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2
"µ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4

i
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d 4
finite part. (12.32)

To cancel this divergencewe add a counterterm 1
2%m

2!2 to the Lagrangian density
where %m2 is given by

%m2
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d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

i%m2 2# 4% 4 p1 p2 . (12.34)

Its contribution to the two point function to order " exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the !4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order " 2
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I d (0.141)

Dimensional regularization preserves Lorentz and gauge invariance. Its 
implementation in chiral theories requires some care.

   is introduced to keep the 
dimensions right whi le 
mantaining     dimensionless.
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• To define the theory on a lattice (see Istvan’s lectures).
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To illustrate how renormalization works, we focus on the (amputated) photon 
self-energy diagram in QED

Let’s have a look at the issue of gauge invariance. Contracting the external 
legs with the polarization vectors       ,       , we require that the amplitude is 
invariant under the gauge transformations

148 8 Renormalization

! !
0 !, in ! ,out 0

! ! n

0 !, in Hint n n Hint ! ,out 0
Ein En Eout En

. (8.10)

Once we understand the physical meaning of the Feynman diagram to be com-
puted we proceed to its evaluation. In principle there is no problem in computing the
integral in eq. (8.4) for nonzero values of the electron mass. However since here we
are going to be mostly interested in how the divergence of the integral results in an
energy scale dependent renormalization of the electric charge, we will set me 0.
This is something safe to do, since in the case of this diagram we are not inducing
new infrared divergences in taking the electron as massless.
To compute the vacuum polarization tensor we are going to exploit what we can

expect from gauge symmetry or current conservation. If we contract the external
legs of the diagram (8.4) with the polarization tensors of the incoming and outgoing
photon "µ q and "# q the result must be gauge invariant. That is, the amplitude
cannot change under the replacement "µ q "µ q $qµ , "µ q "µ q $ qµ ,
for arbitrary $ and $ . The consequence is that

qµ% µ# q 0 q#% µ# q . (8.11)

This implies the following tensor structure for the polarization tensor

%µ# q q2&µ# qµq# % q2 . (8.12)

Taking the trace in the space-time indices of (8.5) we find

% q2
4e2

3q2
d4k
2' 4

k2 k q
k2 i" k q 2 i"

. (8.13)

From the representation (8.6) of the polarization tensor we see that the gauge invari-
ance conditions (8.11) implement current conservation.
A more intuitive way to obtain this same result is to think of the diagram in (8.4)

as the Fourier transform of the time-ordered correlation function of two gauge cur-
rents (8.6). Naively, current conservation for each currents implies condition (8.11),
and thus the form (8.12) of the polarization tensor. Notice that here we said “naively”
because for this to be true we should have a way to compute the correlation function
that either preserves gauge invariance (i.e., current conservation) or, if it breaks it,
the damage can be fixed without much difficulty.
By looking at the powers of k in the numerator and denominator of the integrand

of (8.13) we would conclude that the integral is quadratically divergent. It can be
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This implies that the polarization tensor has to satisfy    
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and therefore it has the transverse form
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where in between brackets we have the amputated diagram whose contribution de-
fines the photon polarization tensor

k q

k

µ ! " µ! q (8.5)
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d4k
2# 4

Tr k me $µ k q me $!

k2 m2e i% k q 2 m2e i%
.

Physically this diagram includes the correction to the propagator due to the polariza-
tion of the vacuum, i.e. the creation of virtual electron-positron pairs by the propa-
gating photon. The momentum q is the total momentum of the electron-positron pair
in the intermediate channel. Notice that the one-loop diagram (8.5) is the Fourier
transform of the vacuum expectation value of the time-ordered product of two U(1)
gauge currents, namely

" µ! q d4xeiq x 0 T jµ x j! 0 0 . (8.6)

It is instructive to look at the one loop correction to the photon propagator from
the point of view of perturbation theory in nonrelativistic quantum mechanics. In
each vertex the interaction consists of the annihilation (resp. creation) of a photon
and the creation (resp. annihilation) of an electron-positron pair. This can be imple-
mented by the interaction Hamiltonian

Hint e d3x&$µ&Aµ . (8.7)

All fields inside the integral can be expressed in terms of the corresponding creation-
annihilation operators for photons, electrons and positrons. In quantum mechanics,
the change in the wave function to first order in the perturbation Hint is given by

$, in $, in 0
n

n Hint $, in 0
Ein En

n (8.8)

and similarly for $,out , where we have denoted symbolically by n all the possi-
ble states of the electron-positron pair. Since these states are orthogonal to $, in 0,
$,out 0, we find to order e2

$, in $ ,out 0 $, in $ ,out 0

n

0 $, in Hint n n Hint $ ,out 0
Ein En Eout En

O e4 . (8.9)

Hence, we see that the diagram of eq. (8.4) really corresponds to the order-e2 cor-
rection to the photon propagator $, in $ ,out

146 8 Renormalization
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The corrections to order e4 require the calculation of seven more diagrams
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In order to compute the renormalization of the charge we consider the first dia-
gram taking into account the first correction to the propagator of the virtual photon
interchanged between the pairs due to vacuum polarization. We begin by factoring
out the propagators associated with the external photon legs

i"µ#

q2 i$
# %

i"%&

q2 i$
, (8.4)
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tion of the vacuum, i.e. the creation of virtual electron-positron pairs by the propa-
gating photon. The momentum q is the total momentum of the electron-positron pair
in the intermediate channel. Notice that the one-loop diagram (8.5) is the Fourier
transform of the vacuum expectation value of the time-ordered product of two U(1)
gauge currents, namely

" µ! q d4xeiq x 0 T jµ x j! 0 0 . (8.6)

It is instructive to look at the one loop correction to the photon propagator from
the point of view of perturbation theory in nonrelativistic quantum mechanics. In
each vertex the interaction consists of the annihilation (resp. creation) of a photon
and the creation (resp. annihilation) of an electron-positron pair. This can be imple-
mented by the interaction Hamiltonian

Hint e d3x&$µ&Aµ . (8.7)

All fields inside the integral can be expressed in terms of the corresponding creation-
annihilation operators for photons, electrons and positrons. In quantum mechanics,
the change in the wave function to first order in the perturbation Hint is given by

$, in $, in 0
n

n Hint $, in 0
Ein En

n (8.8)

and similarly for $,out , where we have denoted symbolically by n all the possi-
ble states of the electron-positron pair. Since these states are orthogonal to $, in 0,
$,out 0, we find to order e2

$, in $ ,out 0 $, in $ ,out 0

n

0 $, in Hint n n Hint $ ,out 0
Ein En Eout En

O e4 . (8.9)

Hence, we see that the diagram of eq. (8.4) really corresponds to the order-e2 cor-
rection to the photon propagator $, in $ ,out
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For simplicity we set the electron mass to zero. Regularizing this integral with 
a momentum cutoff is delicate: it is quadratically divergent and has the 
structure

The term quadratic in Λ spoils gauge invariance but can be subtracted adding 
a local counterterm. The transverse part is logarithmically divergent and gives
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seen, however, that the quadratic divergence does cancel leaving behind only a log-
arithmic one1. In order to handle this divergent integral we have to figure out some
procedure to render it finite. This can be done in several ways, but here we choose to
cut the integrals off at a high energy scale ! , where new physics might be at work,
p ! . This gives the result
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As a matter of fact, we have cheated a little bit in this analysis. Regularizing
the integral (8.5) using a momentum cutoff does not lead to an expression of the
form (8.12). In addition to this piece there is another one proportional to!2$µ% that
spoils gauge invariance. Here we are not very concerned about this term because it
can be regarded as an artifact of the chosen regularization. Indeed, in the case of
QED there are other regularization methods that preserve gauge invariance, such as
dimensional regularization that we will introduce in chapter 12. In any case the term
proportional to !2 could be dealt with by adding an appropriate local counterterm
(see section 8.3). Therefore in the following we will pretend that the offending term
is absent.
If we want to make sense out of this, we have to go back to the physical question

that led us to compute eq. (8.4). Our primary motivation was to compute the cor-
rections to the annihilation of two electrons into two muons. Including the virtual
photon propagation correction, we obtain
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The reader is invited to check that the contribution of the terms proportional to qµq%
in (8.12) cancel after using the wave equation for the spinor wave functions. Now let
us imagine that in the scattering e e µ µ we have a center of mass energy
µ . From the previous result we can identify the effective charge of the particles at
this energy scale e µ as

1 The change from a quadratically to a logarithmically divergent integral is a consequence of the
tensor structure (8.12) of the polarization tensor, and therefore a consequence of gauge invariance.
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We compute the polarization tensor using the QED Feynman rules,

To follow the renormalization program we should reabsorb this divergence in 
the redefinition of some of the parameters of the theory.

13

e0 ! 2 e µ 2 1
e µ 2

12"2
log

µ2

!2
O e µ 6 (0.158)

Nc number of colors Nf number of flavors (0.159)

!Landau 1019GeV (0.160)

g1 g2 g3 (0.161)

1015-1016 GeV (0.162)

e0 ! (0.163)

a 2a (0.164)

S #a,! (0.165)

$µ% q !2&µ% transverse part (0.166)
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To deal with this logarithmic divergence, we look at the process
proceeding by the interchange of “corrected” photon propagator 
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seen, however, that the quadratic divergence does cancel leaving behind only a log-
arithmic one1. In order to handle this divergent integral we have to figure out some
procedure to render it finite. This can be done in several ways, but here we choose to
cut the integrals off at a high energy scale ! , where new physics might be at work,
p ! . This gives the result

" q2
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12#2
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!2
finite terms. (8.14)

As a matter of fact, we have cheated a little bit in this analysis. Regularizing
the integral (8.5) using a momentum cutoff does not lead to an expression of the
form (8.12). In addition to this piece there is another one proportional to!2$µ% that
spoils gauge invariance. Here we are not very concerned about this term because it
can be regarded as an artifact of the chosen regularization. Indeed, in the case of
QED there are other regularization methods that preserve gauge invariance, such as
dimensional regularization that we will introduce in chapter 12. In any case the term
proportional to !2 could be dealt with by adding an appropriate local counterterm
(see section 8.3). Therefore in the following we will pretend that the offending term
is absent.
If we want to make sense out of this, we have to go back to the physical question

that led us to compute eq. (8.4). Our primary motivation was to compute the cor-
rections to the annihilation of two electrons into two muons. Including the virtual
photon propagation correction, we obtain
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The reader is invited to check that the contribution of the terms proportional to qµq%
in (8.12) cancel after using the wave equation for the spinor wave functions. Now let
us imagine that in the scattering e e µ µ we have a center of mass energy
µ . From the previous result we can identify the effective charge of the particles at
this energy scale e µ as

1 The change from a quadratically to a logarithmically divergent integral is a consequence of the
tensor structure (8.12) of the polarization tensor, and therefore a consequence of gauge invariance.
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This looks pretty much like the tree-level scattering, but with the electric 
charge replaced by an effective coupling. If μ denotes the typical energy of the 
process
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!"# ve$"ue
e µ 2

4%q2
vµ$#uµ . (8.16)

This charge, e µ , is the physically measurable quantity in our experiment. Now we
can make sense of the formally divergent result (8.15) by assuming that the charge
appearing in the classical Lagrangian of QED is just a “bare” value that depends on
the scale & at which we cut off the theory, e e0 & . In order to reconcile (8.15)
with the physical results (8.16) we must assume that the dependence of the bare
(unobservable) charge e0 & on the cutoff& is determined by the identity

e µ 2 e0 & 2 1
e0 & 2

12%2
log

µ2

&2
. (8.17)

If we still insist in removing the cutoff, & we have to send the bare charge to
zero e0 & 0 in such a way that the effective coupling has the finite value given by
the experiment at the energy scale µ . All observable quantities should be expressed
in perturbation theory as a power series in the physical coupling e µ 2 and not in
terms of the unphysical bare coupling e0 & .

8.2 The Beta-Function and Asymptotic Freedom

We can look at the previous discussion, and in particular eq. (8.17), from a different
point of view. In order to remove the ambiguities associated with infinities we have
introduced a dependence of the coupling constant on the energy scale at which a
process takes place. From the expression of the physical coupling in terms of the
bare charge (8.17) we can eliminate the cutoff & , whose value after all should not
affect the value of physical quantities. Taking into account that we are working in
perturbation theory in e µ 2, we can express the bare charge e0 & 2 in terms of
e µ 2 as

e0 & 2 e µ 2 1
e µ 2

12%2
log

µ2

&2
O e µ 6 . (8.18)

This expression allows us to eliminate all dependence in the cutoff in the expression
of the effective charge at a scale µ by replacing e0 & in eq. (8.17) by the one
computed using (8.18) at a given reference energy scale µ0

e µ 2 e µ0 2 1
e µ0 2

12%2
log

µ2

µ20
. (8.19)

From this equation we can compute, at this order in perturbation theory, the ef-
fective value of the coupling constant at an energy µ , once we know its value at

This effective coupling is observables and therefore cutoff independent.
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From this equation we can compute, at this order in perturbation theory, the ef-
fective value of the coupling constant at an energy µ , once we know its value at

Since the energy-dependent effective coupling is observable in principle, the 
logarithmic cutoff dependence has to be compensated by a dependence on the 
“bare charge” on Λ

This relation can be inverted to obtain the bare coupling 13

e0 ! 2 e µ 2 1
e µ 2

12"2
log

µ2

!2
O e µ 6 (0.158)

and evaluated at a reference scale     . Substituting back in 
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of the effective charge at a scale µ by replacing e0 & in eq. (8.17) by the one
computed using (8.18) at a given reference energy scale µ0

e µ 2 e µ0 2 1
e µ0 2

12%2
log

µ2

µ20
. (8.19)

From this equation we can compute, at this order in perturbation theory, the ef-
fective value of the coupling constant at an energy µ , once we know its value at

Thus, as a consequence of the need to renormalize the theory we find that the 
effective electric charge depends on the energy scale at which it is measured. 
For example:
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some reference energy scale µ0. In the case of the electron charge we can use as
a reference Thompson’s scattering at energies of the order of the electron mass
me 0.5 MeV, where the value of the electron charge is given by the well known
value

! me
e me

2

4"
1
137

. (8.20)

With this we can compute e µ 2 at any other energy scale by applying eq. (8.19).
In computing the electromagnetic coupling constant at any other scale we must take
into account the fact that other charged particles can run in the loop in eq. (8.15).
Suppose, for example, that we want to calculate the fine structure constant at the
mass of the Z0-boson µ mZ 92 GeV. Then we should include in eq. (8.19) the
effect of other standard model fermions with masses below mZ . Thus

e mZ
2 e me

2 1
e me

2

12"2 i
q2i log

m2Z
m2e

, (8.21)

where qi is the charge in units of the electron charge of the i-th fermionic species
running in the loop, and we sum over all fermions with masses below the mass
of the Z0 boson. This expression shows how the electromagnetic coupling grows
with energy. To compare with the experimental value of e mZ

2 it is not enough to
include the effect of fermionic fields, since also theW bosons can run in the loop
(mW mZ). Taking this into account, as well as threshold effects, the value of the
electron charge at the scale mZ is found to be [1]

! mZ
e mZ

2

4"
1

128.9
. (8.22)

This growth of the effective fine structure constant with energy can be understood
heuristically by remembering that the effect of the polarization of the vacuum shown
in the diagram of eq. (8.4) amounts to the creation of virtual electron-positron pairs
around the location of the charge. These virtual pairs behave as dipoles that, as in
a dielectric medium, tend to screen this charge and to decrease its value at long
distances (i.e. lower energies).
The variation of the coupling constant with energy is usually given in quantum

field theory in terms of the beta function defined by

# g µ
dg
dµ

. (8.23)

In the case of QED the beta function can be computed from eq. (8.19) with the result

# e QED
e3

12"2
. (8.24)
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In the case of QED the beta function can be computed from eq. (8.19) with the result
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To get this result 
we have to include 
in the loop of all SM 
“light” fermions.
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The running of the coupling constant in a quantum field theory is measured by 
the beta function
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In the case of QED the beta function can be computed from eq. (8.19) with the result
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For QED we have
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whereas for QCD the result is

152 8 Renormalization

The fact that the coefficient of the leading term in the beta-function is positive gives
us the overall behavior of the coupling as we change the scale. Equation (8.24)
means that, if we start at an energy where the electric coupling is small enough for
our perturbative treatment to be valid, the effective charge grows with the energy
scale. This growth of the effective coupling constant with energy means that QED
is infrared safe, since the perturbative approximation gives better and better results
as we go to lower energies. In fact, since the electron is the lightest electrically
charged particle and has a finite nonvanishingmass, the running of the fine structure
constant stops at the scale me in the well-known value 1

137 . Would other charged
fermions with masses below me be present in Nature, the effective value of the fine
structure constant would run further to lower values at energies below the electron
mass.
When we increase the energy scale, e µ 2 grows until at some scale the coupling

is of order one and the perturbative approximation breaks down. In QED this is
known as the problem of the Landau pole but in fact it does not pose any serious
threat to the reliability of QED perturbation theory: a calculation including the effect
of all standardmodel fermions shows that the energy scale at which the theorywould
become strongly coupled is !Landau 1034 GeV [2]. However, we expect QED to
be unified with other interactions below that scale, and even if this is not the case
we will enter the uncharted territory of quantum gravity at energies of the order of
1019 GeV.
So much for QED. The next question that one may ask at this stage is whether it

is possible to find quantum field theories with a behavior opposite to that of QED,
i.e. such that they become weakly coupled at high energies. This is not a purely aca-
demic question. In the late 1960s a series of deep inelastic scattering experiments
carried out at SLAC showed that the quarks behave essentially as free particles in-
side hadrons. The apparent problem was that no theory was known at the time that
would become free at very short distances: the QED behavior was encountered in
all the theories that were analyzed. This posed a very serious problem for Quan-
tum Field Theory as a way to describe subnuclear physics, since it seemed that its
predictive power was restricted to electrodynamics but failed when applied to the
strong interactions.
This critical time for quantum field theory turned out to be its finest hour. In 1973

David Gross and Frank Wilczek [3] and David Politzer [4] showed that nonabelian
gauge theories display the required behavior. For the QCD Lagrangian in eq. (9.38)
the beta function is given by2

" g
g3

16#2
11
3
Nc

2
3
Nf . (8.25)

In particular, for real QCD (NC 3, and Nf equal the number of active flavors) we
have that " g 0. This means that for a weakly coupled theory at an energy scale
µ0 the coupling constant decreases as energy increases µ . This explain the
apparent freedom of quarks inside hadrons: when the quarks are very close together

2 This result has an interesting history. See, for example, [5].
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For “real” QCD with three colors and     the number of “active” flavors, the 
beta function is negative.

This means that the QCD coupling constant tends to zero when the energy 
scale increases,                            asymptotic freedom
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side hadrons. The apparent problem was that no theory was known at the time that
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In particular, for real QCD (NC 3, and Nf equal the number of active flavors) we
have that " g 0. This means that for a weakly coupled theory at an energy scale
µ0 the coupling constant decreases as energy increases µ . This explain the
apparent freedom of quarks inside hadrons: when the quarks are very close together

2 This result has an interesting history. See, for example, [5].

This explains scaling in DIS
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QED has a positive beta function and the opposite behavior as QCD. The 
coupling constant grows with the energy. It becomes of order one at the so-
called Landau pole
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(standard model)
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The UV and IR properties of a quantum field theory are determined by the fixed 
points of the beta function,
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Fig. 8.1 Beta function for a hypothetical theory with three fixed points g1 , g2 and g3 . A pertur-
bative analysis would capture only the regions shown in the boxes.

their effective color charge tends to zero. This phenomenon is called asymptotic
freedom.
Asymptotically free theories display a behavior opposite to QED. At high ener-

gies their coupling constant approaches zero whereas at low energies they become
strongly coupled (infrared slavery). This features are at the heart of the success of
QCD as a theory of the strong interactions, since this is exactly the type of behavior
found in quarks: they are quasi-free particles inside the hadrons but the interaction
potential between them increases at large distances.
Although asymptotically free theories can be handled in the ultraviolet, they have

remarkable properties in the infrared. In the case of QCD they are responsible for
color confinement and chiral symmetry breaking (9.52).
In general, the ultraviolet and infrared properties of a theory are controlled by

the fixed points of the beta function, i.e. those values of the coupling constant g for
which it vanishes

! g 0. (8.26)

Using perturbation theory we have seen that for both QED and QCD a fixed point
occurs at zero coupling, g 0. However, our analysis also showed that the two
theories present radically different behavior at high and low energies. From the point
of view of the beta function, the difference lies in the energy regime at which the
coupling constant approaches its critical value. This is in fact governed by the sign
of the beta function around the critical coupling.
If the beta function is negative close to the fixed point (the case of QCD) the

coupling tends to its critical value, g 0, as the energy is increased. This means
that the critical point is ultraviolet stable, i.e. it is an attractor as we evolve towards
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•      : “trivial”, UV stable 
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•      : “nontrivial”, IR unstable 
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e.g., g=0 is a UV stable fixed point for 
QCD and IR stable fixed point for 
QED
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Figure 5: Evolution of the inverse of the three coupling constants in the Standard Model (left)
and in the supersymmetric extension of the SM (MSSM) (right). Only in the latter case unifica-
tion is obtained. The SUSY particles are assumed to contribute only above the effective SUSY
scale MSUSY of about 1 TeV, which causes a change in the slope in the evolution of couplings.
The thickness of the lines represents the error in the coupling constants [15].

where αGUT = g2
5/4π. The first error originates from the uncertainty in the coupling constant,

while the second one is due to the uncertainty in the mass splittings between the SUSY particles.
The χ2 distributions of MSUSY and MGUT are shown in Fig.6 [15], where

χ2 =
3
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In the standard model, the three coupling constants get close but fail to meet at 
a point:

In the minimal supersymmetric standard model (MSSM), on the other hand, the 
three couplings meet at an energy around

Fr
om

 h
ep

-p
h/

00
12

28
8 

13

e0 ! 2 e µ 2 1
e µ 2

12"2
log

µ2

!2
O e µ 6 (0.158)

Nc number of colors Nf number of flavors (0.159)

!Landau 1019GeV (0.160)

g1 g2 g3 (0.161)

1015-1016 GeV (0.162)

(More about this in Christophe’s lectures)
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The renormalization program can be applied systematically to other QFTs by 
reabsorbing the cutoff dependence of the amplitudes in the mass and coupling 
constant parameters of the Lagrangian, as well as in the field normalizations. 

The dependence of these parameters on the cutoff is fixed by the 
renormalization prescriptions. We see how this works in a simple example:
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In a   theory we consider the sum of all 2-point, 1PI (one particle irreducible) 
diagrams

The full two point function (propagator) can be formally written as
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We have arrived at a geometric series whose sum is
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All this is purely formal. Now we apply it to a computation at a given order in 
perturbation theory. Regularizing the theory using, say, a cutoff Λ we find
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Naively, the limit              gives a meaningless result. The question, however, is:

How do we define the mass of the scalar particle?
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In a free theory we have
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so the mass of the particle is identified as the pole of the free propagator.
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We extend this definition to the regularized interacting theory and define the 
renormalized mass parameter m as the pole of the propagator:

Since the physical mass is cutoff-independent, we have to assume that the mass 
parameter in the Lagrangian depends on the cutoff (not a problem, it’s just a 
unphysical parameter).
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The renormalized coupling constant can be defined using the four-point, 1PI 
diagrams 
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The final result is that all observable quantities can be written solely in terms 
of the renormalized mass an coupling.

Different renormalization prescriptions give different definition of the 
renormalized quantities, but observables are independent of the 
renormalization scheme.
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Wilsonian renormalization

A very profound physical interpretation of the renormalization program in QFT 
can be extracted from statistical mechanics. 

Let us look at a “simple” statistical system: the Ising model with Hamiltonian

Kenneth Wilson
(b. 1936)

8.4 Renormalization in Statistical Mechanics 163

Fig. 8.2 Systems of spins in a two-dimensional square lattice.

8.4 Renormalization in Statistical Mechanics

In spite of its successes, the renormalization procedure presented above can be seen
as some kind of prescription or recipe to get rid of the divergences in an orderedway.
This discomfort about renormalization was expressed in occasions by comparing it
with “sweeping the infinities under the rug”. After the work of Ken Wilson [6], the
process of renormalization is now understood in a very profoundway as a procedure
to incorporate the effects of physics at high energies by modifying the value of the
parameters that appear in the Lagrangian.
Wilson’s ideas are both simple and profound and consist of thinking about Quan-

tum Field Theory as the analog of a thermodynamical description of a statistical sys-
tem. To be more precise, let us consider an Ising spin system in a two-dimensional
square lattice as the one depicted in Fig 8.2. In terms of the spin variables si 1

2 ,
where i labels the lattice site, the Hamiltonian of the system is given by

H J
i, j
si s j, (8.73)

where i, j indicates that the sum extends over nearest neighbors and J is the cou-
pling constant between neighboring spins (no magnetic field included). The starting
point to study the statistical mechanics of this system is the partition function de-
fined as

Z
si

e !H , (8.74)

where the sum is over all possible configurations of the spins and ! 1
T is the

inverse temperature. For J 0 the Ising model presents spontaneous magnetization
below a critical temperature Tc, in any dimension higher than one. Away from this
temperature correlations between spins decay exponentially at large distances

sis j e
xi j
" , (8.75)
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and compute its thermal partition function
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In dimension larger than one, the system undergoes spontaneous magnetization 
at a critical temperature  . Away from this, the correlation between spins 
decreases exponentially,
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(ξ = correlation length)
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If we are interested in the long distance properties of the system we can 
“integrate out” short distance physics. This can be done using Kadanoff’s 
decimation method:

164 8 Renormalization

Fig. 8.3 Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective
spin computed according to the rule (8.77). Notice also that the size of the lattice spacing is doubled
in the process.

with xi j the distance between the spins located in the i-th and j-th sites of the lat-
tice. This expression serves as a definition of the correlation length ! setting the
characteristic length scale at which spins can influence each other by their interac-
tion through their nearest neighbors.
Suppose now that we are interested in a macroscopic description of this spin

system. We can capture the relevant physics by integrating out the physics at short
scales. A way in which this can be done was proposed by Leo Kadanoff [7] and
consists of dividing our spin system in spin-blocks like the ones showed in fig. 8.3.
Now we can construct another spin system where each spin-block of the original
lattice is replaced by an effective spin calculated according to some rule from the
spins contained in each block Ba

si : i Ba s 1
a . (8.76)

For example we can define the effective spin associated with the block Ba by taking
the majority rule with an additional prescription in case of a draw

s 1
a

1
2
sign

i Ba

si , (8.77)

where we have used the sign function, sign x x
x , with the additional definition

sign 0 1. This procedure is called decimation and leads to a new spin system
with a double lattice space.
The idea now is to rewrite the partition function (8.74) only in terms of the new

effective spins s 1
a . Then we start by splitting the sum over spin configurations into
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The partition function can be written now as
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two nested sums, one over the spin blocks and the other over the spins within each
block

Z
s
e !H si

s 1 s Ba

" s 1
a sign

i Ba

si e !H si . (8.78)

The interesting point is that the sum over spins inside each block can be written
as the exponential of a new effective Hamiltonian depending only on the effective
spins, H 1 s 1

a

s Ba

" s 1
a sign

i Ba

si e !H si e !H 1 s 1a . (8.79)

The new Hamiltonian is of course more complicated

H 1 J 1
i, j
s 1i s 1j . . . (8.80)

where the dots stand for other interaction terms between the effective block spins.
The new terms appear because in the process of integrating out short distance
physics we induce interactions between the new effective degrees of freedom. For
example the interaction between the spin block variables s 1i will in general not be
restricted to nearest neighbors in the new lattice. The important point is that we have
managed to rewrite the partition function solely in terms of this new (renormalized)
spin variables s 1 interacting through a new Hamiltonian H 1

Z
s 1

e !H 1 s 1a . (8.81)

We can think about the space of all possible Hamiltonians for our statistical sys-
tem including all kinds of possible couplings between the individual spins compati-
ble with the symmetries of the system. If we denote byR the decimation operation,
it defines a map in the space of Hamiltonians

R :H H 1 . (8.82)

At the same time the operation R replaces a lattice with spacing a by another one
with double spacing 2a. As a consequence the correlation length in the new lattice
measured in units of the lattice spacing is divided by two, R : # #

2 .
Now we can iterate the operation R an indefinite number of times. Eventually

we might reach a Hamiltonian H that is not further modified by the operationR

H R H 1 R H 2 R
. . .

R H . (8.83)
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This decimation operation can be understood as a map in the space of all 
Hamiltonians, 
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166 8 Renormalization

The fixed point Hamiltonian H is scale invariant because it does not change as
R is performed. As a consequence of this invariance, the correlation length of the
system at the fixed point does not change underR. This fact is compatible with the
transformation ! !

2 only if ! 0 or ! . Here we will focus in the case of
nontrivial fixed points with infinite correlation length.
The space of Hamiltonians can be parametrized by specifying the values of the

coupling constants associated with all possible interaction terms between individual
spins of the lattice. If we denote byOa si these (possibly infinite) interaction terms,
the most general Hamiltonian for the spin system under study can be written as

H si
a 1

"aOa si , (8.84)

where "a R are the coupling constants for the corresponding operators. These con-
stants can be thought of as coordinates in the space of all Hamiltonians. Therefore
the operationR defines a transformation in the set of coupling constants

R : "a " 1
a . (8.85)

For example, in our case we started with a Hamiltonian in which only one of the
coupling constants is different from zero (say "1 J). As a result of the decima-
tion "1 J J 1 while some of the originally vanishing coupling constants
will take nonzero values. Of course, for the fixed point Hamiltonian the coupling
constants do not change under the scale transformationR.
Physically the transformation R integrates out short distance physics. The con-

sequence for physics at long distances is that we have to replace our Hamiltonian
by a new one with different values for the coupling constants. That is, our ignorance
of the details of the physics going on at short distances result in a renormalization
of the coupling constants of the Hamiltonian describing the long range physical
processes. It is important to stress that althoughR is sometimes called a renormal-
ization group transformation in fact this is a misnomer. Transformations between
Hamiltonians defined by R do not form a group: since these transformations pro-
ceed by integrating out degrees of freedom at short scales they cannot be inverted.
In statistical mechanics fixed points under renormalization group transformations

with ! are associated with phase transitions. From our previous discussion we
can conclude that the space of Hamiltonians is divided into regions corresponding
to the basins of attraction of the different fixed points. We can ask ourselves now
about the stability of those fixed points. Suppose we have a statistical system de-
scribed by a fixed-point Hamiltonian H and we perturb it by changing the coupling
constant associated with an interaction term O . This is equivalent to replace H by
the perturbed Hamiltonian

H H #" O, (8.86)
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This operation can be written an arbitrary number of times, until a fixed point 
is reached
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These transformations can be understood in terms of couplings by writing the 
Hamiltonian as a combination of all possible operators
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Hence, integrating out short distance physics results in a renormalization of 
the couplings

Our ignorance about the physics at short distances is parametrized in the 
values of the coupling constants that characterize the Hamiltonian at long 
distances (i.e, the couplings run with the scale).
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After this excursion in statistical mechanics, we proceed now back to QFT. 
Suppose we have a quantum field theory defined at a scale Λ by an action

To know how the theory looks like at an energy             we compute

170 8 Renormalization

In section 8.2 we learned how in the cases of QED and QCD, the value of the
coupling constants changed with the scale from its value at the scale ! . We can un-
derstand this behavior along the lines of the analysis presented for the Ising model.
If we would like to compute the effective dynamics of the theory at an energy scale
µ ! we only have to integrate out all physical modes with energies between the
cutoff ! and the scale of interest µ . This is analogous to what we did in the Ising
model by replacing the original spins by the block spins. In the case of field theory
the effective action S "a,µ at scale µ can be written in the language of functional
integration as

eiS "a,µ

µ p !
a

D"a eiS "a,! . (8.95)

Here S "a,! is the action at the cutoff scale

S "a,! d4x L0 "a
i
gi ! Oi "a (8.96)

and the functional integral in eq. (8.95) is carried out only over the field modes
with momenta in the range µ p ! . The action resulting from integrating out
the physics at the intermediate scales between ! and µ depends not on the original
field variable "a but on some renormalized field "a. At the same time the couplings
gi µ differ from their values at the cutoff scale gi ! . This is analogous to what
we learned in the Ising model: by integrating out short distance physics we ended
up with a new Hamiltonian depending on renormalized effective spin variables and
with renormalized values for the coupling constants. Therefore the resulting effec-
tive action at scale µ can be written as

S "a,µ d4x L0 "a
i
gi µ Oi "a . (8.97)

This Wilsonian interpretation of renormalization sheds light to what in section 8.1
might have looked just a smart way to get rid of the infinities. The running of the
coupling constant with the energy scale can be understood instead as a way of incor-
porating into an effective action at scale µ the effects of field excitations at higher
energies E µ .
As in statistical mechanics there are also quantum field theories that are fixed

points of the renormalization group flow, i.e. whose coupling constants do not
change with the scale. We have encountered them already in section 8.2 when study-
ing the properties of the beta function. The most trivial example of such theories are
massless free quantum field theories, but there are also examples of scale invariant,
four-dimensional interacting quantum field theories. As before we can ask the ques-
tion of what happens when a scale invariant theory is perturbed with some operator.
In general the perturbed theory is not scale invariant anymore but we may wonder
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After integrating out the physics between the scales Λ and μ we get an action 
for the renormalized fields     of the form
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The couplings are different from their values at the cutoff scale. What happens 
is that the running of the coupling constants encodes the physics at energies 
above the scale μ.
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We will further ellaborate on all this in next Wednesday’s lecture (on effective 
field theories).

The Wilsonian approach shows that renormalization cannot be seen as a 
simple trick to “sweep infinities under the rug”. The running of the coupling 
constants is the way in which the physics at high energies shows up when going 
to lower energies. 

It also offers a radically different view on the concept of renormalizability. 
Nonrenormalizable theories are safe to use, provided we are only interested in 
physics at low energies. 
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