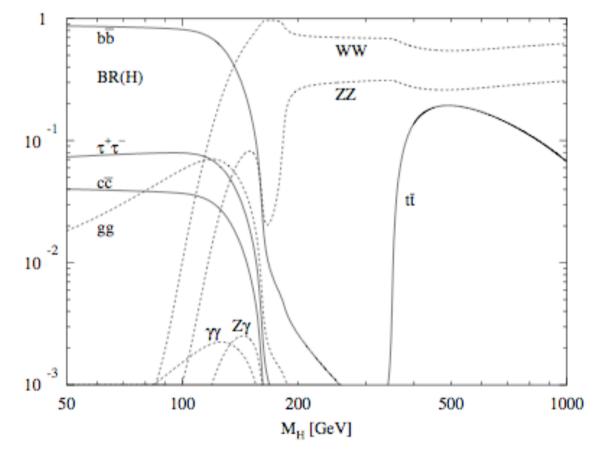
STANDARD MODEL PHENOMENOLOGY

- Review of the SM
- SM: where are we?
- Higgs search
- Radiative corrections
- Flavoured SM
- Open problems of the SM

3. Higgs search

- Interaction \propto mass (M_Z², M_W², m_f) \rightarrow Higgs couples to heavy particles
 - Top-Higgs coupling plays special role?
 - No Higgs coupling to neutrinos
- No tree level couplings to photons (γ) nor gluons (g)


 $-M_{H}^{2}= 2\lambda v^{2} \rightarrow \text{large } M_{H} \text{ is strong coupling regime}$

-M_H is parameter which separates perturbative/nonperturbative regimes

- Couplings to EW gauge bosons (V=W,Z): V^{μ} V^{μ} $H = 2i\frac{M_V^2}{v}g^{\mu\nu}$ V^{ν} $H = 2i\frac{M_V^2}{v^2}g^{\mu\nu}$
- Couplings to fermions (f = l, q): $f = -i\frac{m_f}{v}$

Higgs decay modes

 The Higgs also couples at higher orders with other gauge bosons: Hγγ, HZγ, Hgg

N. Rius TAE 2011

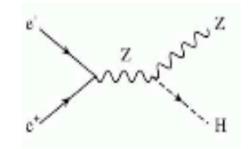
Higgs branching ratios

• 95 GeV < $\rm M_{H}$ < 130 GeV , $\Gamma_{\rm H}$ < 10 MeV

 $\begin{array}{lll} BR(H \to b \bar{b}) & \sim & 90\% \\ BR(H \to c \bar{c}) & \simeq & BR(H \to \tau^+ \tau^-) \sim 5\% \\ BR(H \to g g) & \sim & 5\% \text{ for } M_{\rm H} \sim 120 {\rm GeV} \end{array}$

M_H > 130 GeV

 $BR(H \to W^+W^-) \sim 65\%$, $BR(H \to ZZ) \sim 35\%$


• $M_{\rm H} \approx 500 \, {\rm GeV}$

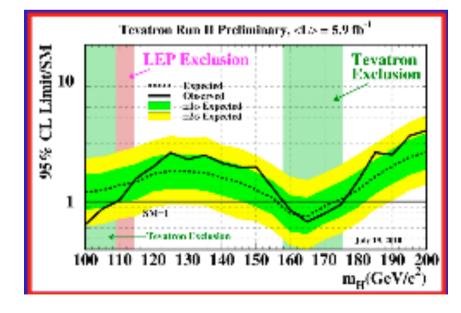
 $BR(H \to t\bar{t}) \sim 20\%$

Higgs searches at LEP2

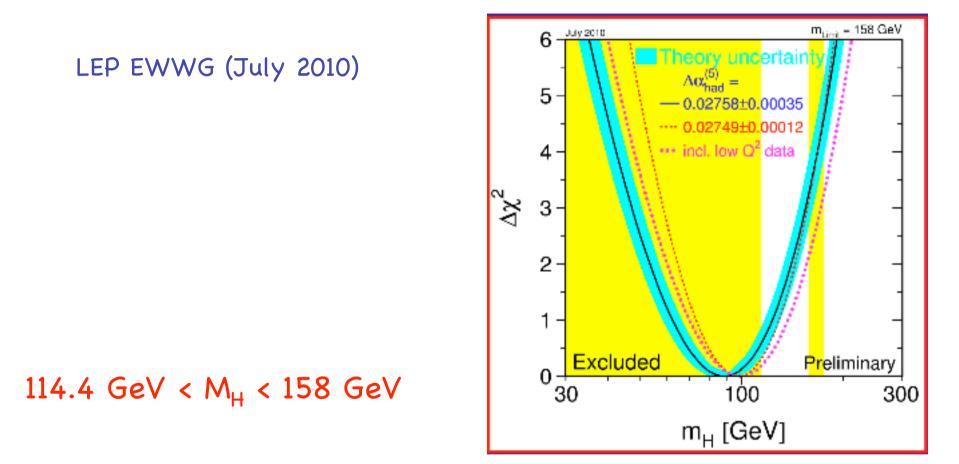
- LEP2 searched for $e^+e^- \rightarrow Z \rightarrow Z H$
- Rate turns on rapidly after threshold, peaks just above threshold
- Measure recoil mass of Higgs; result independent of Higgs decay pattern
- Momentum conservation:

$$(P_{e^-} + P_{e^+} - P_Z)^2 = P_H^2 = M_H^2$$

$$s - 2\sqrt{s}E_Z + M_Z^2 = M_H^2$$


• LEP2 limit: M_H > 114.4 GeV

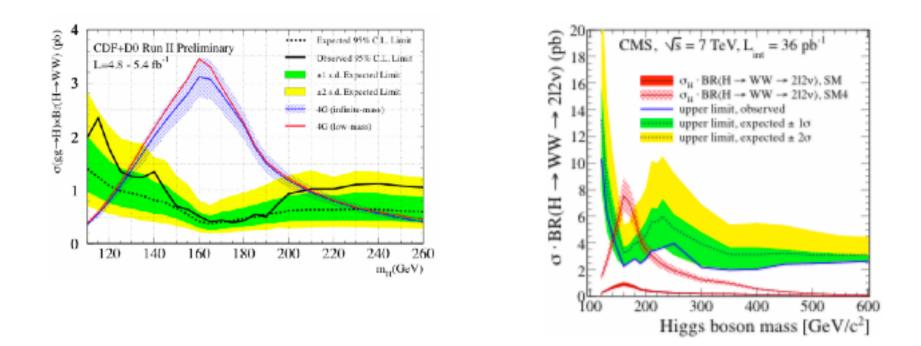
Higgs searches at hadron colliders


- At proton (anti)proton collisions, the Higgs is produced via:
 - Gluon fusion: $p p \rightarrow g g \rightarrow H$
 - VV fusion: $p p \rightarrow V V \rightarrow H$
- Tevatron direct limit: M_H ∈ [158, 173] GeV excluded (95% CL)

 $H \rightarrow W^+ W^-$

CDF + DO (July 2010)

But precision data prefer light Higgs:


 M_{H} > 185 GeV excluded by precision ew data (95% CL)

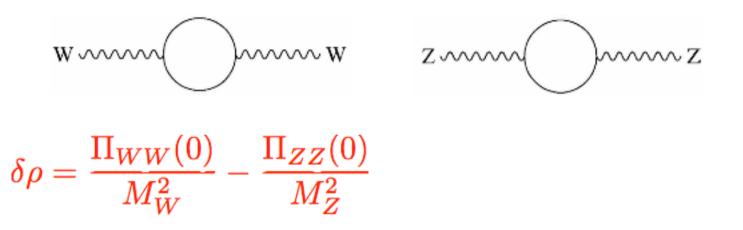
LHC?

- No limits for 3 generations, yet ...
- In the SM with 4 generations, Higgs-gluon-gluon vertex enhanced a factor 3 (2 extra heavy quarks running in the loop)

Limits from Tevatron and LHC

- 131 GeV < M_H < 204 GeV at 95% CL Tevatron
- 144 GeV < M_H < 207 GeV at 95% CL LHC

4. Radiative corrections

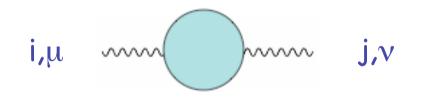

- ρ parameter
- Oblique corrections: S,T,U formalism

$$\rho = \frac{M_W^2}{c_W^2 M_Z^2}$$

- ρ = 1 at tree level → consequence of an unbroken global SU(2) symmetry of the Higgs sector, custodial SU(2) symmetry
- Higgs doublet (complex) = 4 real scalars $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 \rightarrow O(4)$ global symmetry

The vev of ϕ breaks this symmetry down to O(3), that is, SU(2)

- At one loop: $ho=rac{M_W^2}{c_W^2M_Z^2}=1-\delta
 ho$
- Top quark contributes to W and Z 2-point functions:


- $q^{\mu}q^{\nu}$ piece connects to light (massless) fermions, and doesn't contribute here

$$\delta
ho = rac{G_F}{\sqrt{2}} rac{N_c}{8\pi^2} \left(rac{m_t^2}{M_W^2}
ight)$$
 $ightarrow$ top quark doesn't decouple

- In QED, running of α at scale μ not affected by heavy virtual particles with M >> μ
- Decoupling theorem doesn't apply to particles which couple to mass (longitudinal modes of gauge bosons in the SM)

Oblique corrections: S,T,U formalism [Peskin & Takeuchi, PRD46 (1992) 381]

- Suppose "new physics" contributes primarily to gauge boson two point functions
 - cf Δr where vertex and box corrections are small

- Also assume new physics is at scale $M \gg M_z$
- Two point functions for $\gamma\gamma$, WW, ZZ, γZ

$$\Pi_{ij}^{\mu\nu}(q) = \Pi_{ij}(q^2)g^{\mu\nu} - \Delta(q^2)q^{\mu}q^{\nu}$$

- $q^{\mu}q^{\nu}$ piece connects to light (massless) fermions, and doesn't contribute
- Taylor expand 2-point functions:

 $\Pi_{ij}(q^2) = \Pi_{ij}(0) + q^2 \Pi'_{ij}(0) + \dots$

- Keep first two terms
- QED Ward identity requires any amplitude involving EM current vanish at q²=0

$$\Pi_{\gamma\gamma}(0)=0$$

• Recall that $J_Z \propto J_3 - s_W^2 J_Q$

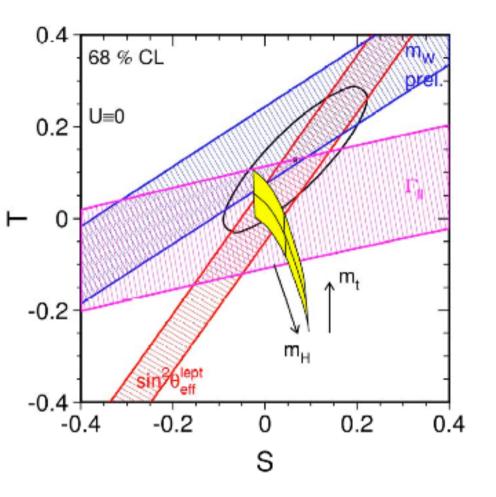
$$\begin{aligned} \Pi_{\gamma\gamma} &= e^{2}\Pi_{QQ} \\ \Pi_{WW} &= \frac{e^{2}}{s_{W}^{2}}\Pi_{11} \\ \Pi_{ZZ} &= \frac{e^{2}}{c_{W}^{2}s_{W}^{2}} \left(\Pi_{33} - 2s_{W}^{2}\Pi_{3Q} + s_{W}^{4}\Pi_{QQ}\right) \\ \Pi_{\gamma Z} &= \frac{e^{2}}{c_{W}s_{W}} \left(\Pi_{3Q} - s_{W}^{2}\Pi_{QQ}\right) \end{aligned}$$

• To order q^2 there are 6 coefficients:

$$\Pi_{QQ} = q^2 \Pi'_{QQ}(0) + \dots$$

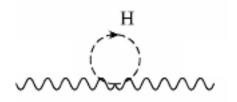
$$\Pi_{3Q} = q^2 \Pi'_{3Q}(0) + \dots$$

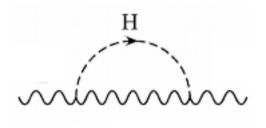
$$\Pi_{ii} = \Pi_{ii}(0) + q^2 \Pi'_{ii}(0) + \dots \quad i = 1, 3$$


- Three combinations of parameters absorbed in α , G_F, M_Z
- Three independent coefficients that can be extracted from data:

lpha T	=	$rac{\Pi_{WW}^{new}(0)}{M_W^2}$ –	$rac{\Pi_{ZZ}^{new}(0)}{M_Z^2}$	
$rac{lpha}{c_W^2 s_W^2} S$	=	$\frac{\Pi_{ZZ}^{new}(M_Z^2)}{M_Z^2} -$	$- rac{\Pi^{new}_{ZZ}(0)}{M^2_Z}$	SM contributions in α , G _F and M _Z
$\frac{\alpha}{4s_W^2}(S+U)$	=	$\frac{\Pi_{WW}^{new}(M_W^2)}{M_W^2}$	$-rac{\Pi_{WW}^{new}(0)}{M_W^2}$	

- •Advantages: Easy to calculate
 - Valid for many models
 - Experimentalists can provide model independent fits


Limits on S & T


- A model with a heavy Higgs requires a source of large (positive) ∆T
- Fit assumes M_H = 150 GeV

• SM values of S, T, U are defined for a reference M_{HO}

$$S = \frac{1}{12\pi} \log \left(\frac{M_H^2}{M_{H0}^2} \right)$$
$$T = -\frac{3}{12\pi c_W^2} \log \left(\frac{M_H^2}{M_{H0}^2} \right)$$
$$U = 0$$

• $\alpha T = \delta \rho$

- Radiative corrections necessary to fit LEP and Tevatron data
- Radiative corrections strongly limit new physics:
- Allowed quark mass splitting of a fourth generation

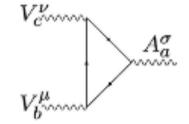
$$m_{t'} - m_{b'} \simeq \left[1 + \frac{1}{5} \log \left(\frac{M_H}{115 \text{GeV}}\right)\right] \times 50 \,\text{GeV}$$

From Tevatron: $m_{t'} > 335\,{
m GeV}$, $m_{b'} > 385\,{
m GeV}$

• Large and negative S in technicolor models

4. Flavoured SM

Fermions come in generations: N_{G} = 3 identical copies $\begin{pmatrix} u \\ d \end{pmatrix}$ $u_R, d_R, \begin{pmatrix} v \\ e \end{pmatrix}, e_R$ $\begin{pmatrix} c \\ s \end{pmatrix}, c_R, s_R, \begin{pmatrix} v \\ \mu \end{pmatrix}, \mu_R$ $\begin{pmatrix} t \\ b \end{pmatrix}$, t_R , $b_{R_r}\begin{pmatrix} v \\ \tau \end{pmatrix}$, τ_R


Why ?

Except for masses, the generations look identical

Need complete generations

- Sensible gauge theories can't have anomalies (see M.A. Vázquez-Mozo lectures)
- Triangle diverges; grows with energy

 $T^{\mu\nu\sigma} \approx \int \frac{d^n k}{(2\pi)^n} \frac{1}{k^3}$

Anomaly independent of mass; depends only on gauge properties

$$T^{\mu\nu\sigma} \approx \operatorname{Tr}\left[\{T^a, T^b\}T^c\right]_L - \operatorname{Tr}\left[\{T^a, T^b\}T^c\right]_R$$

 $T^a \Rightarrow$ group generator

• Complete generations needed for anomaly cancellation

Standard Model Phenomenology

Anomalies, 2

- Standard Model generators: $T^a = \sigma^a/2, Y$
- Three W's or one W and two B's cancel because $Tr(\sigma^a) = 0$
- Contributions only from two W's and one B or three B's:

$$\left[SU(2)\right]^2 U(1)$$
 : $\operatorname{Tr}\left[\{\sigma^a, \sigma^b\}Y\right] = 2\delta^{ab}\sum_{doublets}Y \propto -1 + N_C \frac{1}{3}$

$$\begin{aligned} \left[U(1) \right]^3 &: & \text{Tr} \left(Y^3 \right) \propto \sum_{doublets} Y^3 - \sum_{singlets} Y^3 \\ &= & 2 \left(-\frac{1}{2} \right)^3 + 2N_C \left(\frac{1}{6} \right)^3 - \left[(-1)^3 + N_C \left(\frac{2}{3} \right)^3 + N_C \left(-\frac{1}{3} \right)^3 \right] \\ &= & -\frac{3}{4} \left(-1 + N_C \frac{1}{3} \right) \end{aligned}$$

Fermion masses

• For 3 generations, α , β =1,2,3 (flavour indices):

 $\mathcal{L}_{Y} = -\mathbf{Y}_{\ell}^{'\alpha\beta} \bar{\ell}_{L}^{'\alpha} \phi \, \ell_{R}^{'\beta} - \mathbf{Y}_{d}^{'\alpha\beta} \bar{Q}_{L}^{'\alpha} \phi \, d_{R}^{'\beta} - \mathbf{Y}_{u}^{'\alpha\beta} \bar{Q}_{L}^{'\alpha} \phi_{c} u_{R}^{'\beta} + h.c.$

• After SSB:

$$\mathcal{L}_Y = -\left(1 + \frac{H}{v}\right) \left\{ \bar{\ell'} \cdot \mathbf{M}'_{\ell} \cdot \ell' + \bar{q}'_d \cdot \mathbf{M}'_d \cdot q'_d + \bar{q}'_u \cdot \mathbf{M}'_u \cdot q'_u \right\}$$

• Arbitrary non-diagonal complex mass matrices:

$$[\mathbf{M}_{f}']_{lphaeta} = [\mathbf{Y}_{f}']_{lphaeta} rac{v}{\sqrt{2}}$$

• Unitary matrices diagonalize mass matrices:

$$\mathbf{M}_f' = H_f S_f = U_f^\dagger M_f U_f S_f \equiv U_f^\dagger M_f V_f$$
 M_f diagonal

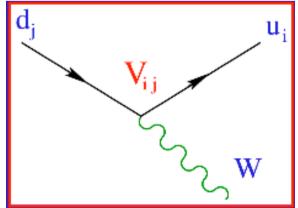
$$H_f = H_f^{\dagger} \qquad U_f, \,\, S_f \,\,, V_f \,\, {
m unitary}$$

 $\ell_L = U_\ell \ell'_L \qquad d_L = U_d d'_L \qquad u_L = U_u u'_L$

 $\ell_R = V_\ell \ell'_R \qquad d_R = V_d d'_R \qquad u_R = V_u u'_R$

- Mass eigenstates ≠ weak eigenstates
- Yukawa couplings are diagonal in mass basis:

$$\mathcal{L}_Y = -\left(1 + \frac{H}{v}\right) \left\{ \bar{\ell} \cdot \mathbf{M}_{\ell} \cdot \ell + \bar{q}_d \cdot \mathbf{M}_d \cdot q_d + \bar{q}_u \cdot \mathbf{M}_u \cdot q_u \right\}$$


 $\mathbf{M}_{\ell} = \operatorname{diag}[m_e, m_{\mu}, m_{\tau}], \ \mathbf{M}_d = \operatorname{diag}[m_d, m_s, m_b], \ \mathbf{M}_u = \operatorname{diag}[m_u, m_c, m_t]$

- Neutral currents remain flavour diagonal
- Not necessarily true in models with extended Higgs sector

• Neutral current: $\bar{f}'_L f'_L = \bar{f}_L f_L$ $\bar{f}'_R f'_R = \bar{f}_R f_R$

$$\mathcal{L}_{NC}^{Z} = -\frac{g}{2\cos\theta_{W}} Z_{\mu} \sum_{f} \bar{f} \gamma^{\mu} \left[v_{f} - a_{f} \gamma_{5} \right] f$$

- Flavour conserving neutral currents (GIM)
- Charged current: $\bar{u}'_L d'_L = \bar{u}_L V d_L$ $V \equiv U_u U_d^{\dagger} \rightarrow \text{CKM matrix}$ $\mathcal{L}_{CC} = -\frac{g}{2\sqrt{2}} W_{\mu}^{\dagger} \left[\sum_{i,j} \bar{u}_i \gamma^{\mu} (1 - \gamma_5) V_{ij} d_j + \sum_{\ell} \bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \ell \right] + h.c.$
- Flavour changing charged currents

Lepton mixing

$$\mathcal{L}_{CC}^{\ell} = -\frac{g}{2\sqrt{2}} W_{\mu}^{\dagger} \sum_{i,j} \bar{\nu}_i \gamma^{\mu} (1 - \gamma_5) V_{ij}^{\ell} \ell_j + h.c.$$

• Minimal SM without $v_R \rightarrow m_{\nu_i} = 0$

$$\bar{\nu}_{\ell_j} \equiv \bar{\nu}_{\ell_i} V_{ij}^{\ell} \Rightarrow \mathcal{L}_{CC}^{\ell} = -\frac{g}{2\sqrt{2}} W_{\mu}^{\dagger} \sum_{\ell} \bar{\nu}_{\ell} \gamma^{\mu} (1-\gamma_5)\ell + h.c.$$

- Separate lepton number conservation
- If v_R exists and $m_{\nu_i} \neq 0$ \rightarrow lepton flavour violation, $L = L_e + L_\mu + L_\tau$ conserved
- If neutrinos are Majorana → lepton flavour and total lepton number L violation
- Present bounds:

 $BR(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11} ; BR(\tau \rightarrow \mu\gamma) < 4.4 \times 10^{-8}$

Quark mixing

- Unitary N_G x N_G matrix \Rightarrow N_G² parameters $V^{\dagger}V = VV^{\dagger} = 1$
- $2 N_G 1$ arbitary phases:

$$u_i \rightarrow e^{i\phi_i} \ ; \ d_j \rightarrow e^{i\theta_j} \Rightarrow V_{ij} \rightarrow e^{i\theta_j - \phi_i} V_{ij}$$

• V_{ij} physical parameters:

Moduli:
$$\frac{1}{2}N_G(N_G - 1)$$
 Phases: $\frac{1}{2}(N_G - 1)(N_G - 2)$

• NG=2: 1 angle (Cabibbo), 0 phases

 $V = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix}$ No CP violation

• NG=3: 3 angles, 1 phase (CKM)

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

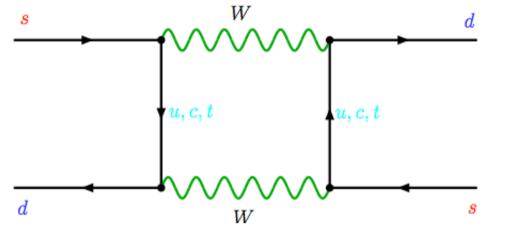
 $c_{ij} \equiv \cos \theta_{ij} , \ s_{ij} \equiv \sin \theta_{ij}$ CP violation

• NG=4: 6 angles, 3 phases

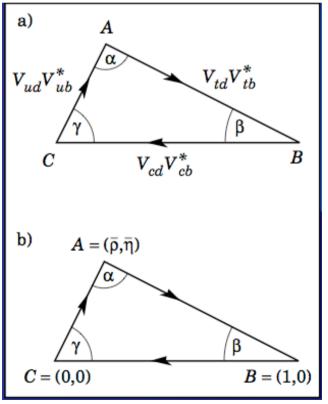
Standard Model Phenomenology

$$\Gamma(d_j \to u_i \ell^- \bar{\nu}_\ell) \propto |V_{ij}|^2$$

- We measure decays of hadrons (no free quarks) -> important QCD uncertainties
- Also data from hadronic decays of W

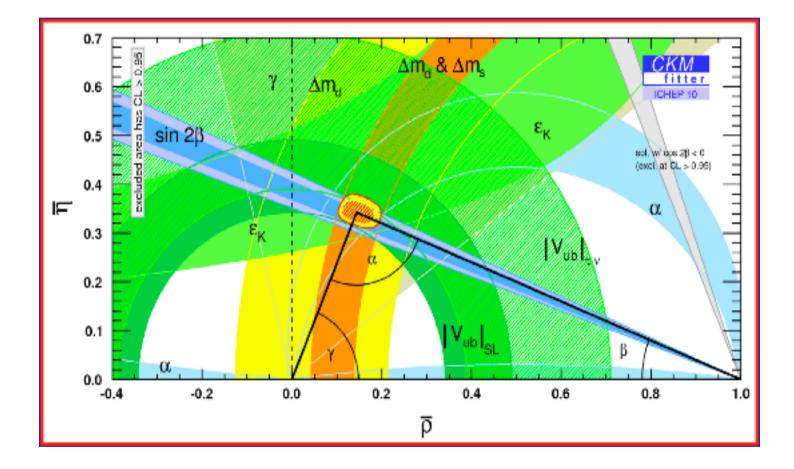

$$|V_{ij}| = \left[egin{array}{ccccc} 0.9739 - 0.9751 & 0.221 - 0.227 & 0.0029 - 0.0045 \ 0.221 - 0.227 & 0.9730 - 0.9744 & 0.039 - 0.044 \ 0.0048 - 0.014 & 0.037 - 0.043 & 0.9990 - 0.9992 \end{array}
ight)$$

Hierarchical pattern
 → Wolfenstein parametrization


$$\begin{split} V &\approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \\ \lambda &= \sin \theta_c \approx 0.225 \ ; \ A &\approx 0.81 \ ; \ \sqrt{\rho^2 + \eta^2} &\approx 0.37 \\ \eta &\neq 0 \quad \clubsuit \ \text{CP violation} \end{split}$$

- C, P : violated maximally in weak interactions
- CP : symmetry of nearly all observed phenomena
- CP violation in meson antimeson systems
 - 0.2 % CP violation in K⁰ decays (1964)
 - Sizeable CP violation in B⁰ decays (2001)
 - Hope we don't need to wait other 30 years ...
- Huge Matter-Antimatter asymmetry in our Universe → Baryogenesis
- CPT theorem: CP violation \Leftrightarrow T violation

 In the SM, meson – antimeson mixing and CP violation generated by diagramas like → phases + interferences



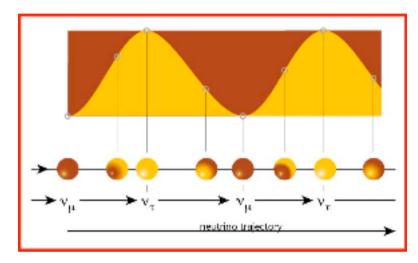
- Unitarity triangle $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- An area ≠ 0 means CP violation

Standard Model Phenomenology

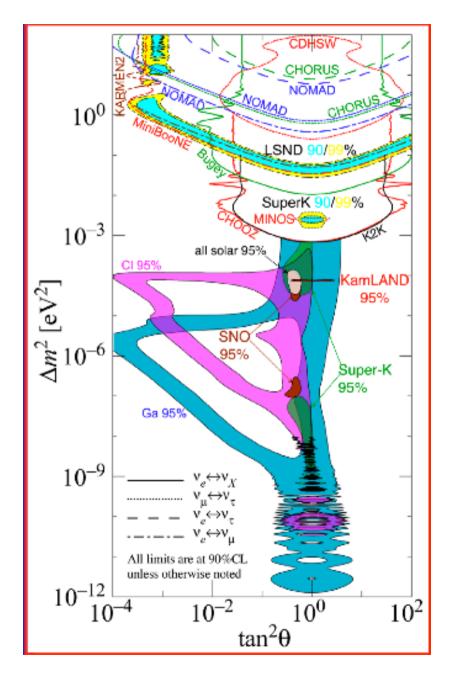
$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

N. Rius TAE 2011

Standard Model CP violation


- Complex phases only in Yukawa couplings
- After SSB and diagonalization of quark's mass matrix:

$$\mathcal{L}_{CC} = -\frac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \sum_{i,j} \bar{u}_i \gamma^{\mu} (1-\gamma_5) V_{ij} d_j + h.c.$$


The CKM matrix V_{ij} is the only source of CP violation
 not sufficient to explain the baryon asymmety of the Universe

Neutrino oscillations

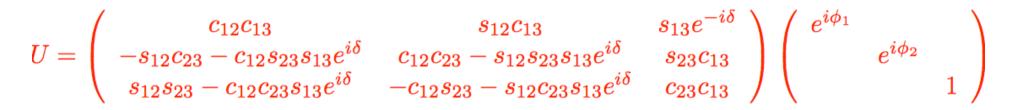
http://hitoshi.berkeley.edu/neutrino

- Lepton mixing
- Neutrino masses
- v_R?
- New physics!

- Evidence for lepton flavour change from:
 - Solar neutrino oscillations, confirmed by reactor experiment (KamLAND)
 - Atmospheric neutrino oscillations, confirmed by accelerator experiment (K2K)
 - LSND and MiniBOONE ?
- If v's are massive, mass eigenstates are not flavour eigenstates, $W^+ \to \ell^+_\alpha \nu_\alpha$, $\alpha = e, \mu, \tau$

 $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$ U \rightarrow PMNS mixing matrix, unitary

• After traveling a distance L, time evolution gives (p>>m_i) $|\nu_{\alpha}(L)\rangle = \sum_{i} U_{\alpha i}^{*} e^{-im_{i}^{2}L/2E} |\nu_{i}\rangle$

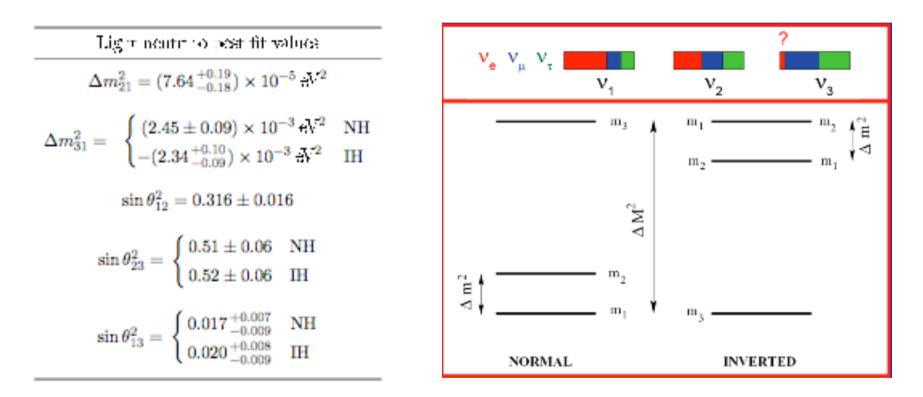

• Then, $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha}(L) \rangle|^2$

• For only 2 flavours: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 L}{E}\right)$

 Δm^2 in eV, L in Km, E in GeV

- Sizeable transition probability if $E/L \approx \Delta m^2$
- Tiny neutrino masses lead to unobservable flavour changing in charged lepton decays

• PMNS mixing matrix:



- Dirac phase δ
- 2 physical phases ϕ_i if neutrinos are Majorana particles
- CP violating phase δ may be observable only if s_{13} big
- Upper limit from CHOOZ (reactor experiment, no evidence of $\bar{\nu}_e$ disappearance): $\sin^2(2\theta_{13}) < 0.2$ at 90% CL
- DOUBLE CHOOZ underway: limit down to 0.03

Standard Model Phenomenology

Global fit to neutrino oscillation data

March, 2011 (new reactor fluxes)

Recent indications of $\nu_{\mu} \rightarrow \nu_{e}$ appearance in T2K and MINOS long-baseline accelerator experiments \rightarrow non zero θ_{13} ?

Standard Model Phenomenology

• Mixing pattern close to tribimaximal, very different from quarks:

$$U \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

- Only mass differences $\Delta m_{ij}^2 = m_i^2 m_j^2\,$ can be determined from oscillations
- Absolute neutrino mass scale unkown; best bound from cosmology m_ν < 1 eV

Neutrino masses

• Two types of mass terms:

$$\mathcal{L}_{Dirac} = ar{
u}_R M_
u
u_L + h.c.$$

 $\mathcal{L}_{Majorana} = -rac{1}{2} ar{
u_L^c} M_
u
u_L + h.c.$

- Indistinguisable in oscillations
- Majorana v's violate lepton number (accidental symmetry of the SM) → neutrinoless double beta decay
- If v_R exists, and lepton number is conserved

$$\mathcal{L}_N = -\bar{\ell}_L \mathbf{Y}_{\nu} \phi_c \nu_R + h.c.$$

 \rightarrow Y_v \approx 10⁻¹²

Seesaw mechanism

- But ν_R can have a Majorana mass term (not forbiden by gauge symmetry, because it is a SM singlet) $\mathcal{L}_N = -\bar{\ell}_L \mathbf{Y}_{\nu} \phi_c \nu_R - \frac{1}{2} \bar{\nu^c}_R M_{\nu} \nu_R + h.c.$
- After SSB, neutrino mass matrix in (v_L , v_R^c) basis is

$$M_{\nu} = \left(\begin{array}{cc} 0 & M_D \\ M_D^T & M \end{array}\right)$$

• If M >> M_D :

 N_{G} heavy Majorana neutrinos, ~ v_{R} with masses ~ M N_{G} light Majorana neutrinos, ~ v_{L} with masses ~ M_{D}^{2}/M

- If there is CP violation in the leptonic sector
- → Generation of the matter antimatter asymmetry of the Universe via Leptogenesis : CP-violating out of equilibrium decay of the heavy neutrino in the Early Universe

5. Open problems of the SM

- Theoretical:
 - Hierarchy problem (SUSY, Xdim, composite Higgs)
 - Flavour structure
- Experimental:
 - Neutrinos
 - Dark matter
 - Dark energy
 - Baryon asymmetry of the Universe
 - Find the Higgs ?

Stay tuned: Exciting times ahead !

Standard Model Phenomenology