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1. Coherence: the two-scattering case.

Consider a high-energy massless scalar projectile scattering on some centers located
in positions x1, x2, . . . - a nucleus. Use light-cone coordinates a± = (a0 ± az)/

√
2,

a = (a0, aT , az) = (a+, a−, aT ) with aT = (ax, ay) the two-dimensional transverse vec-
tor, assume dominance of the +-components for the projectile, and define q = p′ − p.
Employ the optical theorem for purely imaginary amplitudes, it(q = 0) = itforw = −σ for
projectile-nucleon and iTn(q = 0) = −σn

A for the n-scattering contribution for projectile-
nucleus collisions, and the Feynman rules shown in Fig. 1. Then the amplitude with one
scattering (Fig. 1 left) reads:

c(p+, p
′

+)iT1(q) = itforw A(p+ + p′+)

∫

d4x ρA(x+, xT )e
ix·(p′−p)

= itforw c(p+, p
′

+)A

∫

d2xT TA(xT )e
−ixT ·(p′

T
−pT ).

ρA(x+, xT ) is the nuclear density normalized to 1,

TA(xT ) =

∫ +∞

−∞

dx+ ρA(x+, xT )

the nuclear profile, |xT | = b the impact parameter and c(p+, p
′

+) = (2π)2p+δ(p
′

+ − p+) a
normalization factor.
a) Show that the corresponding cross section can be written as an incoherent superposition
of the contribution from the A scattering centers.
b) Extend this result to two scatterings (Fig. 1 right), performing the integral over k−
using the Cauchy theorem to get

c(p+, p
′

+)iT2(q) = iA(A− 1)(itforw)
2

∫

d4k

(2π)4
d4x1d

4x2 e
ix1·(k−p)

×eix2·(p′−k) (p+ + k+)(k+ + p′+)

k2 + iǫ
ρA(x1+, x1T )ρA(x2+, x2T )

= c(p+, p
′

+)A(A− 1)(itforw)
2 (0.1)

×
∫

d2kT
(2π)2

dx1+dx2+d
2x1Td

2x2T e−ik2
T
(x2+−x1+)/(2p+)

×e−i[x1T ·(kT−pT )+x2T ·(p′
T
−kT )]ρA(x1+, x1T )ρA(x2+, x2T )θ(x2+ − x1+),
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Figure 1: One- (left) and two- (right) scattering diagrams, with the corresponding Feyn-
man rules written on them.

with θ(x) the step function.
c) Analyze the low- and high-energy behavior of the exponential involving the difference
in longitudinal position of the scattering centers, an interference term which makes this
two-scattering contribution negligible at low energies and coherent at high energies. Show
that in the totally coherent limit becomes negative - shadowing.
Note: In the coherent limit, the contribution of an arbitrary number of scatterings can
be resummed, resulting in a path-ordered exponential for the S-matrix. For QCD, this is
the Wilson line.
References: N. Armesto, hep-ph/0604108, Section 2; A. Hebecker, hep-ph/9905226, Sec-
tion 3.1 and Appendix A.

2. The Balitsky-Kovchegov equation.

The Balitsky-Kovchegov (BK) equation gives the evolution with rapidity Y = ln (E2
cm/s0) =

ln (x0/x) of the scattering probability N(r, Y ) of a q̄q dipole of transverse size r on a
hadronic target. This probability has the limiting behaviors N(r, Y ) ∝ rδ (δ > 0) for
r → 0 and N(r, Y ) → 1 for r → ∞. Its Fourier transform is proportional to the un-

integrated gluon density of the hadron, φ(x, k⊥) ∝
∫

dk⊥e
i~k⊥·~rN(r, Y )/r2. The equation

reads

∂N(r, Y )

∂Y
=

∫

d2r1
2π

K(~r, ~r1, ~r2) [N(r1, Y ) +N(r2, Y )−N(r, Y )−N(r1, Y )N(r2, Y )] ,

with the vectors in two dimensions and the kernel

K(~r, ~r1, ~r2) =
αsNc

π

r2

r21r
2
2

, ~r = ~r1 − ~r2.

a) Assuming scaling, N(r, Y ) ≡ N(τ), τ = r Qs(Y ), show that the saturation momentum
Qs(Y ) which separates the high occupacy, dense soft modes from the dilute hard ones,
verifies the equation

∂N(τ)

∂Y
=

∂ ln [Q2
s(Y )/Λ2]

∂Y
r2

∂N

∂r2
.
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b) Using the scale invariance of the kernel K and the previous result, integrate both the
right-hand and left-hand sides of the BK equation over d2r/r2 to get that, for the coupling

constant αs fixed, Q
2
s(Y ) = Q2

0 exp (dαsNcY/π) with d =
∫

d2r
πr2

∂N(τ)
∂Y

and Q2
0 = Q2

s(Y = 0).
c) In the running coupling case, the kernel in no longer scale-invariant. Taking the running
coupling

αs(r) =
12π

β0 ln 4
r2Λ2

, β0 = 11Nc − 2Nf ,

evaluated at r = 2/Qs(Y ), show in the same way as done previously that Q2
s(Y ) =

Λ2 exp
[

∆′
√
Y +X

]

with (∆′)2 = 24Ncd/β0 and X = (∆′)−2 ln (Q2
0/Λ

2).
Note: Taking αs(r) inside the integrand of the integral over d2r/r2 previously mentioned
and using the behavior of the kernel and the limiting behaviors of the scattering probability
N(r, Y ) given at the beginning of the problem, it can be argued the bulk of the contri-
bution to the integral comes from τ ∼ 1. This justifies the choice of scale r ∼ 1/Qs(Y )
made in c).
References: J. L. Albacete et al., hep-ph/0408216, Sections 2, 3 and 5.3.

3. The AGK cutting rules and the Glauber model.

Consider hadron-nucleus (hA) scattering of a hadron h on a nucleus A with mass
number A at fixed impact parameter b, whose dependence will be usually implicit in the
following. Denoting with uppercase letters the quantities corresponding to hA and with
lowercase letters those corresponding to hN (N for nucleon), we have

S = 1 + iA, s = 1 + ia, 2 Imga = σ,

σhA
tot (b) = 2Re(1− S), σhA

elastic(b) = |1− S|2.
In the Glauber-Gribov theory, the amplitude is given by a superposition of scatterings,

A =
A
∑

k=1

Ak, iAk =

(

A

k

)

(iaTA)
k =⇒ S = (1 + iaTA)

A,

with TA ≡ TA(b) =
∫

dzρA(z,b) the longitudinal integral of the nuclear density normalized
to one, called the profile function, and k the number of scatterings (exchanged hadron-
nucleon amplitudes). At high energies, the scatterings take place simultaneously. We
want to compute the contribution to the hA cross sections from cuts of these amplitudes
Ak. The cuts are arbitrarily ordered and given by a single cutting plane which may cut
an arbitrary number of amplitudes (or none of them), but cuts only can take place on or
after (on or before) the first (last) scattering. The AGK cutting rules provide the way to
do this: ia → ia for amplitudes located to the left of the cut, ia → (ia)∗ for amplitudes
located to the right of the cut, and ia → σ for cut amplitudes, taking into account the
combinatorial factors.
a) Obtain that Dk,m, the contribution from k exchanged amplitudes with m ≤ k cut ones,
is

Dk,m = (−1)k−m

(

A

k

)(

k

m

)

(σTA)
k.

b) Using the identity
(

A

k

)(

k

m

)

=

(

A

m

)(

A−m

k −m

)

,
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obtain the inelastic (non-diffractive) cross section

σhA
inel =

A
∑

m=1

σm = 1− (1− σTA)
A, σm =

A
∑

k=m

Dk,m .

c) Obtain
Dk,0 = (−σTA)

k − [iaTA]
k − [(ia)∗TA]

k

to get σ0 =
∑A

k=1Dk,0, the inelastic plus diffractive cross section, and verify that σhA
inel +

σ0 = σhA
tot .

d) Compute the mean number of participant nucleons (or nucleon-nucleon collisions)

〈m〉(b) σhA
inel(b) =

A
∑

m=1

mσm = Aσ TA(b).

From here you get, integrating both sides over d2b, 〈m〉 = Aσ/σhA
inel. Considering that each

cut gives the same contribution to the multiplicities, this shows that in hA the inclusive
cross section is proportional the A times the inclusive cross section in hN, the same result
we get in collinear factorization for a large scale. It means that rescatterings, which make
σhA < Aσ, have no effect on the one-particle inclusive cross section – the so-called AGK
cancellation.
Notes:
• Sometimes the binomials are exponentiated, so (1− σTA)

A ≃ exp (−σATA).
• Many times the amplitude a is taken as purely imaginary, so ia = −σ/2.
• Under certain approximations, the above expression for σm can be used in AB collisions
replacing A → AB, TA(b) → TAB(b) =

∫

d2s TA(s) TB(b− s).
• We have taken the cut of the exchanged amplitudes as purely inelastic (no diffraction),
and the cut between the amplitudes with the same structure as the hadron or nucleon.
This may not be so, which forbids the identification of σ with the total hadron-nucleon
cross section. In practice, to compute σm the inelastic or inelastic plus diffractive hadron-
nucleon cross section is employed.
References: V. A. Abramovsky, V. N. Gribov and O. V. Kancheli, Yad. Fiz. 18 (1973)
595 [Sov. J. Nucl. Phys. 18 (1974) 308], Sections 1 and 2; C.-Y. Wong, Introduction to

High-Energy Heavy-Ion Collisions, World Scientific 1994, Chapter 12; M. L. Miller et al.,
nucl-ex/0701025.
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