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Lecture V (and last)

Effective Field Theories

• Nonrenormalizable theories as effective field theories

• The scales of the standard model and naturalness

• Renormalizability vs. nonrenormalizability
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Renormalizability vs. Nonrenormalizability

In Lecture III we learned how the renormalization program consited in 
absorbing infinities in the Lagrangian parameters and field normalizations. This 
works in theories like   , QED, QCD, and the standard model among others. The 
question however is:
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Does this always work?
The answer is no. 

Let us elaborate the answer with the simplest example of    in d dimensions. A 
general diagram with E external legs, I internal propagators and V vertices gives 
rise to a contribution with the structure
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The superficial degree of divergence of this integral can be computed from 
dimensional analysis:

15

0 JIµA x !J p i f!" IJ pµe iEpt ip x (0.186)

SU(3) SU(2) U(1)Y (0.187)

g2Nf

32!2
#µ$%&FA

µ$F
A
%& µKµ (0.188)

µ JµA Kµ 0 (0.189)

'! x
1

f!m2!
µJ
3µ
A x (0.190)

iM !0 2( (0.191)

1
f!m2!

#$ p1 #% p2 p1 p2 µ

JµA J$V

J%V
p1 p2

p1

p2

symmetric

µJµA
g2Nf

32!2
#µ$%&FA

µ$F
A
%& µKµ (0.192)

diR, 1
3

(0.193)

&V
dd p
2! d

L i
p2 m2 i#

I
(0.194)

div dL 2I (0.195)
Selected Topics in Quantum Field Theory, TAE-2011 Bilbao               M. A. Vázquez-Mozo



To get a more useful expression, we notice that 
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and write:

We analyze three different cases

•          : the degree of divergence is independent of the number of loops. 
All diagrams with the same number of external legs have the same 
primitive degree of divergence, and this decreases with the number of 
external legs
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The only primitively divergent diagrams are the ones for the two- and 
four-point amplitudes:
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The conclusion is that we only need to renormalize the two- and four-
point functions, and this can be done absorbing the divergences in the 
parameters of the Lagrangian (mass, coupling constant and field 
normalization). This is an example of a renormalizable theory

•          : now, the degree of divergence decreases both with the number of 
loops and the number of external legs. The number of superficially 
divergent diagrams is finite.
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For example, in   in three dimensions there are only two divergent 
diagrams:

11

e e µ µ (0.135)

k3dk k4
dk
k

(0.136)

I
!
2

d4p
2" 4

1
p2 m2 i#

(0.137)

pdp (0.138)

I $
!
2

$ d4p
2" 4

1
p2 m2 i#

(0.139)

I Mi
!
2

d4p
2" 4

1
p2 m2 i#

n

i 1

gi
p2 M2

i i#
(0.140)

I d (0.141)

µ ! (0.142)

i% p2 1PI . . .

(0.143)

1PI 1PI 1PI . . . (0.144)

G p2 (0.145)

11

e e µ µ (0.135)

k3dk k4
dk
k

(0.136)

I
!
2

d4p
2" 4

1
p2 m2 i#

(0.137)

pdp (0.138)

I $
!
2

$ d4p
2" 4

1
p2 m2 i#

(0.139)

I Mi
!
2

d4p
2" 4

1
p2 m2 i#

n

i 1

gi
p2 M2

i i#
(0.140)

I d (0.141)

µ ! (0.142)

i% p2 1PI . . .

(0.143)

1PI 1PI 1PI . . . (0.144)

G p2 (0.145)

11

e e µ µ (0.135)

k3dk k4
dk
k

(0.136)

I
!
2

d4p
2" 4

1
p2 m2 i#

(0.137)

pdp (0.138)

I $
!
2

$ d4p
2" 4

1
p2 m2 i#

(0.139)

I Mi
!
2

d4p
2" 4

1
p2 m2 i#

n

i 1

gi
p2 M2

i i#
(0.140)

I d (0.141)

µ ! (0.142)

i% p2 1PI . . .

(0.143)

1PI 1PI 1PI . . . (0.144)

G p2 (0.145)

11

e e µ µ (0.135)

k3dk k4
dk
k

(0.136)

I
!
2

d4p
2" 4

1
p2 m2 i#

(0.137)

pdp (0.138)

I $
!
2

$ d4p
2" 4

1
p2 m2 i#

(0.139)

I Mi
!
2

d4p
2" 4

1
p2 m2 i#

n

i 1

gi
p2 M2

i i#
(0.140)

I d (0.141)

µ ! (0.142)

i% p2 1PI . . .

(0.143)

1PI 1PI 1PI . . . (0.144)

G p2 (0.145)

11

e e µ µ (0.135)

k3dk k4
dk
k

(0.136)

I
!
2

d4p
2" 4

1
p2 m2 i#

(0.137)

pdp (0.138)

I $
!
2

$ d4p
2" 4

1
p2 m2 i#

(0.139)

I Mi
!
2

d4p
2" 4

1
p2 m2 i#

n

i 1

gi
p2 M2

i i#
(0.140)

I d (0.141)

µ ! (0.142)

i% p2 1PI . . .

(0.143)

1PI 1PI 1PI . . . (0.144)

G p2 (0.145)

(linearly divergent) (logarithmically divergent)

In this example, the infinities can be disposed of by renormalizing the 
two-point function at one and two loops. We are dealing then with a 
superrenormalizable theory.

Exercise: show that    in      is 
superrenormalizable.
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•        : In this case, the superficial degree of divergence increases indefinitely 
with the number of loops, so there is an infinite number of divergent 
diagrams with an arbitrary number of external legs. 
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These divergences cannot be absorbed in a finite number of parameters, 
and the theory is nonrenormalizable

In general, the criterion of renormalizability for a QFT boils down to calculating 
the energy dimensions of the coupling constants of the theory:

•           : the theory is renormalizable.

•           : the theory is superrenormalizable.

•           : the theory is nonrenormalizable.

To understand this, we remember that the energy dimensions of the correlation 
function are fixed, so the dimensions of the powers of the coupling constants 
have to be compensated by the dimension of the integral (i.e., its primitive 
degree of divergence).
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One should not be deceived by the simple arguments presented so far. There 
are a number of pitfalls to be aware of:

Higher loop diagrams may contain overlapping divergences and/or 
divergent subdiagrams that one should deal with. The message is that a 
general rigorous proof of renormalizability is very involved.

Naive power counting arguments may fail. For example, the propagator of a 
massive gauge field 7

Gµ! p
i

p2 m2 i"
#µ!

pµ p!
m2

(0.84)

does not go to zero at large momenta. The theory might not be renormalizable 
even if the coupling constant is dimensionless (in massive QED this works 
because the “dangerous term” in the bracket does not contribute).
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The trouble with nonrenormalizable theories is the computation of 
observables at arbitrary high energies requires to introduce an infinite number 
of counterterms in the Lagrangian to absorb the divergences. 

In the example of a six-dimensional      theory (            ) we end up with:
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counterterms

To calculate high energy processes we would need to fix experimentally an 
arbitrary large number of parameters.
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...

Nonrenormalizable theories are not predictive

Or are they?
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Nonrenormalizable QFTs as Effective Field 
Theories

It is clear that if we are interested in the physics at arbitrary high energy, 
nonrenormalizable theories are no good. The can however be understood as 
effective field theories valid below some characteristic energy scale.

We look at a four-fermion theory with Lagrangian

The theory is not renormalizable, so quantum corrections will induce an 
infinite number of higher-dimensional operators
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Typically, the contribution of these higher-dimensional operators to the 
amplitude of a given process taking place at an energy scale    will be 
suppressed by

However, at a given level of accuracy, we only need to take into account 
a finite number of operators, and therefore only a finite number of couplings 
need to be fixed.
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Thus, as effective field theories, nonrenormalizable theories are completely 
consistent and predictive.

This theory cannot be used to describe the physics at arbitrary high energies. 
Apart from being nonrenormalizable it also violates unitarity
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The effective field theory approximation breaks down at energies       , when 
the contribution from all higher-dimensional operators are of the same order. At 
this scale the theory has to be replaced by some new dynamics.
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To find this UV completion, we notice that the four-fermion Lagrangian is 
classically equivalent to

Exercise: prove it.

where σ is a nonpropagating real scalar field. This theory can be regarded as the 
low energy limit of a Yukawa theory

in the limit when the typical energies are much below the mass of the scalar 
field,
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cubic and quartic terms have to be included to cancel the logarithmically 
divergence of the one-loop contribution to the three- and four-point scalar 
amplitude
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For example:

Exercise: replacing the fermion-scalar 
interaction term by             show that 
the cubic term is absent. Compute in 
this case the effective theory at low 
energies. (use a symmetry argument)
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Exercise:

Consider the Feynman rules of the four-fermion theory:

and those of the theory with the nondynamical scalar σ

Compute the leading order four-fermion amplitude in both cases and show that the results 
are same. Compute as well the one-loop fermion propagator using both sets of Feynman rules 
to prove that the two calculations lead to the same integral.
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1 The four fermion interaction

We study in this notes a theory of four-fermion interaction in four dimensions. Our Lagrangian
is

L = iψ(iγµ∂µ − m)ψ −
a

M2
(ψψ)2, (1.1)

where a is a dimensionless parameter and M has dimensions of energy. To derive the Feynman
rules we write the interaction Hamiltonian in the following way

Hint =
a

M2
(ψψ)2 =

a

M2
ψaψaψbψb = −

a

M2
ψaψbψaψb

= −
a

2M2

(

δacδbd − δadδbc

)

ψaψbψcψd. (1.2)

In the last identity we have implemented the anticommutative character of classical fermion
fields. This leads to the vertex1

c

a

b

d

=
2ia

M2

(

δadδbc − δacδbd

)

. (1.3)

while the propagator is the usual one

a b =

(

i

p/ − m + iε

)

ba

(1.4)

With this we compute the one-loop correction to the fermion self-energy

−iΣab(p/) = a b
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δbdδac − δabδcd

)
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− δab Tr
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)]

.

Besides the minus sign associated with the fermion loop, we have included a global factor of 4
because there are four possible ways to draw this diagram from the vertex given above (there
are two possible ways to choose the incoming external leg and, one chosen, two more ways to

1To write the vertex we have to multiply it by its symmetry factor that in this case is 2! × 2! = 4.
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choose the outgoing leg, i.e. 2 × 2 = 4). Now, using the tracelessness of the Dirac matrices we
have

Tr

(

i

q/ − m + iε

)

=
i

q2 − m2 + iε
Tr (q/ + m) =

im

q2 − m2 + iε
Tr 1. (1.6)

With this result we can write
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∫

d4q

(2π)4

1

q2 − m2 + iε

[

qµγ
µ
ba + mδab

(

1 − tr 1

)]

(1.7)

Moreover, regularizing the integral in a way that preserves the invariance of the integration
region under qµ → −qµ we can finally write

Σab(p/) =
2iam

M2

(

1 − Tr 1

)

δab

∫
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(2π)4

1

q2 − m2 + iε
. (1.8)

2 An alternative calculation

There is an alternative way to calculate the mass shift in the model (1.1) that is to introduce
an auxiliary nonpropagating field σ(x)

L = ψ
(

iγµ∂µ − m
)

ψ +
M2

4a
σ2 + σψψ. (2.1)

The equations of motion for σ(x)

σ = −
2a

M2
ψψ (2.2)

can be used to replace the field back in the Lagrangian (2.1)

L = ψ
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)
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(ψψ)2 −
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M2
(ψψ)2 (2.3)

= ψ
(

iγµ∂µ − m
)

ψ −
a

M2
(ψψ)2,

which is the original model (1.1).
The Feynman rules for (2.1) can be easily derived. The fermion propagator is the usual

one (1.4). The propagator for the scalar field σ(x) can be read from the standard scalar field
propagator by setting p2 = 0 and m2 = −M2

2a

=
2ia

M2
. (2.4)

2

Finally, the interaction vertex is given by

a

b

= iδab (2.5)

To integrate out the field σ(x) diagramatically we sum all diagrams that are 1PI in the
fermion field ψ(x). We begin at tree level with the four-point function where the two diagrams
to be computed are

c

b

a

d

+ (−1) ×

c

b

a

d

=
2ia

M2

(

δbdδac − δadδcb

)

. (2.6)

The relative minus sign is dictated by the Fermi-Dirac statistics of the external states. This
matches with the calculation of the four-point function from the four-fermion vertex (1.3).

We can compute the one loop correction to the mass using the Feynman rules for the theory
with the auxiliry scalar field. At one loop there are two diagrams that contribute are

−iΣab(p/) = a b + a b
(2.7)

We compute the first one-loop diagram
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q2 − m2 + iε
. (2.8)

If we regularize the integral preserving the symmetry qµ → −qµ of the integrand we can get rid
of the term linear in the momentum and write

a b =
2am

M2
δab

∫

d4q

(2π)4

1

q2 − m2 + iε
. (2.9)

In the case of the second diagram we have
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. (2.10)
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Effective field theories are among the most powerful tools in physics. The very 
fact that we can make progress in our understanding of the world is based on 
the fact that the physics at different scales decouple. 

The task of the physical science can be defined as the continuous search for 
effective descriptions valid at higher energy scales and/or more general setups:

For example, in order to formulate the laws of motion of macroscopic bodies, 
Newton didn’t have to know anything about atomic physics. Similarly, Bohr 
was able to formulate model of the atom only because the influence of 
subnuclear physics (that were unknown at the time) at the atomic level is very 
small.

• Aristotelian dynamics can be regarded as the first effective theory: it 
describes effectively the motion of bodies subjected to (strong) friction.

• Classical (Newtonian) mechanics is an effective description of the motion 
of bodies valid in the regime of “large” actions and “small” velocities.

• Nonrelativistic quantum mechanics is an effective description of particles 
moving with “small” velocities (i.e., energies much smaller than their 
masses)

...
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The same pattern repeats in particle physics:
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In both examples, the low energy field theory is nonrenormalizable, unlike 
their UV completion.

Does this mean that the standard model is the “final” fundamental description?
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To answer this question we have to take into account that, at low energies, the 
dynamics of any field theory is dominated by two types of operators:

• Relevant operators, having energy dimension larger than 4 (such as 
mass terms).

• Marginal operators, whose energy dimension is equal to 4 (usually 
know as renormalizable interactions terms).

We have learned that theories containing only relevant and marginal operators 
are renormalizable.

However, experimental evidence might force us to add operators with 
dimension higher than 4 (called irrelevant) to the action. These are the type 
of couplings that render a theory nonrenormalizable, and indicate that we are 
dealing with an effective description.
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The discovery of neutrino masses, for example, requires extending the 
standard model to give masses to the neutrinos without breaking gauge 
invariance. If neutrinos turn out to be Majorana fermions, the generation of a 
mass term requires adding a dimension-five operator to the standard model 
Lagrangian

12.6 Effective Field Theories: A Brief Introduction 251

take the widely accepted point of view that global symmetries such as lepton num-
ber conservation are mere accidental symmetries of the low energy theory that do
not have to be preserved at high energies. In this case Majorana mass terms for the
neutrinos are allowed3. The simplest way to generate these terms is by adding to the
standard model Lagrangian the following dimension-five operator

!LSM
1
M

3

i, j 1
gi j LCi "

2H HT"2L j h.c. (12.71)

where gi j are dimensionless coupling constants, Li are the three lepton doublets
introduced in table 5.1, and H is the Higgs doublet (10.3). This term is gauge in-
variant, as can easily be shown using the definition of the charge conjugated spinors
and the identity (10.6). Since this operator has dimension five it comes suppressed
byM, the energy scale at which new physics is expected. Upon symmetry breaking
the Higgs doublet develops the vacuum expectation value (10.11) and the new term
generates a Majorana mass for the three neutrinos [cf. equation (11.41)]

!LSM
µ2

M

3

i, j 1
gi j#Ci # j h.c. (12.72)

Using the experimental value of µ and the bounds for the neutrino masses it turns
out thatM can be as high asM 1015GeV mW . The discovery of neutrino masses
may provide a hint to new physics at some high energy scaleM. This would indicate
that the standard model is an effective field theory and therefore we should also
include irrelevant operators to describe the effect of its ultraviolet completion.
After this long digression we study some basic features of effective field theories.

Detailed introductions to the subject can be found in ref. [6]; here we follow mainly
the presentations of [7, 9]. To illustrate our discussion we consider two unphysical
toy models that however contain all the main features of more realistic effective
field theories. The first is a non-renormalizable theory of a single Dirac spinor with
a four-fermion interaction

L $ i m $
a
%2

$$ 2 . . . (12.73)

where a is a dimensionless coupling and the dots stand for higher-dimensional op-
erators that we ignore. Using this Lagrangian we can study the effect of loop correc-
tions induced by non-renormalizable interaction. These are the ones that, allegedly,
would render the theory non-predictive. From our previous discussion we know that
% sets the energy scale at which our nonrenormalizable Lagrangian should be com-
pleted with new degrees of freedom. Hence we quantize the theory using this scale
as a cutoff. The Feynman rules contain a single four-fermion vertex

3 As a matter of fact, once we decide that lepton number conservation is not a fundamental sym-
metry we can also introduce, in addition to the Dirac masses, Majorana mass terms for the right-
handed neutrinos.

where H and L  are respectively the Higgs and left-handed lepton doublets. 
Upon spontaneous symmetry breaking, a Majorana mass term is generated
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take the widely accepted point of view that global symmetries such as lepton num-
ber conservation are mere accidental symmetries of the low energy theory that do
not have to be preserved at high energies. In this case Majorana mass terms for the
neutrinos are allowed3. The simplest way to generate these terms is by adding to the
standard model Lagrangian the following dimension-five operator
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where gi j are dimensionless coupling constants, Li are the three lepton doublets
introduced in table 5.1, and H is the Higgs doublet (10.3). This term is gauge in-
variant, as can easily be shown using the definition of the charge conjugated spinors
and the identity (10.6). Since this operator has dimension five it comes suppressed
byM, the energy scale at which new physics is expected. Upon symmetry breaking
the Higgs doublet develops the vacuum expectation value (10.11) and the new term
generates a Majorana mass for the three neutrinos [cf. equation (11.41)]

!LSM
µ2

M

3

i, j 1
gi j#Ci # j h.c. (12.72)

Using the experimental value of µ and the bounds for the neutrino masses it turns
out thatM can be as high asM 1015GeV mW . The discovery of neutrino masses
may provide a hint to new physics at some high energy scaleM. This would indicate
that the standard model is an effective field theory and therefore we should also
include irrelevant operators to describe the effect of its ultraviolet completion.
After this long digression we study some basic features of effective field theories.

Detailed introductions to the subject can be found in ref. [6]; here we follow mainly
the presentations of [7, 9]. To illustrate our discussion we consider two unphysical
toy models that however contain all the main features of more realistic effective
field theories. The first is a non-renormalizable theory of a single Dirac spinor with
a four-fermion interaction

L $ i m $
a
%2

$$ 2 . . . (12.73)

where a is a dimensionless coupling and the dots stand for higher-dimensional op-
erators that we ignore. Using this Lagrangian we can study the effect of loop correc-
tions induced by non-renormalizable interaction. These are the ones that, allegedly,
would render the theory non-predictive. From our previous discussion we know that
% sets the energy scale at which our nonrenormalizable Lagrangian should be com-
pleted with new degrees of freedom. Hence we quantize the theory using this scale
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3 As a matter of fact, once we decide that lepton number conservation is not a fundamental sym-
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handed neutrinos.

i

In order to account for the size of the observed neutrino masses, the scale M 
signaling the onset of new physics, has to be
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The effects at the electroweak scale are therefore very small.
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Naturalness

Neutrino masses are a very strong piece of evidence hinting to new physics at 
a higher energy scale. Notice that this scale is very close to the one where 
gauge coupling unification is expected (remember the graph shown in the third 
lecture).

Being conservative, we can say that high energy physics is then characterized 
by three energy scales:

• The electroweak scale, set by the vev of the Higgs field

• The grand unification (GUT) scale, set by the scale where new 
physics is expected, 

• The Planck scale, where (quantum) gravitational effects cannot be 
ignored any longer,

10.1 The Masses in the Standard Model 199

where mf is the mass of the charged fermion. Thus, the Higgs-fermion couplings
are suppressed by the ratio between the fermion masses and the vacuum expectation
value of the Higgs field.
The masses of the gauge fieldsW and Z0 and their couplings to the Higgs are

obtained by expandingH x around the vacuum in the covariant derivative terms in
eq. (10.9). For the masses one finds

mW
1
2
gv, mZ

gv
2cos!w

, (10.24)

with g the electroweak coupling constant and !w the weak mixing angle (see chapter
5). As for the coupling of the vector bosons to the Higgs field, the terms linear in
h x give rise to the following interaction vertices

W ,Z0

W ,Z0

h gmW,Z

In addition, the theory contains also vertices that couple two vector bosons to two
Higgs fields, as well as self-interaction vertices with three and four Higgs bosons.
They can be found, for example, in Ref. [4] of chapter 5.
The implementation of symmetry breaking has resulted in the introduction of

a new energy scale, the Higgs vacuum expectation value v, and a number of di-
mensionless couplings: the Higgs self-interaction " , and the Yukawa couplings for
leptons and quarks,C !

i j ,C
q
i j andC

q
i j . In fact, the Higgs vacuum expectation value

µ is related to the Fermi coupling constant GF introduced in chapter 5. Using the
relation between v and the mass of theW boson (10.24) we find

GF
1
2v2

. (10.25)

Since GF can be measured, for example, from muon decay we learn that the Higgs
vacuum expectation value is

v 246 GeV. (10.26)

Once the value of the only energy scale v is determined, one can use the relations
(10.17) to fix the Yukawa couplings for quarks and leptons from measurement of
the mass matrices for the different matter fields. With this, however, we still get no
information about the value of the Higgs self-coupling constant " , or equivalently,
the Higgs boson mass mH . This is the last standard model parameter that remains to
be measured and the Higgs boson the last particle of the model to be detected.
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The presence of various energy scales in the theory begs the question of 
whether it is natural to have widely separated scales:

In particular, all the masses of the particles in the standard model are much 
lighter than the GUT or the Planck scale. This includes the Higgs particle, 
whose mass is expected to be of the order of the electroweak scale.

To address the question, we introduce the following naturalness criterion:

“At a given energy scale μ a set of dimensionless physical parameters α (μ) is 
allowed to be small only if the replacement α (μ)=0 increases the symmetry of 
the system”.

i
i

In view of this criterion, light fermions (          ) are natural. In the limit of 
massless fermions the system has an additional discrete chiral symmetry
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! p,"
6iam
"2

ddq
2# d

1
q2 m2 i$

3am
8#2

m
"

2 2
d 4

% log
m2

4#µ2
. . . . (12.77)

In the MS subtraction scheme we add a counterterm that cancels the pole in d 4
together with the constants % log 4# . Then we find the following correction to
the fermion mass

&m
3am
8#2

m
"

2
log

m2

µ2
. (12.78)

This is a much nicer result. The mass correction is suppressed by powers of m " ,
small in the regime where the effective field theory is applicable,m " . In addition
the expression only depends logarithmically on µ . This energy scale is an artifact of
the regularization and therefore should be absent of all physical quantities.
It is a general result that in a mass independent subtraction scheme, effective

field theories produce a well defined expansion in powers of m " or E " , where E
is the characteristic energy of the process under consideration. This means that to a
given numerical accuracy only a few terms in the expansion should be considered.
It is in this sense that effective field theories can be considered as predictive as
renormalizable quantum field theories.
The reader might be puzzled at the comparison of the different results we have

obtained for the mass renormalization using a cutoff and DR plus a mass indepen-
dent subtraction scheme. In fact there is no contradiction between them. Physical
predictions cannot depend on the way we choose to regularize and renormalize the
theory. Cutting off the integrals at the scale " results in an infinite number of con-
tributions to each order in 1 " . Were we able to resum these terms we would obtain
a result agreeing with the expression found using a mass independent scheme. The
latter method provides a systematic way of organizing the 1 " contributions. As a
consequence there is only a finite number of operators contributing to a given degree
of accuracy.
Before closing our discussion of the Lagrangian (12.73) we mention the fact that

the mass correction (12.78) is proportional to the mass m and therefore vanishes for
m 0. This apparently innocuous fact has a deep underlying explanation based on a
symmetry enhancement of the theory atm 0. Indeed, in the massless case both the
kinetic term and the four-fermion interaction are invariant under the discrete chiral
transformation

' %5' , ' '%5. (12.79)

This is however not a symmetry of the mass term, changing sign under it. Thus, the
theory at m 0 has an addition symmetry protecting the fermion from acquiring a
mass through quantum corrections. This is why, in general, one can say that having

In the case of a fundamental scalar, such as the Higgs field, there is no such 
symmetry enhancement protecting the hierarchy 
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The problem of having light fundamental scalars in the standard model can be 
seen in a Wilsonian fashion. We look at the simpler model of a    theory that 
we define at some cutoff scale Λ

10

T e itHT 1 eitH (0.122)

T iH T 1 iH (0.123)

T (0.124)

T HT 1 H (0.125)

!5
1 0
0 1 (0.126)

u ei"u (0.127)

mu,d #QCD (0.128)

h̄ $n (0.129)

ih̄
p2 m2 i%

(0.130)

i
&
h̄

(0.131)

h̄ I V L 1 L I V 1 h̄L 1 (0.132)

$4 (0.133)
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The one-loop correction to the mass comes from the “tadpole” diagram:

12.3 The ! 4 Theory: A Case Study 239

vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant " in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function

1
2
"µ4 d dd p

2# d
1

p2 m2 i$

1
2
"µ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4

i
"m2

16#2
1

d 4
finite part. (12.32)

To cancel this divergencewe add a counterterm 1
2%m

2!2 to the Lagrangian density
where %m2 is given by

%m2
"m2

16#2
1

d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

i%m2 2# 4% 4 p1 p2 . (12.34)

Its contribution to the two point function to order " exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the !4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order " 2

p2

p1

p4

p3

p2

p1

p4

p3

p2

p1

p3

p4

(12.35)
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m2 m0 ! 2 "0 !
16#2

!2 log
!2

m0 ! 2 . (12.69)

Would the scalar theory be valid for arbitrary high energies this would be the
end of the story. The cutoff ! would be an artifact of the quantization that should
disappear at the end of the calculations. Physical results would only depend on the
renormalized quantities m and " . The situation is however different if we have rea-
sons to believe that our theory is only valid up to certain energy scale at which new
physics is expected to play a role. Then eq. (12.69) has to be interpreted inWilsonian
terms (see section 8.5) by regarding ! as the energy above which our $4 theory is
replaced by some unknown new dynamics. Just below this scale the leading part of
the theory (not including irrelevant operators) is defined by the Lagrangian (12.27),
the effect of the high energy degrees of freedom is codified in the cutoff depen-
dence of the bare field and parameters $0 x,! , m0 ! and "0 ! . From this point
of view m and " are the parameters characterizing the theory at energies well below
the cutoff scale, E ! .
The relation (12.69) between the low energy (renormalized) mass and the high

energy bare parameters shows a strong dependence of the former on the cutoff ! .
Indeed, due to the term proportional to !2 the value of the mass m will be deter-
mined by the cutoff scale unless the value of m0 ! is carefully chosen to cancel
the contribution of the quadratic term up to many decimal places. The conclusion is
that the preservation of the hierarchym ! requires an important fine tuning of the
mass at the cutoff scale. This is the hierarchy problem.
Any theory with fundamental scalars is afflicted with this problem, including

the standard model due to the presence of the Higgs field. The only exception are
theories with Nambu-Goldstone bosons. They only include derivatives couplings
preserving the invariance $ x $ x constant forbidding any mass term in the
action2.
We have seen in section 12.2 that using DR there are no quadratic (or polynomial)

divergences. The momentum integral of the one-loop self-energy diagram (12.31)
has the same divergent behavior when d 4 as the milder logarithmically divergent
integral appearing in the calculation of the four-point function. In fact quadratically
divergent integrals are not signaled in DR by higher order poles at d 4, but by
additional poles for d 4. We can see this from eq. (12.11). For the logarithmically
divergent integral I2 d,m2 the Gamma function in the numerator has a single pole
for real positive d, namely at d 4. In the case of I1 d,m2 , on the other hand,
% 2 d

2 has, besides the pole at d 4, another one at d 2. Generically [4], in the
integrals arising from L-loop diagrams these additional poles occur for fractional
values of the dimension, d 4 2

L . This is how quadratic divergences are identified
using DR.
The previous discussion might lead us to believe that the hierarchy problem is

a regularization artifact that can be disposed of by a smart choice of the regulator.

2 The other known way of canceling quadratic divergences is to have supersymmetry (see sec-
tion 13.2), where the quadratically divergent corrections to the scalar masses are cancelled by the
contribution of diagrams with fermion loops.

Since the mass depends quadratically on the cutoff, to have a light scalar             
(i.e.,           ) requires a strong fine tuning of          .
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Since the values of the bare parameters encode the high energy degrees of 
freedom that we are cutting off at the scale Λ, we find that the mass of the 
scalar is highly sensitive to the physics at high energies.

This defines the hierarchy problem in the standard model.
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Supersymmetry is the most popular solution to the hierarchy problem. In a 
supersymmetric theory, the scalar field couples both to itself and to its 
supersymmetric partner in such a way that the quadratic divergence cancels
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(0.237)
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made in the previous section to isolate the divergent part of the diagram as d 4
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Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

i%m2 2# 4% 4 p1 p2 . (12.34)

Its contribution to the two point function to order " exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the !4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order " 2
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+
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log!UV (0.238)

Now, in order to maintain the hierarchy          , we require a much milder fine 
tuning of the bare parameters (more on this in Christophe’s lectures).
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Another serious naturalness issue is the cosmological constant problem, 
i.e., why the energy scale of the cosmological constant is so small compared 
with the only natural scale in the problem, the Planck mass
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ratio between the strengths of the electromagnetic and gravitational interactions of
protons and electrons. In a more modern context we can construct a dimensionless
ration between the Fermi and Newton constants

GFc2

GNh̄2
1.73 1033. (12.88)

It is to Dirac’s credit that he did not invoke any anthropic explanation. In his large
number hypothesis he assumed that all these large dimensionless ratios should be
related in a simple way to a single large number which he chose to be the age of the
Universe. This led him to conclude that the fundamental constants of Nature vary
with time.
We do not want to dwell any further on this subject. Excelent expositions of the

notion of naturalness in high energy physics are available in the literature (see, for
example, [11]). However, in view of the examples discussed in the previous section
we find it necessary to state a naturalness criterion that probably most physicists
would find acceptable:

At any energy scale µ , a physical parameter or a set of physical parameters !i µ is allowed
to be very small only if the replacement !i µ 0 would increase the symmetry of the
system.

This criterion, originally formulated by K. Wilson [12] and further elaborated
among others by G. ’t Hooft [5] and L. Susskind [13], has been a guide for nearly
four decades in the construction of theories beyond the standard model. The fact
that the Higgs particle, if thought as an elementary scalar, has not yet been found
adds a good deal of drama associated with naturalness.
This naturalness criterion may apply to particle physics, but in the broader con-

text where gravity is included it is severely violated. In our discussion of effective
field theories we have systematically forgotten the identity operators which, having
zero dimension, should be dominant in the infrared. The reason why we could afford
to ignore this operator so far is that we were not considering gravitational effects.
The coupling of the identity operator receives contributions from the zero-point en-
ergy of all the quantum fields and, as long as gravity is left out of the game, can be
simply ignored.
General relativity teaches us that all forms of energy gravitate, and this applies

also to the zero-point energy of the quantum fields. Therefore once gravitational
effects are considered there is no way to ignore the coupling of the identity operator
to the gravitational field. This term is Einstein’s famous cosmological constant "c.
Its contribution to the energy density of the Universe

#"
"c
8$GN

(12.89)

can be measured from cosmological observations with the result

#" 10 3eV 4 10 48GeV4. (12.90)
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On the other hand, since !" has dimensions of (energy)4 and the only natural energy
scale in gravity is the Planck mass MP 1019 GeV naturalness would require the
scale of !" to be set byMP, that is

!" M4
P 1076 GeV4. (12.91)

This means that there is a mismatch of more than 120 orders of magnitude between
the natural and the measured value of the cosmological constant. To add to the
puzzle, if we compare !" with the cosmological critical density at the present time

!c
3H20
8#GN

, (12.92)

we find the two values to be very close, !" 0.74!c.
Is it just serendipity that the measured value of the cosmological constant is so

close to the Universe’s critical density today? In view of this it is difficult to avoid
the question of whether naturalness should only apply to particle physics in the ab-
sence of gravity. In fact, the problem of the apparent fine tuning of the cosmological
constant is 60 or 70 orders of magnitude worse than the one for the Higgs mass. This
brings in the question: why should gravity be excluded in naturalness arguments?
It is safe to say that currently nobody knows the answer to these questions. For the

Higgs naturalness problems some scenarios have been suggested: supersymmetry
and technicolor among others, that are likely to be tested soon. In the case of the
cosmological constant, apart from anthropic arguments [14] or the string landscape
[15], there is very little to say. Large numbers are likely to continue haunting particle
physicists and cosmologists for some time to come.

12.8 Coda: Heavy Particles and Decoupling

We have appraised mass independent subtraction schemes as the appropriate way
to deal with the renormalization of effective field theories. They have, however,
an important disadvantage: heavy particles do not decouple at energies below their
masses, as expected from the Appelquist-Carazzone decoupling theorem [8].
A simple example showing this is provided by the calculation in QED of the

contribution of a heavy fermion to the photon vacuum polarization (more details
can be found in [9]). The basic ingredient is the DR computation of the one loop
polarization tensor

µ $ pµ p$ p2%µ$ & p2;d 4 (12.93)

where the polarization function & p2;d 4 is given by

18

(0.223)

1
!8

"" 4 (0.224)

a#"$5" (0.225)

ia
2!2

(0.226)

E mW E !QCD (0.227)

MGUT 1015-1016GeV (0.228)

MPlanck 1019GeV (0.229)

mf
MGUT

1 (0.230)

mf MGUT (0.231)

mH MGUT (0.232)

! MGUT (0.233)

L
1
2 µ%0 µ%0

m0 ! 2

2
%20

&0 !
2

%40 (0.234)

m ! (0.235)

m0 ! (0.236)

16

div
d

4
L

4
E

(0.198)

div
d

4
L

E
(0.199)

d
4

(0.200)

(0.201)

(0.202)

(0.203)

d
4

d
3

(0.204)

!
3

(0.205)

d
4

(0.206)

g
0

g
0

g
0

(0.207)

L
d
6

12
µ !

µ!
m
22
!
2

"4! !
4

"
66! !

6
"
88! !

8
.
.
.

(0.208)

"
2

"
6

6
"
8

10
(0.209)

g
a#
2
,

g
2

(0.210)

L
$
i

m
$

a#
2
$
$

2

n

a
n

#
dim

O
n
4
O
n
$
,$

(0.211)

16

div
d

4
L

4
E

(0.198)

div
d

4
L

E
(0.199)

d
4

(0.200)

(0.201)

(0.202)

(0.203)

d
4

d
3

(0.204)

!
3

(0.205)

d
4

(0.206)

g
0

g
0

g
0

(0.207)

L
d
6

12
µ !

µ!
m
22
!
2

"4! !
4

"
66! !

6
"
88! !

8
.
.
.

(0.208)

"
2

"
6

6
"
8

10
(0.209)

g
a#
2
,

g
2

(0.210)

L
$
i

m
$

a#
2
$
$

2

n

a
n

#
dim

O
n
4
O
n
$
,$

(0.211)

(measured) (“expected”)

Selected Topics in Quantum Field Theory, TAE-2011 Bilbao               M. A. Vázquez-Mozo



Supersymmetry is the most popular solution to the hierarchy problem. In a 
supersymmetric theory, the scalar field couples both to itself and to its 
supersymmetric partner in such a way that the quadratic divergence cancels

19

(0.237)
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vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant " in terms
of measurable quantities.
We see now how this program is implemented. The first divergent Feynman dia-

gram appears in the one-loop calculation of the two-point function

1
2
"µ4 d dd p

2# d
1

p2 m2 i$

1
2
"µ4 dI1 d,m2 . (12.31)

The factor of 12 is a symmetry factor. We can take advantage of the calculations
made in the previous section to isolate the divergent part of the diagram as d 4

i
"m2

16#2
1

d 4
finite part. (12.32)

To cancel this divergencewe add a counterterm 1
2%m

2!2 to the Lagrangian density
where %m2 is given by

%m2
"m2

16#2
1

d 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

i%m2 2# 4% 4 p1 p2 . (12.34)

Its contribution to the two point function to order " exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose no to do so.
The next divergent diagram in the !4 theory comes from the one-loop calculation

of the four-point function. In fact there are three diagrams contributing at order " 2

p2

p1

p4

p3

p2

p1

p4

p3

p2

p1

p3

p4

(12.35)

+

19

(0.237)

log!UV (0.238)

Now, in order to maintain the hierarchy          , we require a much milder fine 
tuning of the bare parameters (more on this in Christophe’s lectures).

18

(0.223)

1
!8

"" 4 (0.224)

a#"$5" (0.225)

ia
2!2

(0.226)

E mW E !QCD (0.227)

MGUT 1015-1016GeV (0.228)

MPlanck 1019GeV (0.229)

mf
MGUT

1 (0.230)

mf MGUT (0.231)

mH MGUT (0.232)

! MGUT (0.233)

L
1
2 µ%0 µ%0

m0 ! 2

2
%20

&0 !
2

%40 (0.234)

m ! (0.235)

Another serious naturalness issue is the cosmological constant problem, 
i.e., why the energy scale of the cosmological constant is so small compared 
with the only natural scale in the problem, the Planck mass
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ratio between the strengths of the electromagnetic and gravitational interactions of
protons and electrons. In a more modern context we can construct a dimensionless
ration between the Fermi and Newton constants

GFc2

GNh̄2
1.73 1033. (12.88)

It is to Dirac’s credit that he did not invoke any anthropic explanation. In his large
number hypothesis he assumed that all these large dimensionless ratios should be
related in a simple way to a single large number which he chose to be the age of the
Universe. This led him to conclude that the fundamental constants of Nature vary
with time.
We do not want to dwell any further on this subject. Excelent expositions of the

notion of naturalness in high energy physics are available in the literature (see, for
example, [11]). However, in view of the examples discussed in the previous section
we find it necessary to state a naturalness criterion that probably most physicists
would find acceptable:

At any energy scale µ , a physical parameter or a set of physical parameters !i µ is allowed
to be very small only if the replacement !i µ 0 would increase the symmetry of the
system.

This criterion, originally formulated by K. Wilson [12] and further elaborated
among others by G. ’t Hooft [5] and L. Susskind [13], has been a guide for nearly
four decades in the construction of theories beyond the standard model. The fact
that the Higgs particle, if thought as an elementary scalar, has not yet been found
adds a good deal of drama associated with naturalness.
This naturalness criterion may apply to particle physics, but in the broader con-

text where gravity is included it is severely violated. In our discussion of effective
field theories we have systematically forgotten the identity operators which, having
zero dimension, should be dominant in the infrared. The reason why we could afford
to ignore this operator so far is that we were not considering gravitational effects.
The coupling of the identity operator receives contributions from the zero-point en-
ergy of all the quantum fields and, as long as gravity is left out of the game, can be
simply ignored.
General relativity teaches us that all forms of energy gravitate, and this applies

also to the zero-point energy of the quantum fields. Therefore once gravitational
effects are considered there is no way to ignore the coupling of the identity operator
to the gravitational field. This term is Einstein’s famous cosmological constant "c.
Its contribution to the energy density of the Universe

#"
"c
8$GN

(12.89)

can be measured from cosmological observations with the result

#" 10 3eV 4 10 48GeV4. (12.90)
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On the other hand, since !" has dimensions of (energy)4 and the only natural energy
scale in gravity is the Planck mass MP 1019 GeV naturalness would require the
scale of !" to be set byMP, that is

!" M4
P 1076 GeV4. (12.91)

This means that there is a mismatch of more than 120 orders of magnitude between
the natural and the measured value of the cosmological constant. To add to the
puzzle, if we compare !" with the cosmological critical density at the present time

!c
3H20
8#GN

, (12.92)

we find the two values to be very close, !" 0.74!c.
Is it just serendipity that the measured value of the cosmological constant is so

close to the Universe’s critical density today? In view of this it is difficult to avoid
the question of whether naturalness should only apply to particle physics in the ab-
sence of gravity. In fact, the problem of the apparent fine tuning of the cosmological
constant is 60 or 70 orders of magnitude worse than the one for the Higgs mass. This
brings in the question: why should gravity be excluded in naturalness arguments?
It is safe to say that currently nobody knows the answer to these questions. For the

Higgs naturalness problems some scenarios have been suggested: supersymmetry
and technicolor among others, that are likely to be tested soon. In the case of the
cosmological constant, apart from anthropic arguments [14] or the string landscape
[15], there is very little to say. Large numbers are likely to continue haunting particle
physicists and cosmologists for some time to come.

12.8 Coda: Heavy Particles and Decoupling

We have appraised mass independent subtraction schemes as the appropriate way
to deal with the renormalization of effective field theories. They have, however,
an important disadvantage: heavy particles do not decouple at energies below their
masses, as expected from the Appelquist-Carazzone decoupling theorem [8].
A simple example showing this is provided by the calculation in QED of the

contribution of a heavy fermion to the photon vacuum polarization (more details
can be found in [9]). The basic ingredient is the DR computation of the one loop
polarization tensor

µ $ pµ p$ p2%µ$ & p2;d 4 (12.93)

where the polarization function & p2;d 4 is given by
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(measured) (“expected”)
Exercise: solve the problem 
(and tell us the answer!)
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Thank you
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