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Summary

• Gauge Theories

• Symmetries (mostly discrete)

• Renormalization

• Anomalies

• Effective Field Theories
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What you are presumed to know

• Advanced quantum mechanics (including path integral methods).

• Elementary quantum field theory (e.g., basics of field quantization, 
general ideas about Feynman diagrams,...).

• Rudiments of particle physics

But never fear if there is something you don’t know. Ask at any moment 
and/or bring your questions to the afternoon sessions.

And remember: there are no stupid questions, only stupid answers.
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Some warnings before we start:

• We use the “mostly minus” metric (a.k.a. western coast metric):

Appendix A
Notation, Conventions and Units.

For the benefit of the reader we summarize in this appendix the main conventions
used throughout the book.

Covariant notation.

We have used the “mostly minus” metric

!µ"

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (A.1)

Derivatives with respect to the four-vector xµ ct,x are denoted by the shorthand

µ xµ
1
c t

,# .

Sporadically we have used the notation

f x µ g x f x µg x µ f x g x . (A.2)

As usual space-time indices will be labelled by Greek letters (µ ,", . . . 0,1,2,3)
while Latin indices will be used for spatial directions (i, j, . . . 1,2,3). We reserved
$ , % for Dirac and a,b,c, . . . for Weyl spinor indices.
The electromagnetic four-vector potential Aµ is defined in terms of the scalar &

and vector potential A by

Aµ & ,A . (A.3)

The components of the field strength tensor Fµ" µA" "Aµ and its dual Fµ"
1
2'µ"()F

() are given respectively by
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• Unless otherwise said, natural units are used throughout:

276 A Notation, Conventions and Units.

Fµ!

0 Ex Ey Ez
Ex 0 Bz By
Ey Bz 0 Bx
Ez By Bx 0

, Fµ!

0 Bx By Bz
Bx 0 Ez Ey
By Ez 0 Ex
Bz Ey Ex 0

, (A.4)

with E Ex,Ey,Ez and B Bx,By,Bz the electric and magnetic fields. Similar
expressions are valid in the nonabelian case.

Pauli and Dirac matrices.

We have used the notation " µ 1, "i where "i are the Pauli matrices

"1
0 1
1 0 , "2

0 i
i 0 , "3

1 0
0 1 . (A.5)

They satisfy the identity

"i" j #i j1 $i jk"k, (A.6)

from where their commutator and anticommutator can be easily obtained.
Dirac matrices have always been used in the chiral representation

%µ
0 " µ

" µ 0 . (A.7)

The chirality matrix is normalized as %25 1 and defined by %5 i%0%1%2%3. In
many places we have used the Feynman’s slash notation a %µaµ .

Units.

Unless stated otherwise, we work in natural units h̄ c 1. Electromagnetic
Heaviside-Lorentz units have been used, where the Coulomb and Ampère laws take
the form

F
1
4&

qq
r3
r,

dF
d!

1
2&c2

II
d

. (A.8)

In these units the fine structure constant is

'
e2

4& h̄c
. (A.9)

The electron charge in natural units is dimensionless and equal to e 0.303.

• We use Heaviside-Lorentz electromagnetic units:
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Lecture 1

Gauge Theories

• Quantization of gauge theories

• What is gauge invariance?

• Gauge invariance vs. mass: the Brout-Englert-Higgs mechanism.

• Classical gauge theories

Monday, July 11, 2011



The most familiar example of a gauge theory is Maxwell electrodynamics

48 4 Theories and Lagrangians II: Introducing Gauge Fields

The equations of electrodynamics can be recast in a manifestly Lorentz invariant
form using the four-vector gauge potential Aµ ! ,A and the antisymmetric field
strength tensor defined by

Fµ" µA" "Aµ . (4.3)

The four Maxwell equations

# E $ ,

# B 0, (4.4)

# E
t
B,

# B j
t
E,

are recast in the form

µFµ" jµ ,

%µ"&' "F&' 0, (4.5)

where the four-current jµ $ , j contains the charge density and the electric cur-
rent. The second set of equations are called the Bianchi identities and are satisfied
by any field strength (4.3). Notice that Fµ" , and therefore the Maxwell equations,
are invariant under the gauge transformations (4.2), which in covariant form read

Aµ Aµ µ%. (4.6)

Finally, the equations of motion of a particle with mass m and charge q

mx q E x B (4.7)

take the form

m
duµ

d(
qFµ"u" , (4.8)

where uµ ( is the particle four-velocity as a function of the proper time ( . These
equations of motion, depending only on the field strength Fµ" , are also gauge in-
variant.
The physical role of the vector potential becomes manifest only in quantum me-

chanics. Using the prescription of minimal substitution p p qA, the Schrödinger
equation describing a particle with charge q moving in an electromagnetic field is

i
t
)

1
2m

# iqA 2 q! ) . (4.9)

Chapter 4
Theories and Lagrangians II: Introducing
Gauge Fields

Gauge theories play a central role in our current understanding of the fundamental
interaction. The weak, electromagnetic and strong interactions are well described
by gauge theories. We introduce them in this chapter for the first time. Although we
often talk about gauge invariance, or gauge symmetry, these terms are a bit mislead-
ing. The gauge symmetry is more a redundancy in the description of the physical
degrees of freedom than a symmetry, as will be shown later on. The redundancy is
of course very useful because it makes Lorentz invariance and locality explicit, but
it is not a symmetry in the same sense as rotations or translations. These theories
have an incredible richness and complexity. Many aspects of their dynamics are still
poorly understood. In our presentation we just scratch the surface of a deep subject.

4.1 Classical Gauge Fields

In classical electrodynamics the basic physical quantities are the electric and mag-
netic fields E and B. They can be expressed in terms of the scalar and vector poten-
tials ! and A as

E "!
A
t
,

B " A. (4.1)

From these equations we see that specifying E and B does not uniquely determine
the potentials, since the former do not change under the gauge transformations

! t,x ! t,x
t
# t,x , A t,x A t,x "# t,x . (4.2)

From a classical point of view the introduction of ! and A is seen as a technicality
that helps solving the Maxwell equations, but without physical relevance.
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with            an arbitrary function.
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Physical (i.e., measurable) quantities have to be gauge invariant.

Gauge invariance in nonrelativistic QM
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i
t
)

1
2m

# iqA 2 q! ) . (4.9)

In quantum mechanics, however, the Schrödinger equation depends on the 
(gauge dependent) electromagnetic potentials
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Under a gauge transformation

the wave equation remains invariant provided the wave function is multiplied by 
a nonconstant phase:

4.1 Classical Gauge Fields 49

Due to the explicit dependence on the electromagnetic potentials ! and A, this
equation seems to change under the gauge transformations (4.2). This is physically
acceptable only if the ambiguity does not affect the probability density given by
" t,x 2. Therefore, a gauge transformation of the electromagnetic potential should
amount to a change in the (unobservable) global phase of the wave function. This
is indeed what happens: the Schrödinger equation (4.9) is invariant under the gauge
transformations (4.2) provided the phase of the wave function is transformed at the
same time according to

" t,x e iq# t,x " t,x . (4.10)

The Aharonov-Bohm effect

This interplay between gauge transformations and the phase of the wave function
gives rise to surprising phenomena. A first evidence of the role played by the elec-
tromagnetic potentials at the quantum level was pointed out by Yakir Aharonov
and David Bohm [1]. Let us consider a double slit experiment as shown in fig. 4.1,
where we have placed a shielded solenoid just behind the first screen. Although
the magnetic field is confined to the interior of the solenoid, the vector potential
is nonvanishing also outside. The value of A outside the solenoid is locally a pure
gauge, i.e. $ A 0, however since the region outside the solenoid is not simply
connected the vector potential cannot be gauged to zero everywhere.
The dependence of the interference pattern with the magnetic field inside the

solenoid can be calculated very easily using the path integral formalism introduced
in section 2.4. The probability amplitude for an electron emitted at t 0 to be de-
tected at some given position x on the screen at a later time % is given by the propa-
gatorK x,x0;% , where x0 is the point where the electron is emitted. This propagator
admits a path integral representation where the sum over paths has to take into ac-
count that there are two classes of paths that are topologically non-equivalent: those
passing respectively through the upper and the lower slits.
The classical action of a nonrelativistic particle of mass m and charge q in the

presence of a vector potencial A is given by

S dt
1
2
mx2 qx A 1

2
dtmx2 q

&
dx A, (4.11)

where the second term in the last equation is a line integral along the particle tra-
jectory & . Using Stokes’ theorem and $ A 0 we find that the value of this term
only depends on the topological class of & , but not in the particular curve within each
class. Denoting by K1 x,x0;% andK2 x,x0;% the propagators of the electron going
through each of the two slits in the absence of a magnetic field, the total propagator
with the magnetic field switched on can be written as

Hence, gauge invariance means that the global phase of the wave function can be 
changed locally. 
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Classical gauge field theories I
The abelian case

The Maxwell equations can be recast in a Lorentz covariant form using the 
four-vector potential                  and the covariant field strength tensor

48 4 Theories and Lagrangians II: Introducing Gauge Fields

The equations of electrodynamics can be recast in a manifestly Lorentz invariant
form using the four-vector gauge potential Aµ ! ,A and the antisymmetric field
strength tensor defined by

Fµ" µA" "Aµ . (4.3)

The four Maxwell equations

# E $ ,

# B 0, (4.4)

# E
t
B,

# B j
t
E,

are recast in the form

µFµ" jµ ,

%µ"&' "F&' 0, (4.5)

where the four-current jµ $ , j contains the charge density and the electric cur-
rent. The second set of equations are called the Bianchi identities and are satisfied
by any field strength (4.3). Notice that Fµ" , and therefore the Maxwell equations,
are invariant under the gauge transformations (4.2), which in covariant form read

Aµ Aµ µ%. (4.6)

Finally, the equations of motion of a particle with mass m and charge q

mx q E x B (4.7)

take the form

m
duµ

d(
qFµ"u" , (4.8)

where uµ ( is the particle four-velocity as a function of the proper time ( . These
equations of motion, depending only on the field strength Fµ" , are also gauge in-
variant.
The physical role of the vector potential becomes manifest only in quantum me-

chanics. Using the prescription of minimal substitution p p qA, the Schrödinger
equation describing a particle with charge q moving in an electromagnetic field is

i
t
)

1
2m

# iqA 2 q! ) . (4.9)
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by any field strength (4.3). Notice that Fµ" , and therefore the Maxwell equations,
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The Maxwell equations are now derived from the gauge invariant Lagrangian
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4.2 Quantization of the Electromagnetic Field.

We now proceed to the quantization of the electromagnetic field in the absence of
sources ! 0, j 0. In this case the Maxwell equations (4.14) can be derived from
the Lagrangian density

LMaxwell
1
4
Fµ"Fµ" 1

2
E2 B2 . (4.28)

Although in general the procedure to quantize the Maxwell Lagrangian is not very
different from the one used for the Klein-Gordon or the Dirac field, here we need
to deal with a new ingredient: gauge invariance. Unlike the cases studied so far,
here the photon field Aµ is not unambiguously defined because the action and the
equations of motion are insensitive to the gauge transformations Aµ Aµ µ# .
A first consequence of this symmetry is that the theory has less physical degrees of
freedom than what would be expected for a vector field.
The way to tackle the problem of gauge invariance is to fix the freedom in choos-

ing the electromagnetic potential before quantization. This can be done in several
ways, for example by imposing the Lorentz gauge fixing condition

µAµ 0. (4.29)

Notice that this condition does not fix completely the gauge freedom since eq. (4.29)
is left invariant by gauge transformations satisfying µ

µ# 0. One of the advan-
tages of the Lorentz gauge is that it is covariant and therefore does not pose any
danger to the Lorentz invariance of the quantum theory. Besides, applying it to the
Maxwell equation µFµ" 0 one finds

0 µ
µA" " µAµ µ

µA" . (4.30)

Since Aµ satisfies the massless Klein-Gordon equation the photon, the quantum of
the electromagnetic interaction, has zero mass.
Once gauge invariance is fixed Aµ t,x can be expanded in a complete basis of

plane-wave solutions to eq. (4.30)

#µ k,$ e i k t ik x, (4.31)

where #µ k,$ are the polarization vectors. In principle there are four independent
polarizations for the photon, labelled by $ . The Lorentz gauge condition (4.29),
however, forces the polarization vectors to be transverse

kµ#µ k,$ kµ#µ k,$ 0. (4.32)

This condition can be used to eliminate one polarization. We can get rid of another
one by using the on-shell condition k2 0 and the residual gauge transformations
mentioned after equation (4.29). Finally we are left with just two physical indepen-
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We saw how in quantum mechanics the Schrödinger equation of a charged 
particle is obtained by promoting the global phase invariance of the wave 
function to a local symmetry (this is called the gauge principle).

To find the electromagnetic coupling of a complex classical field we use the 
same guiding principle and gauge the global phase symmetry. 

For the Dirac field, for example,

3.3 Dirac Spinors. 39

3.3 Dirac Spinors.

We have seen that parity interchanges the representations 1
2 ,0 and 0, 12 , i.e. it

changes right-handed with left-handed fermions

P : u u . (3.30)

An obvious way to build a parity invariant theory is to combine a pair or Weyl
fermions u and u of opposite helicity in a single four-component spinor

!
u
u (3.31)

transforming in the reducible representation 1
2 ,0 0, 12 .

Since now we have both u and u simultaneously at our disposal, the equations
of motion for u , i" µ

µu 0 can be modified, while keeping them linear, to
introduce a mass term

i" µ
µu mu

i" µ
µu mu

i " µ 0
0 " µ µ! m 0 1

1 0 ! . (3.32)

These equations of motion can be derived from the Lagrangian density

LDirac i! " µ 0
0 " µ µ! m! 0 1

1 0 ! . (3.33)

To simplify the notation it is useful to define the Dirac #-matrices as

#µ
0 " µ

" µ 0 . (3.34)

and the Dirac conjugate spinor !

! ! #0 !
0 1
1 0 . (3.35)

The Lagrangian (3.33) can be written in the more compact form

LDirac ! i#µ µ m ! , (3.36)

whose equations of motion give the Dirac equation (1.10) with the identifications

#0 $ , # i i% i. (3.37)

The #-matrices defined in (3.34) satisfy the Dirac algebra

#µ ,#& 2'µ& . (3.38)

in invariant under
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dent transverse polarizations ! 1. They correspond to right and left circularly
polarized photons.
Now, upon quantization, the gauge field operator Aµ t,x can be written as the

following expansion

Aµ t,x
! 1

d3k
2" 3

1
2 k

#µ k,! a k,! e i k t ik x

#µ k,! a k,! ei k t ik x , (4.33)

where the canonical commutation relations imply that

a k,! ,a k ,! 2" 3 2 k $ k k $!!

a k,! ,a k ,! a k,! ,a k ,! 0. (4.34)

Therefore a k,! , a k,! form a set of creation-annihilation operators for photons
with momentum k and helicity ! .
Had we kept the unphysical degrees of freedom removed by the residual gauge

transformations, the spectrumwould contain states with negative norm. To decouple
these states with negative probability is one of the main concerns in quantizing
theories with gauge invariance. In these theories there is a redundancy in the way
physical states are represented by rays in the Hilbert space H : a physical state is
represented by infinitely many rays inH . Here we have dealt with this problem by
eliminating this redundancy explicitly, i.e., keeping only those polarizations that are
physical. Other strategies to handle this problem can be found in standard textbooks
(see ref. [1] in chapter 1). In section 4.6 we will return to the problem of fixing the
gauge redundancy, this time using the path integral formalism.
From the previous discussion the reader might think that we have work too hard

unnecessarily. If the photon has only two physical degrees of freedom, perhaps we
could describe it using two scalar degrees of freedom, instead of introducing a re-
dundant four-component gauge field. The obstacle is Lorentz invariance: the only
known way of describing the two photon polarizations in a Lorentz invariant way is
through the gauge field Aµ . The gauge redundancy is the prize we pay for a Lorentz
invariant description of massless photons.

4.3 Coupling Gauge Fields to Matter.

Once we know how to quantize the electromagnetic field we can consider interacting
theories containing electrically charged particles, for example electrons. To couple
the Dirac Lagrangian to electromagnetism we use the analysis of the Schrödinger
equation for a charged particle presented in page 49. There we learned that the gauge
ambiguity of the electromagnetic potential is compensated by a U(1) phase shift in
the wave function. The Lagrangian (3.36) is invariant under % e iq#% , with #

To make this invariance local we need to replace the ordinary derivative     by 
a covariant one       transforming under                            as
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a constant. This invariance is broken as soon as one identifies ! with the position-
dependent gauge transformation parameter of the electromagnetic field.
To promote this global U(1) symmetry of the Dirac Lagrangian to a local one

" " e iq! x " it is enough to replace µ by a covariant derivative Dµ , also
transforming under a gauge transformationDµ Dµ , and satisfying

Dµ" Dµ e iq! x " e iq! x Dµ" . (4.35)

Such a covariant derivative can be constructed in terms of the gauge potential Aµ as

Dµ µ iqAµ. (4.36)

The gauge transformation of Aµ absorbs the derivative of the gauge parameter and
eq. (4.35) is satisfied. The electromagnetic field strength can be written in terms of
the commutator of two covariant derivatives as

Dµ ,D# iqFµ# . (4.37)

This identity will be useful in the construction of nonabelian gauge theories in the
next section.
The Lagrangian of quantum electrodynamics (QED), i.e., a spin- 12 field coupled

to electromagnetism,

LQED
1
4
Fµ#Fµ# " iD m " , (4.38)

is invariant under the U(1) gauge transformations

" e iq! x " , Aµ Aµ µ! x . (4.39)

Unlike the theories we encountered so far, QED is an interacting theory. By plugging
(4.36) into the Lagrangian we find that the interaction term between fermions and
photons has the form

L int
QED H int

QED qAµ"$µ" . (4.40)

This shows that, as anticipated in the previous chapter (see page 43), the electric
current four-vector is given by jµ q"$µ" . In the following we stick to the gen-
eral convention and denote the charge by e. In the case of electrons or muons, for
example, e is negative and equal to the elementary charge.
The quantization of interacting field theories like QED poses new problems that

we did not meet in the case of the free theories. In particular in most cases it is not
possible to solve the theory exactly. When this happens the physical observables
have to be computed in perturbation theory in powers of the coupling constant. An
added problem appears in the computation of quantum corrections to the classical
result, which is plagued with infinities that should be taken care of. All these issues
will be addressed in chapters 6 and 8.
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(keep in mind for later use)
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With this we can write the Lagrangian of QED (i.e., a Dirac fermion coupled to 
the electromagnetic field)
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eral convention and denote the charge by e. In the case of electrons or muons, for
example, e is negative and equal to the elementary charge.
The quantization of interacting field theories like QED poses new problems that

we did not meet in the case of the free theories. In particular in most cases it is not
possible to solve the theory exactly. When this happens the physical observables
have to be computed in perturbation theory in powers of the coupling constant. An
added problem appears in the computation of quantum corrections to the classical
result, which is plagued with infinities that should be taken care of. All these issues
will be addressed in chapters 6 and 8.
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In particular, the QED Lagrangian is invariant under global transformations with 
constant   . Noether’s theorem implies the existence of a conserved current
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dent transverse polarizations ! 1. They correspond to right and left circularly
polarized photons.
Now, upon quantization, the gauge field operator Aµ t,x can be written as the

following expansion
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! 1

d3k
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2 k

#µ k,! a k,! e i k t ik x

#µ k,! a k,! ei k t ik x , (4.33)
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a k,! ,a k ,! 2" 3 2 k $ k k $!!

a k,! ,a k ,! a k,! ,a k ,! 0. (4.34)

Therefore a k,! , a k,! form a set of creation-annihilation operators for photons
with momentum k and helicity ! .
Had we kept the unphysical degrees of freedom removed by the residual gauge

transformations, the spectrumwould contain states with negative norm. To decouple
these states with negative probability is one of the main concerns in quantizing
theories with gauge invariance. In these theories there is a redundancy in the way
physical states are represented by rays in the Hilbert space H : a physical state is
represented by infinitely many rays inH . Here we have dealt with this problem by
eliminating this redundancy explicitly, i.e., keeping only those polarizations that are
physical. Other strategies to handle this problem can be found in standard textbooks
(see ref. [1] in chapter 1). In section 4.6 we will return to the problem of fixing the
gauge redundancy, this time using the path integral formalism.
From the previous discussion the reader might think that we have work too hard

unnecessarily. If the photon has only two physical degrees of freedom, perhaps we
could describe it using two scalar degrees of freedom, instead of introducing a re-
dundant four-component gauge field. The obstacle is Lorentz invariance: the only
known way of describing the two photon polarizations in a Lorentz invariant way is
through the gauge field Aµ . The gauge redundancy is the prize we pay for a Lorentz
invariant description of massless photons.

4.3 Coupling Gauge Fields to Matter.

Once we know how to quantize the electromagnetic field we can consider interacting
theories containing electrically charged particles, for example electrons. To couple
the Dirac Lagrangian to electromagnetism we use the analysis of the Schrödinger
equation for a charged particle presented in page 49. There we learned that the gauge
ambiguity of the electromagnetic potential is compensated by a U(1) phase shift in
the wave function. The Lagrangian (3.36) is invariant under % e iq#% , with #
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which is identified with the electric four-current in the Maxwell equations.
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To construct nonabelian generalization of QED we begin by considering the a 
Lie group G whose generators satisfy the Lie algebra

Classical gauge field theories II
Yang-Mills theories
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Here we can connect with the comments made at the beginning of the chapter.
The end result of our quantization procedure is to write the gauge field in terms
of the two physical degrees of freedom appearing in (4.33). Out of the four com-
ponents of Aµ only two represent physical degrees of freedom. It is clear that if
we wrote the theory (after including interactions) only in terms of the transverse
degrees of freedom the result would be a theory without explicit Lorentz symme-
try and also with non-local interactions. The inclusion of longitudinal- and timelike
photons makes these apparently lost, but fundamental properties, explicit. The basic
problem in the quantization of gauge theories is to make sure that at the quantum
level the additional components continue to be irrelevant. Unfortunately this is not
always possible, in some cases there are quantum anomalies making the theory in-
consistent (see chapter 9).

4.4 Nonabelian Gauge Theories.

QED is the simplest example of a gauge theory coupled to matter based on the
abelian gauge symmetry of local U(1) phase rotations. Gauge theories based on
nonabelian groups can also be constructed. Our knowledge of the strong and weak
interactions is in fact based on the use of the nonabelian generalizations of QED,
called Yang-Mills theories.
Let us consider a gauge group G with generators TA, A 1, . . . ,dimG satisfying

the Lie algebra2

TA,TB i f ABCTC. (4.41)

We introduce a vector field Aµ AA
µTA taking values on the Lie algebra g of the

group G. Its gauge transformation is given by

Aµ Aµ
1

igYM
U µU 1 UAµU 1, U ei! x , (4.42)

where ! x !A x T A and gYM is the coupling constant. These gauge transforma-
tions are non-linear in the gauge function ! x . Infinitesimally, the matrix-valued
field Aµ transforms according to

"Aµ
1
gYM

µ! i Aµ,! , (4.43)

which in components reads

"AA
µ

1
gYM

µ!A f ABCAB
µ!

C. (4.44)

2 Some basics facts about Lie groups have been summarized in appendix B.
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As generalization of the photon field we introduce the Lie-algebra-valued field
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We consider now a “matter” field     transforming in a representation R of the 
gauge group

4.4 Nonabelian Gauge Theories. 59

As in the abelian case the coupling of matter to a nonabelian gauge field is done
by introducing a covariant derivative. Let! be a field (scalar or spinor) transforming
in a representation R of the gauge group G

! ! UR!. (4.45)

The covariant derivative satisfying Dµ! URDµ! is defined by

Dµ! µ! igYMAµ!, (4.46)

where Aµ AA
µTA
R , with TA

R the generators in the representation R. In the particu-
lar case of the adjoint representation the generators can be written in terms of the
structure constants

TA
adj

B
C i f ABC, (4.47)

and the covariant derivative takes the form

Dµ! µ! igYM Aµ ,! (adjoint representation). (4.48)

Comparing this expression with (4.43) we find that the infinitesimal transformation
of the gauge field can be expressed as

"Aµ
1
gYM

Dµ# . (4.49)

Our last task is to find the kinetic term for the nonabelian gauge fields. General-
izing eq. (4.37) we write

Dµ ,D$ igYMFµ$ , (4.50)

where Fµ$ is the nonabelian field strength

Fµ$ µA$ $Aµ igYM Aµ ,A$ (4.51)

This expression reduces to (4.3) for abelian gauge groups, when the commutator of
the gauge fields vanishes. The field strength tensor takes values in the Lie algebra,
Fµ$ FA

µ$TA, where

FA
µ$ µAA

$ $AA
µ gYM f ABCAB

µAC$ . (4.52)

Unlike the case of the Maxwell theory the field strength for nonabelian gauge
fields is not gauge invariant. Using (4.50) and the transformation of the covariant
derivative it is easy to show that it transforms as

Fµ$ UFµ$U 1. (4.53)
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Following the the abelian case, we couple   to the nonabelian field   by 
replacing ordinary derivatives by covariant ones in the globally invariant 
Lagrangian 
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The covariant derivative can be written in terms of the gauge field as
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We still need to build an action functional for the nonabelian gauge fields. We 
define the field strength by
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(                 )

Applying the transformation of the covariant derivative we find
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Exercise: prove it

A gauge invariant Lagrangian quadratic in derivatives can be now written as

60 4 Theories and Lagrangians II: Introducing Gauge Fields

This gives the clue to constructing a gauge invariant Lagrangian for the nonabelian
gauge field Aµ as

L
1
2
Tr Fµ!Fµ! 1

4
FA
µ!FAµ! , (4.54)

where the normalization Tr TATB 1
2"

AB has been used. A crucial difference be-
tween this and the Lagrangian of electromagnetism is the presence of cubic and
quartic terms in the gauge field Aµ . This means that, unlike the photon, the non-
abelian gauge bosons act themselves as sources of the field. The equations of motion
derived from the Lagrangian (4.54) can be written as

DµFµ! 0, (4.55)

where Dµ is the covariant derivative in the adjoint representation shown in eq.
(4.48).
Just as in the Maxwell theory, the components of the nonabelian field strength

tensor FA
µ! in four dimensions can be decomposed into electric and magnetic fields

EA and BA

EA
i FA

0i, BA
i

1
2
#i jkFA

jk. (4.56)

From (4.53) it follows that the nonabelian electric and magnetic fields are gauge
dependent. In terms of them the Lagrangian (4.54) becomes

L
1
2
EA EA BA BA . (4.57)

In QCD EA and BA are respectively known as chromoelectric an chromomagnetic
fields.
With all this information we can write a generic Lagrangian for a nonabelian

gauge field coupled to scalars $ and spinors % as

L
1
2
Tr Fµ!Fµ! i%D% Dµ$ Dµ$

% M1 $ i&5M2 $ % V $ , (4.58)

where the covariant derivatives are in the representation of the field involved. The
Lagrangian of the standard model is of this form, withM1 $ andM2 $ linear in $
and V $ of quartic order. This particular form of the functions appearing in (4.58)
is related to the good properties of the standad model at high energies.
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This Lagrangian contains 
terms           ,           .
Exercise: write them
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!µ(k,0) = 0 (0.42)
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Âµ(t,x) = %
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∫ d3k
(2&)3
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4
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jµ = q()µ( "µ jµ = 0 (0.52)

A,B,C = 1, . . . ,dimG (0.53)

Lmatter(*,"µ*) =⇒ Lmatter(*,Dµ*) (0.54)
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O(A3µ) O(A4µ) (0.56)
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Quantization I: the Abelian case

The quantization of the field        is complicated by the gauge ambiguity. There 
are various strategies to deal with the problem. Our approach begins with 
eliminating the unphysical degrees of freedom by fixing the gauge

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
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h x (0.26)

U x exp i"a x
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2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

SU(2)L SU(2)R (0.31)

U x LU x R (0.32)
%L x L%L x (0.33)
%R x R%R x (0.34)
Aµ x LAµ x L (0.35)

L,R SU(2) (0.36)

L R (0.37)

µAµ 0 (0.38)
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(Lorentz condition)

Imposing this condition, the equations of motion are
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4.2 Quantization of the Electromagnetic Field.

We now proceed to the quantization of the electromagnetic field in the absence of
sources ! 0, j 0. In this case the Maxwell equations (4.14) can be derived from
the Lagrangian density

LMaxwell
1
4
Fµ"Fµ" 1

2
E2 B2 . (4.28)

Although in general the procedure to quantize the Maxwell Lagrangian is not very
different from the one used for the Klein-Gordon or the Dirac field, here we need
to deal with a new ingredient: gauge invariance. Unlike the cases studied so far,
here the photon field Aµ is not unambiguously defined because the action and the
equations of motion are insensitive to the gauge transformations Aµ Aµ µ# .
A first consequence of this symmetry is that the theory has less physical degrees of
freedom than what would be expected for a vector field.
The way to tackle the problem of gauge invariance is to fix the freedom in choos-

ing the electromagnetic potential before quantization. This can be done in several
ways, for example by imposing the Lorentz gauge fixing condition

µAµ 0. (4.29)

Notice that this condition does not fix completely the gauge freedom since eq. (4.29)
is left invariant by gauge transformations satisfying µ

µ# 0. One of the advan-
tages of the Lorentz gauge is that it is covariant and therefore does not pose any
danger to the Lorentz invariance of the quantum theory. Besides, applying it to the
Maxwell equation µFµ" 0 one finds

0 µ
µA" " µAµ µ

µA" . (4.30)

Since Aµ satisfies the massless Klein-Gordon equation the photon, the quantum of
the electromagnetic interaction, has zero mass.
Once gauge invariance is fixed Aµ t,x can be expanded in a complete basis of

plane-wave solutions to eq. (4.30)

#µ k,$ e i k t ik x, (4.31)

where #µ k,$ are the polarization vectors. In principle there are four independent
polarizations for the photon, labelled by $ . The Lorentz gauge condition (4.29),
however, forces the polarization vectors to be transverse

kµ#µ k,$ kµ#µ k,$ 0. (4.32)

This condition can be used to eliminate one polarization. We can get rid of another
one by using the on-shell condition k2 0 and the residual gauge transformations
mentioned after equation (4.29). Finally we are left with just two physical indepen-

so the gauge field satisfies a massless Klein-Gordon equation, with plane wave 
(positive energy) solutions
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different from the one used for the Klein-Gordon or the Dirac field, here we need
to deal with a new ingredient: gauge invariance. Unlike the cases studied so far,
here the photon field Aµ is not unambiguously defined because the action and the
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A first consequence of this symmetry is that the theory has less physical degrees of
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ing the electromagnetic potential before quantization. This can be done in several
ways, for example by imposing the Lorentz gauge fixing condition

µAµ 0. (4.29)

Notice that this condition does not fix completely the gauge freedom since eq. (4.29)
is left invariant by gauge transformations satisfying µ

µ# 0. One of the advan-
tages of the Lorentz gauge is that it is covariant and therefore does not pose any
danger to the Lorentz invariance of the quantum theory. Besides, applying it to the
Maxwell equation µFµ" 0 one finds

0 µ
µA" " µAµ µ

µA" . (4.30)

Since Aµ satisfies the massless Klein-Gordon equation the photon, the quantum of
the electromagnetic interaction, has zero mass.
Once gauge invariance is fixed Aµ t,x can be expanded in a complete basis of

plane-wave solutions to eq. (4.30)

#µ k,$ e i k t ik x, (4.31)

where #µ k,$ are the polarization vectors. In principle there are four independent
polarizations for the photon, labelled by $ . The Lorentz gauge condition (4.29),
however, forces the polarization vectors to be transverse

kµ#µ k,$ kµ#µ k,$ 0. (4.32)

This condition can be used to eliminate one polarization. We can get rid of another
one by using the on-shell condition k2 0 and the residual gauge transformations
mentioned after equation (4.29). Finally we are left with just two physical indepen-

In principle, there would be four independent polarizations (                 )

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

SU(2)L SU(2)R (0.31)

U x LU x R (0.32)
%L x L%L x (0.33)
%R x R%R x (0.34)
Aµ x LAµ x L (0.35)

L,R SU(2) (0.36)

L R (0.37)

Aµ x (0.38)

0 µ
µA& &

µAµ µ
µA& (0.39)

' 0,1,2,3 (0.40)

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

SU(2)L SU(2)R (0.31)

U x LU x R (0.32)
%L x L%L x (0.33)
%R x R%R x (0.34)
Aµ x LAµ x L (0.35)

L,R SU(2) (0.36)

L R (0.37)

Aµ x (0.38)

0 µ
µA& &

µAµ µ
µA& (0.39)

' 0,1,2,3 (0.40)

(µ k,0 ) 0
µ (0.41)

(temporal)

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

SU(2)L SU(2)R (0.31)

U x LU x R (0.32)
%L x L%L x (0.33)
%R x R%R x (0.34)
Aµ x LAµ x L (0.35)

L,R SU(2) (0.36)

L R (0.37)

Aµ x (0.38)

0 µ
µA& &

µAµ µ
µA& (0.39)

' 0,1,2,3 (0.40)

(µ k,0 ) 0
µ (µ k,3 ) i

µ ki (0.41)

(longitudinal) (transverse to    )

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

SU(2)L SU(2)R (0.31)

U x LU x R (0.32)
%L x L%L x (0.33)
%R x R%R x (0.34)
Aµ x LAµ x L (0.35)

L,R SU(2) (0.36)

L R (0.37)

Aµ x (0.38)

0 µ
µA& &

µAµ µ
µA& (0.39)

' 0,1,2,3 (0.40)

(µ k,0 ) 0
µ (µ k,3 ) i

µ ki (µ k,1 , (µ k,2 (0.41)

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

SU(2)L SU(2)R (0.31)

U x LU x R (0.32)
%L x L%L x (0.33)
%R x R%R x (0.34)
Aµ x LAµ x L (0.35)

L,R SU(2) (0.36)

L R (0.37)

Aµ x (0.38)

0 µ
µA& &

µAµ µ
µA& (0.39)

' 0,1,2,3 (0.40)

(µ k,0 ) 0
µ (µ k,3 ) i

µ ki (µ k,1 , (µ k,2 (0.41)
Monday, July 11, 2011



The plane wave solutions, however, should satisfy the Lorentz condition:
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ing the electromagnetic potential before quantization. This can be done in several
ways, for example by imposing the Lorentz gauge fixing condition
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Notice that this condition does not fix completely the gauge freedom since eq. (4.29)
is left invariant by gauge transformations satisfying µ
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danger to the Lorentz invariance of the quantum theory. Besides, applying it to the
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Since Aµ satisfies the massless Klein-Gordon equation the photon, the quantum of
the electromagnetic interaction, has zero mass.
Once gauge invariance is fixed Aµ t,x can be expanded in a complete basis of

plane-wave solutions to eq. (4.30)
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where #µ k,$ are the polarization vectors. In principle there are four independent
polarizations for the photon, labelled by $ . The Lorentz gauge condition (4.29),
however, forces the polarization vectors to be transverse

kµ#µ k,$ kµ#µ k,$ 0. (4.32)

This condition can be used to eliminate one polarization. We can get rid of another
one by using the on-shell condition k2 0 and the residual gauge transformations
mentioned after equation (4.29). Finally we are left with just two physical indepen-

This can be used to set the temporal polarization to zero4
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Exercise!
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Having got rid of the spurious states, we proceed to quantize 
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56 4 Theories and Lagrangians II: Introducing Gauge Fields

dent transverse polarizations ! 1. They correspond to right and left circularly
polarized photons.
Now, upon quantization, the gauge field operator Aµ t,x can be written as the

following expansion

Aµ t,x
! 1

d3k
2" 3

1
2 k

#µ k,! a k,! e i k t ik x

#µ k,! a k,! ei k t ik x , (4.33)

where the canonical commutation relations imply that

a k,! ,a k ,! 2" 3 2 k $ k k $!!

a k,! ,a k ,! a k,! ,a k ,! 0. (4.34)

Therefore a k,! , a k,! form a set of creation-annihilation operators for photons
with momentum k and helicity ! .
Had we kept the unphysical degrees of freedom removed by the residual gauge

transformations, the spectrumwould contain states with negative norm. To decouple
these states with negative probability is one of the main concerns in quantizing
theories with gauge invariance. In these theories there is a redundancy in the way
physical states are represented by rays in the Hilbert space H : a physical state is
represented by infinitely many rays inH . Here we have dealt with this problem by
eliminating this redundancy explicitly, i.e., keeping only those polarizations that are
physical. Other strategies to handle this problem can be found in standard textbooks
(see ref. [1] in chapter 1). In section 4.6 we will return to the problem of fixing the
gauge redundancy, this time using the path integral formalism.
From the previous discussion the reader might think that we have work too hard

unnecessarily. If the photon has only two physical degrees of freedom, perhaps we
could describe it using two scalar degrees of freedom, instead of introducing a re-
dundant four-component gauge field. The obstacle is Lorentz invariance: the only
known way of describing the two photon polarizations in a Lorentz invariant way is
through the gauge field Aµ . The gauge redundancy is the prize we pay for a Lorentz
invariant description of massless photons.

4.3 Coupling Gauge Fields to Matter.

Once we know how to quantize the electromagnetic field we can consider interacting
theories containing electrically charged particles, for example electrons. To couple
the Dirac Lagrangian to electromagnetism we use the analysis of the Schrödinger
equation for a charged particle presented in page 49. There we learned that the gauge
ambiguity of the electromagnetic potential is compensated by a U(1) phase shift in
the wave function. The Lagrangian (3.36) is invariant under % e iq#% , with #

where        creates a photon of momentum   and polarization   out of the 
vacuum
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The two physical polarizations can be taken to be the two helicity states
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Generically, the basic issue in the quantization of gauge theories is avoiding 
overcounting physically equivalent configurations. For example, in 5

Z =
∫

D!D!DAµ eiSQED[Aµ ,!,!] (0.58)

we have to integrate over field configurations that are not “gauge equivalent”. 

To factor out the gauge redundancy we 
introduce an appropriate gauge fixing condition 

Each field configuration belongs to an orbit that 
intersect the gauge fixing slice. We introduce 
the identity in the form

4.6 Gauge Fields and Path Integrals 65

quotients of path integrals [see chapter 6 and in particular eq. (6.35)]. Then it suffices
to cancel the (infinite) volume factor in the numerator and denominator.
To carry out this program we follow ideas due to Faddeev and Popov [9] and

begin by imposing a set of gauge fixing conditions of the form

F A Aµ 0. (4.74)

They can be visualized as a “slice” in the space of all gauge field configurations.
Each Aµ falls into a gauge orbit generated by the gauge transformations acting on it.
Two gauge field configurations are nonequivalent if they lie on different orbits. The
condition (4.74) selects a representative on each orbit and has to satisfy a number of
requirements: it has to be reachable from any Aµ , i.e., each gauge orbit should have
a representative satisfying (4.74), and this representative should be unique. To keep
expressions simple in the following we drop the group theory index in eq. (4.74)
and denote the gauge conditions collectively byF Aµ 0.
The next step is to split the functional integral (4.73) into an integration over

the orbit representatives and an integral over each gauge orbit. This last integration
results in a common factor equal to the volume of the gauge group. This is done by
introducing the functional !FP Aµ through the following definition

1 !FP Aµ DU " F AUµ , (4.75)

where we are integrating over all gauge transformations and by AUµ we denote the
gauge potential transformed byU . For reasons that will be explained soon, !FP Aµ
is called the Faddeev-Popov determinant. It is not difficult to show that it is gauge
invariant. Indeed, for any gauge transformationU we have

!FP AUµ 1 DU " F AUUµ

DU " F AUµ !FP Aµ 1, (4.76)

where we have made the change of variablesU UU and used the gauge invari-
ance of the integration measure over the gauge group,DU DU .
We insert now the identity (4.75) into the function integral (4.73)

Z DAµDU !FP Aµ " F AUµ e
i
2 d4xTr Fµ#Fµ# . (4.77)

Doing the change of variables Aµ AU 1
µ and using the gauge invariance of both

the action and !FP Aµ we remove all dependence on U from the integrand. If the
integration measure over the gauge fields DAµ is gauge invariant this change of
variables does not induce any Jacobian and the integration over the gauge group can
be factored out
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Exercise: prove it

4.6 Gauge Fields and Path Integrals 65

quotients of path integrals [see chapter 6 and in particular eq. (6.35)]. Then it suffices
to cancel the (infinite) volume factor in the numerator and denominator.
To carry out this program we follow ideas due to Faddeev and Popov [9] and

begin by imposing a set of gauge fixing conditions of the form

F A Aµ 0. (4.74)

They can be visualized as a “slice” in the space of all gauge field configurations.
Each Aµ falls into a gauge orbit generated by the gauge transformations acting on it.
Two gauge field configurations are nonequivalent if they lie on different orbits. The
condition (4.74) selects a representative on each orbit and has to satisfy a number of
requirements: it has to be reachable from any Aµ , i.e., each gauge orbit should have
a representative satisfying (4.74), and this representative should be unique. To keep
expressions simple in the following we drop the group theory index in eq. (4.74)
and denote the gauge conditions collectively byF Aµ 0.
The next step is to split the functional integral (4.73) into an integration over

the orbit representatives and an integral over each gauge orbit. This last integration
results in a common factor equal to the volume of the gauge group. This is done by
introducing the functional !FP Aµ through the following definition

1 !FP Aµ DU " F AUµ , (4.75)

where we are integrating over all gauge transformations and by AUµ we denote the
gauge potential transformed byU . For reasons that will be explained soon, !FP Aµ
is called the Faddeev-Popov determinant. It is not difficult to show that it is gauge
invariant. Indeed, for any gauge transformationU we have

!FP AUµ 1 DU " F AUUµ

DU " F AUµ !FP Aµ 1, (4.76)

where we have made the change of variablesU UU and used the gauge invari-
ance of the integration measure over the gauge group,DU DU .
We insert now the identity (4.75) into the function integral (4.73)

Z DAµDU !FP Aµ " F AUµ e
i
2 d4xTr Fµ#Fµ# . (4.77)

Doing the change of variables Aµ AU 1
µ and using the gauge invariance of both

the action and !FP Aµ we remove all dependence on U from the integrand. If the
integration measure over the gauge fields DAµ is gauge invariant this change of
variables does not induce any Jacobian and the integration over the gauge group can
be factored out

Monday, July 11, 2011



5

Z D!D!DAµ eiSQED Aµ ,!,! (0.58)

Z D!D!DAµDU"FP Aµ # F AUµ eiSQED Aµ ,!,! (0.59)

Inserting the identity we are left with

Changing variables to                ,                , and using the invariance of the action, 
we have

5

Z D!D!DAµ eiSQED Aµ ,!,! (0.58)

Z D!D!DAµDU"FP Aµ # F AUµ eiSQED Aµ ,!,! (0.59)

Aµ AU
1

µ ! U 1! (0.60)

5

Z D!D!DAµ eiSQED Aµ ,!,! (0.58)

Z D!D!DAµDU"FP Aµ # F AUµ eiSQED Aµ ,!,! (0.59)

Aµ AU
1

µ ! U 1! (0.60)

5

Z D!D!DAµ eiSQED Aµ ,!,! (0.58)

Z D!D!DAµDU"FP Aµ # F AUµ eiSQED Aµ ,!,! (0.59)

Aµ AU
1

µ ! U 1! (0.60)

Z DU D!D!DAµ"FP Aµ # F Aµ eiSQED Aµ ,!,! (0.61)

4

! µ
k,
0

0
(0
.4
2)

A µ
x

A µ
x

µ
!
x

µ
µ
!
x

0
(0
.4
3)

! µ
k,
"

! µ
k,
"

#
k µ

(0
.4
4)

!
k,
"

"
1,
2

(0
.4
5)

A µ
t,
x

"
1,
2

d3
k

2$
3
1 2
k

! µ
k,
"
a
k,
"
e

ik
t
ik
x

(0
.4
6)

0
(0
.4
7)

! µ
k,
3

0
(0
.4
8)

(0
.4
9)

µ
(0
.5
0)

1 4F
µ
%

µ
%

&
i

m
&

qA
µ
&
'µ
&

(0
.5
1)

jµ
q&

'µ
&

µ
jµ

0
(0
.5
2)

A,
B,
C

1,
.
.
.
,
di
m
G

(0
.5
3)

L
m
at
te
r
(

,
µ
(

L
m
at
te
r
(

,
D
µ
(

(0
.5
4)

U
R

G
(0
.5
5)

O
A3 µ

O
A4 µ

(0
.5
6)

"
1

"
2

(0
.5
7)

5

Z D!D!DAµ eiSQED Aµ ,!,! (0.58)

Z D!D!DAµDU"FP Aµ # F AUµ eiSQED Aµ ,!,! (0.59)

Aµ AU
1

µ ! U 1! (0.60)

Z DU D!D!DAµ"FP Aµ # F Aµ eiSQED Aµ ,!,! (0.61)

dimG (0.62)

With this we have factored out the gauge redundancy. The (divergent) prefactor 
cancels out of the amplitudes.

For a more explicit expression of the Faddeev-Popov determinant we use
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Z DU DAµ !FP Aµ " F Aµ e
i
2 d4xTr Fµ#Fµ# . (4.78)

We can ignore the divergent prefactor and replace (4.73) by the gauge-fixed func-
tional integral

Z DAµ !FP Aµ " F Aµ e
i
2 d4xTr Fµ#Fµ# . (4.79)

The delta function restricts the integration to gauge configurations lying on the slice
F Aµ 0, i.e. the integral only includes the contributions of the representatives of
each gauge orbit.
To find an explicit expression for !FP Aµ we use a functional version of the

delta-function identity (2.10), namely

" F AUµ det
"F AUµ
"U

U U

1

" U U , (4.80)

where U is a gauge transformation such that F AUµ 0 for a given Aµ . Going
back to eq. (4.75) and integrating over U using the delta function, we find that
!FP Aµ can be expressed as the following functional determinant

!FP Aµ det
"F AUµ
"U

U 1

. (4.81)

In writing this expression we have used that !FP Aµ !FP AU
1

µ . This means that
in the computation of the Faddeev-Popov determinant we have to impose that the
gauge field lies on the gauge sliceF Aµ 0.
It should be clear that the value of the path integral (4.79) is not modified by

changing the position of the slice defined by (4.74). That is, the value of Z does
not change if we replaceF Aµ by F Aµ f x , where f x is an arbitrary Lie
algebra valued function of the coordinates,

Z DAµ !FP Aµ " F Aµ f x e
i
2 d4xTr Fµ#Fµ# . (4.82)

Since the previous expression is independent of f x we can insert the constant term

D f e
i
$ d4xTr f x 2 constant, (4.83)

and carry out the integration over f x using the delta function. Modulo a global
normalization, this gives

Z DAµ !FP Aµ ei d
4xTr 1

2Fµ#F
µ# 1

$ F Aµ 2
, (4.84)

2.1 Particles and Quantum Fields 13

The integration over p0 can be easily done using the delta function identity

! g x
xi zeros of g

1
g xi

! x xi , (2.10)

valid for any function g x with simple zeroes. In our case this implies

! p2 m2
1
2p0

! p0 p2 m2
1
2p0

! p0 p2 m2 . (2.11)

The second term has support on states with negative energy and therefore does not
contribute to the integral. We can write

d4p
2" 4 2" ! p2 m2 # p0 f p

d3p
2" 3

1
2 p2 m2

f p2 m2,p . (2.12)

Hence, the relativistic invariant measure is given by

d3p
2" 3

1
2Ep

with Ep p2 m2. (2.13)

Once we have an invariant measure the next step is to find an invariant normaliza-
tion for the states. We work with a basis p of eigenstates of the four-momentum
operator Pµ

P0 p Ep p , Pi p p i p . (2.14)

Since the states p are eigenstates of the three-momentum operator we can express
them in terms of the non-relativistic states p introduced in eq. (2.1)

p N p p (2.15)

with N p a normalization to be determined now. The states p form a complete
basis, so they should satisfy the Lorentz invariant closure relation

d4p
2" 4 2" ! p2 m2 # p0 p p 1. (2.16)

At the same time, this closure relation can be expressed, using eq. (2.15), in terms
of the nonrelativistic basis of states p as
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This leads to: Hence the name!
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and integrate over        using the functional delta
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(Remember: global constants in the path integral are irrelevant!)
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We have eliminated the gauge redundancy by introducing the Faddeev-Popov 
determinant in the functional integral and adding a gauge fixing term to the 
action.
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gauge fixing term

We have eliminated the gauge redundancy by introducing the Faddeev-Popov 
determinant in the functional integral and adding a gauge fixing term to the 
action.
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We can use the Lorentz condition                     . The Faddeev-Popov determinant 
is now independent of the gauge field
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where ! is an arbitrary real parameter. The new term added to the action is called
the gauge fixing term.
We illustrate the previous discussion with two examples. We begin with QED

and impose the Lorentz gaugeF Aµ µAµ . UsingU x eie" x we find

F AUµ µAµ µ
µ"

#F AUµ
#U

U 1

1
ie µ

µ . (4.85)

Hence $FP Aµ det 1
ie µ

µ is independent of the gauge field. This means
that we do not have to bother computing the determinant because it goes out of the
path integral as an irrelevant global normalization constant. The typical functional
integral for QED can be written as

ZQED D%D%DAµei SQED Sgf , (4.86)

where the action and the gauge-fixing term read

SQED Sgf d4x % iD m %
1
4
Fµ&Fµ& 1

2! µAµ 2 . (4.87)

The conclusion is that the problem of gauge invariance in the path integral quantiza-
tion of QED is handled in a Lorentz-invariant way by adding a gauge fixing term to
the action. The constant ! is arbitrary and can be chosen to make some expressions
simpler. In chapter 6 we will learn how to compute observables in QED.
The case of nonabelian Yang-Mills theories is more complicated and here we

only outline the procedure. Using the Lorentz condition F Aµ µAµ and the
gauge transformation #Aµ 1

gYMDµ' we find

#F AUµ
#U

U 1

1
igYM

µDµ , (4.88)

where Dµ is the covariant derivative in the adjoint representation, given by (4.48).
Unlike the case of QED now the Faddeev-Popov determinant depends on the gauge
field, even after imposing the Lorentz condition µAµ 0. Thus it has to be taken
into account when carrying out the integration overAµ . The standard way to proceed
now is to write $FP Aµ as a path integral over some unphysical fields called the
Faddeev-Popov ghosts. The details can be found in most of the textbooks listed in
reference [1] of chapter 1.
The use of Faddeev-Popov ghosts in nonabelian gauge theories can be avoided,

for example, in the axial gauge nµAµ 0, with nµnµ 0. In this case

#F AUµ
#U

U 1

1
igYM

nµDµ . (4.89)
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It can be factored out of the path integral, so we are left with
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where ! is an arbitrary real parameter. The new term added to the action is called
the gauge fixing term.
We illustrate the previous discussion with two examples. We begin with QED

and impose the Lorentz gaugeF Aµ µAµ . UsingU x eie" x we find

F AUµ µAµ µ
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Hence $FP Aµ det 1
ie µ

µ is independent of the gauge field. This means
that we do not have to bother computing the determinant because it goes out of the
path integral as an irrelevant global normalization constant. The typical functional
integral for QED can be written as

ZQED D%D%DAµei SQED Sgf , (4.86)

where the action and the gauge-fixing term read

SQED Sgf d4x % iD m %
1
4
Fµ&Fµ& 1

2! µAµ 2 . (4.87)

The conclusion is that the problem of gauge invariance in the path integral quantiza-
tion of QED is handled in a Lorentz-invariant way by adding a gauge fixing term to
the action. The constant ! is arbitrary and can be chosen to make some expressions
simpler. In chapter 6 we will learn how to compute observables in QED.
The case of nonabelian Yang-Mills theories is more complicated and here we

only outline the procedure. Using the Lorentz condition F Aµ µAµ and the
gauge transformation #Aµ 1

gYMDµ' we find

#F AUµ
#U

U 1

1
igYM

µDµ , (4.88)

where Dµ is the covariant derivative in the adjoint representation, given by (4.48).
Unlike the case of QED now the Faddeev-Popov determinant depends on the gauge
field, even after imposing the Lorentz condition µAµ 0. Thus it has to be taken
into account when carrying out the integration overAµ . The standard way to proceed
now is to write $FP Aµ as a path integral over some unphysical fields called the
Faddeev-Popov ghosts. The details can be found in most of the textbooks listed in
reference [1] of chapter 1.
The use of Faddeev-Popov ghosts in nonabelian gauge theories can be avoided,

for example, in the axial gauge nµAµ 0, with nµnµ 0. In this case

#F AUµ
#U

U 1

1
igYM

nµDµ . (4.89)
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where ! is an arbitrary real parameter. The new term added to the action is called
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The conclusion is that the problem of gauge invariance in the path integral quantiza-
tion of QED is handled in a Lorentz-invariant way by adding a gauge fixing term to
the action. The constant ! is arbitrary and can be chosen to make some expressions
simpler. In chapter 6 we will learn how to compute observables in QED.
The case of nonabelian Yang-Mills theories is more complicated and here we

only outline the procedure. Using the Lorentz condition F Aµ µAµ and the
gauge transformation #Aµ 1

gYMDµ' we find
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where Dµ is the covariant derivative in the adjoint representation, given by (4.48).
Unlike the case of QED now the Faddeev-Popov determinant depends on the gauge
field, even after imposing the Lorentz condition µAµ 0. Thus it has to be taken
into account when carrying out the integration overAµ . The standard way to proceed
now is to write $FP Aµ as a path integral over some unphysical fields called the
Faddeev-Popov ghosts. The details can be found in most of the textbooks listed in
reference [1] of chapter 1.
The use of Faddeev-Popov ghosts in nonabelian gauge theories can be avoided,

for example, in the axial gauge nµAµ 0, with nµnµ 0. In this case
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To quantize QED we resort to perturbation theory. The contributions to each 
order in the electric charge are computed using the Feynman rules (in the 
Feynman gauge          ):
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Incoming and outgoing particles appear respectively on the left and the right of
these diagrams. The identification of electrons and positrons is done by comparing
the direction of the charge flux with the direction of propagation. For electrons the
flux of charge goes in the direction of propagation, whereas for positrons they go in
opposite directions. These are the only two diagrams that can be drawn to this order
in perturbation theory.
It should be noticed that the two diagrams contribute with opposite signs. The

reason is that the second diagram can be obtained from the first one by interchanging
the incoming positron external line attached to the vertex on the left with that of the
outgoing electron coming from the vertex on the right. This permutation of two
fermions introduces the minus sign.
We have learned how to draw Feynman diagrams in QED. Now it is time to com-

pute the contribution of each one to the amplitude using the Feynman rules. The
idea is simple: each of the diagram’s building blocks (vertices as well as external
and internal lines) comes associated with a term. Putting all of them together ac-
cording to certain rules results in the contribution of the corresponding diagram to
the amplitude. In the case of QED in the Feynman gauge (! 1), we have the
following correspondence for vertices and internal propagators:

" #
i

p m i$ #"

µ %
i&µ%

p2 i$

"

#

µ ie'µ#" .

In addition each vertex carries a factor 2( 4) 4 p1 p2 p3 implementing mo-
mentum conservation, where we take the convention that all momenta are entering
the vertex. The Feynman rules for other values of the gauge fixing parameter ! only
differ from the ones above by an extra term in the photon propagator. In addition,
one has to perform an integration over the momenta running in internal lines with
the measure

d4p
2( 4 , (6.42)
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and introduce a factor of 1 for each fermion loop in the diagram5.
A number of integrations over the internal momenta can be eliminated using the

delta functions from the vertices. The result is a global delta function implementing
the total momentum conservation in the diagram [cf. eq. (6.8)]. In fact there is a
whole class of diagrams for which all integrations can be eliminated in this way.
These are the so-called tree level diagrams containing no closed loops. As a general
rule there will be as many remaining integrations as the number of independent
loops in the diagram.
Generically, finding the contribution of a Feynman diagram with ! independent

loops involves the calculation of integrals of the form

I p1, . . . , pn
d4q1
2! 4 . . .

d4q!

2! 4 f q1, . . . ,q!; p1, . . . , pn , (6.43)

where f q1, . . . ,q!; p1, . . . , pn is a rational function of its arguments and p1, . . . , pn
are the external momenta. In many cases these integrals are divergent. When the
divergence is associated with the limit of small loop momenta it is called an in-
frared divergences. They usually cancel once all diagrams contributing to a given
order in perturbation theory are added together. The second type of divergence that
one expects in the integrals (6.43) comes from the region of large loop momenta.
These are called ultraviolet divergences. They cannot be cancelled by adding the
contribution of different diagram and have to be dealt with using the procedure of
renormalization. We will discuss this problem in some detail in chapters 8 and 12.
This is not the end of the story. In the calculation of S-matrix amplitudes the

contribution of the Feynman diagram contains factors associated with the external
legs. These are the wave functions and/or polarization tensor of the corresponding
asymptotic states containing all the information about the spin and polarization of
the incoming and outgoing particles. In the case of QED these factors are:

Incoming fermion: " u" p,s

Incoming antifermion: " v" p,s

Outgoing fermion: " u" p,s

Outgoing antifermion: " v" p,s

5 The contribution of each diagram comes also multiplied by a symmetry factor that takes into
account in how many ways a given Wick contraction can be done. In QED, however, these factors
are equal to 1 for many diagrams.
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Incoming photon: µ !µ p

Outgoing photon: µ !µ p

Here u" p,s , v" p,s are the positive and negative energy solutions of the Dirac
equation introduced in chapter 3, whereas !µ p,# is the polarization tensor of the
photon with polarization # . Here we have assumed that the momenta for incoming
(resp. outgoing) particles are entering (resp. leaving) the diagram, and all external
momenta are on-shell, p2i m2i .
The use of Feynman diagrams is not restricted to quantum field theory, they can

also be found in condensed matter physics and statistical mechanics. Their calcu-
lation is not an easy task. The number of diagrams contributing to a process grows
very fast with the order of perturbation theory and the integrals arising in calculating
loop diagrams soon get very complicated.
Feynman rules can be constructed for any interacting quantum field theory with

scalar, vector or spinor fields. For the nonabelian gauge theories introduced in chap-
ter 4 these are:

", i $ , j
i
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represents a particle, whereas when it does from right to left it corresponds to an
antiparticle. Photons are not charged and therefore wavy lines have no orientation.
Next we turn to the cubic part of the action containing a photon field, a spinor

and its conjugate

Sint e d4x!"#
µ
"$!$Aµ . (6.41)

In a Feynman diagram this interaction is represented by the vertex:

!$

!"

Aµe#µ"$

To compute an S-matrix amplitude to a given order in e one should draw all possible
diagrams with as many vertices as the order in perturbation theory, and the number
and type of external legs dictated by the in and out states of the amplitude. It is
very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the
conservation of the electric charge. In addition one should only consider diagrams
that are topologically non-equivalent, i.e. that cannot be smoothly deformed into
one another while keeping the external legs fixed4.
To show practically how Feynman diagrams are drawn, we consider Bhabha scat-

tering: elastic electron-positron scattering

e e e e .

Our problem is to compute the S-matrix amplitude to leading order in the electric
charge. Since the QED vertex contains a photon line and our process does not have
photons in the initial or the final states, drawing a Feynman diagram requires at
least two vertices. In fact, the leading contribution is of order e2 and comes from the
following two diagrams, each containing two vertices:

e

e

e

e

1

e

e

e

e

4 From the point of view of the operator formalism, the requirement of considering only diagrams
that are topologically nonequivalent comes from the fact that each diagram represents a certain
Wick contraction in the correlation function of interaction-picture operators.

For example, in the case of Bhabha scattering                          at leading order 
in     we have to compute the contribution of the two diagrams:
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Watch out for the
relative minus sign!
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Quantization II: the Yang-Mills case

The path integral quantization of nonabelian gauge theories can be done using 
the Faddeev-Popov trick we just introduced

66 4 Theories and Lagrangians II: Introducing Gauge Fields

Z DU DAµ !FP Aµ " F Aµ e
i
2 d4xTr Fµ#Fµ# . (4.78)

We can ignore the divergent prefactor and replace (4.73) by the gauge-fixed func-
tional integral

Z DAµ !FP Aµ " F Aµ e
i
2 d4xTr Fµ#Fµ# . (4.79)

The delta function restricts the integration to gauge configurations lying on the slice
F Aµ 0, i.e. the integral only includes the contributions of the representatives of
each gauge orbit.
To find an explicit expression for !FP Aµ we use a functional version of the

delta-function identity (2.10), namely

" F AUµ det
"F AUµ
"U

U U

1

" U U , (4.80)

where U is a gauge transformation such that F AUµ 0 for a given Aµ . Going
back to eq. (4.75) and integrating over U using the delta function, we find that
!FP Aµ can be expressed as the following functional determinant

!FP Aµ det
"F AUµ
"U

U 1

. (4.81)

In writing this expression we have used that !FP Aµ !FP AU
1

µ . This means that
in the computation of the Faddeev-Popov determinant we have to impose that the
gauge field lies on the gauge sliceF Aµ 0.
It should be clear that the value of the path integral (4.79) is not modified by

changing the position of the slice defined by (4.74). That is, the value of Z does
not change if we replaceF Aµ by F Aµ f x , where f x is an arbitrary Lie
algebra valued function of the coordinates,

Z DAµ !FP Aµ " F Aµ f x e
i
2 d4xTr Fµ#Fµ# . (4.82)

Since the previous expression is independent of f x we can insert the constant term

D f e
i
$ d4xTr f x 2 constant, (4.83)

and carry out the integration over f x using the delta function. Modulo a global
normalization, this gives

Z DAµ !FP Aµ ei d
4xTr 1

2Fµ#F
µ# 1

$ F Aµ 2
, (4.84)
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In writing this expression we have used that !FP Aµ !FP AU
1

µ . This means that
in the computation of the Faddeev-Popov determinant we have to impose that the
gauge field lies on the gauge sliceF Aµ 0.
It should be clear that the value of the path integral (4.79) is not modified by

changing the position of the slice defined by (4.74). That is, the value of Z does
not change if we replaceF Aµ by F Aµ f x , where f x is an arbitrary Lie
algebra valued function of the coordinates,

Z DAµ !FP Aµ " F Aµ f x e
i
2 d4xTr Fµ#Fµ# . (4.82)

Since the previous expression is independent of f x we can insert the constant term

D f e
i
$ d4xTr f x 2 constant, (4.83)

and carry out the integration over f x using the delta function. Modulo a global
normalization, this gives

Z DAµ !FP Aµ ei d
4xTr 1

2Fµ#F
µ# 1

$ F Aµ 2
, (4.84)
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We can ignore the divergent prefactor and replace (4.73) by the gauge-fixed func-
tional integral
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where again,

Using the Lorentz gauge condition                     we find 
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Aµ AU
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where ! is an arbitrary real parameter. The new term added to the action is called
the gauge fixing term.
We illustrate the previous discussion with two examples. We begin with QED

and impose the Lorentz gaugeF Aµ µAµ . UsingU x eie" x we find

F AUµ µAµ µ
µ"

#F AUµ
#U

U 1

1
ie µ

µ . (4.85)

Hence $FP Aµ det 1
ie µ

µ is independent of the gauge field. This means
that we do not have to bother computing the determinant because it goes out of the
path integral as an irrelevant global normalization constant. The typical functional
integral for QED can be written as

ZQED D%D%DAµei SQED Sgf , (4.86)

where the action and the gauge-fixing term read

SQED Sgf d4x % iD m %
1
4
Fµ&Fµ& 1

2! µAµ 2 . (4.87)

The conclusion is that the problem of gauge invariance in the path integral quantiza-
tion of QED is handled in a Lorentz-invariant way by adding a gauge fixing term to
the action. The constant ! is arbitrary and can be chosen to make some expressions
simpler. In chapter 6 we will learn how to compute observables in QED.
The case of nonabelian Yang-Mills theories is more complicated and here we

only outline the procedure. Using the Lorentz condition F Aµ µAµ and the
gauge transformation #Aµ 1

gYMDµ' we find

#F AUµ
#U

U 1

1
igYM

µDµ , (4.88)

where Dµ is the covariant derivative in the adjoint representation, given by (4.48).
Unlike the case of QED now the Faddeev-Popov determinant depends on the gauge
field, even after imposing the Lorentz condition µAµ 0. Thus it has to be taken
into account when carrying out the integration overAµ . The standard way to proceed
now is to write $FP Aµ as a path integral over some unphysical fields called the
Faddeev-Popov ghosts. The details can be found in most of the textbooks listed in
reference [1] of chapter 1.
The use of Faddeev-Popov ghosts in nonabelian gauge theories can be avoided,

for example, in the axial gauge nµAµ 0, with nµnµ 0. In this case

#F AUµ
#U

U 1

1
igYM

nµDµ . (4.89)

6

!FP Aµ det
1

igYM
µDµ (0.72)

The Faddeev-Popov determinant depends now on the gauge field and cannot be 
factored out of the integral.
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A very practical way to handle the Faddeev-Popov determinant is by 
representing it using anticommuting complex scalar fields, called Faddeev-Popov 
ghosts

Alternatively, we can use a gauge condition fixing the gauge completely. For 
example the axial gauge condition,
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with

Using this condition, we have
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Not Lorentz covariant!
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Fig. 4.3 Compactification of the real line (a) into the circumference S1 (b) by adding the point at
infinity.

Imposing the gauge condition nµAµ 0, we find that nµDµ nµ µ and !FP Aµ is
independent of the gauge field. It can be absorbed in the global normalization of the
path integral, and the partition function (4.79) becomes

Z DAµ " n#A# e
i
2 d4xTr Fµ#Fµ#

DAµ e
i d4xTr 1

2Fµ#F
µ# 1

$ n
µn#AµA# . (4.90)

4.7 The Structure of the Gauge Theory Vacuum

The topology of the gauge group plays an important physical role in Yang-Mills
theories. To illustrate the issue we first look at a toy model: a U(1) gauge theory in
1+1 dimensions. Later we will be more general. We will also point out a number of
subtleties involved in the definition of the topology of the gauge field making the
arguments presented more semiclassical rather than nonperturbative.
In the Hamiltonian formalism gauge transformations g x are functions defined

on R with values on the gauge group U(1)

g : R U(1). (4.91)

We assume that g x is regular at infinity. In this case we can add to the real line
R the point at infinity and compactify it to the circle S1 (see fig. 4.3). Once this is
done the g x ’s are functions defined on S1 with values on U 1 S1 that can be
parametrized as

g : S1 U(1), g x ei% x , (4.92)

with x 0,2& .
Since S1 does have a nontrivial topology, g x is divided into topological sectors.

They are labelled by an integer number n Z and defined by

% 2& % 0 2& n . (4.93)
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!FP Aµ DcDcei d
4xc µDµ c (0.74)
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The perturbative quantization of a Yang-Mills field coupled to a Dirac fermion 
leads to the Feynman rules (we work again in the Feynman gauge          )

6.3 Feynman Rules 115

Incoming photon: µ !µ p

Outgoing photon: µ !µ p

Here u" p,s , v" p,s are the positive and negative energy solutions of the Dirac
equation introduced in chapter 3, whereas !µ p,# is the polarization tensor of the
photon with polarization # . Here we have assumed that the momenta for incoming
(resp. outgoing) particles are entering (resp. leaving) the diagram, and all external
momenta are on-shell, p2i m2i .
The use of Feynman diagrams is not restricted to quantum field theory, they can

also be found in condensed matter physics and statistical mechanics. Their calcu-
lation is not an easy task. The number of diagrams contributing to a process grows
very fast with the order of perturbation theory and the integrals arising in calculating
loop diagrams soon get very complicated.
Feynman rules can be constructed for any interacting quantum field theory with

scalar, vector or spinor fields. For the nonabelian gauge theories introduced in chap-
ter 4 these are:

", i $ , j
i

p m i! $"
%i j

µ ,A &,B
i'µ&

p2 i!
% AB

", i

$ , j

µ ,A ig(µ$"t
A
i j

&,B

) ,C

µ ,A g f ABC 'µ& p)1 p)2 permutations
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µ ,A

! ,C

",B

# ,D

ig2 f ABE f CDE $µ!$"# $µ#$"!

permutations

As in the case of QED, each vertex includes a delta function implementing momen-
tum conservation.
It is not our aim here to give a full and detailed description of the Feynman

rules for nonabelian gauge theories. We only point out that, unlike the case of QED,
here the gauge fields interact among themselves. These three and four gauge field
vertices are a consequence of the cubic and quartic terms in the Lagrangian (4.54).
The self-interactions of the nonabelian gauge field theories have crucial dynamical
consequences and its at the very heart of their physical successes.

6.4 An Example: Compton Scattering at Low Energies

We illustrate now the use of Feynman diagrams in the calculation of observables
in physical processes. For this we are going to study an example with important
physical applications. This is the calculation of the cross section for the dispersion
of photons by free electrons: Compton scattering

% k,& e p,s % k ,& e p ,s . (6.44)

Inside the parenthesis we have indicated the momenta for the different particles,
as well as the polarizations and spins of the incoming and outgoing photons and
electrons respectively. We study this scattering in the nonrelativistic limit for the
electrons.
The first step in our calculation is to identify all the diagrams contributing to

(6.44) at leading order. Since the vertex of QED contains two fermion and one pho-
ton leg it is immediate to realize that any diagram contributing to this process must
contain at least two vertices, so the leading contribution is of order e2. A first dia-
gram that can be drawn is:

k,&

p,s

k ,&

p ,s

There is however a second possibility given by the following diagram:

Unlike the photon, the Yang-Mills field couples to itself. This has very important 
physical consequences (more on this in two lectures).
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Z D!D!DAµ eiSQED Aµ ,!,! (0.58)

Z D!D!DAµDU"FP Aµ # F AUµ eiSQED Aµ ,!,! (0.59)
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dimG (0.62)

F Aµ µAµ (0.63)
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f x (0.65)

D f e
i
2$ d4x f x 2 constant (0.66)
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2$ d4x F x 2
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1
ie µ

µ (0.68)

Z D!D!DAµ e
iSQED Aµ ,!,! i

2$ d4x F x 2
(0.69)

$ (0.70)

$ 1 (0.71)

+ ghost propagator and vertex

Ghosts cannot appear as asymptotic states (only in loops).
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What is gauge invariance?
Although in many occasions we talk about “gauge symmetry”, gauge invariance is 
not a symmetry, but rather a redundancy.

In quantum mechanics, a symmetry relates different quantum states that have the 
same energy. For example:

1

! !1 ! 1
2 (0.1)

n, j,m (0.2)

SO(3)

n, j,m
j

m j
D

j
m m " ,# n, j,m (0.3)

Gauge transformations, on the other hand, relate states that are physically 
identical:

1

! !1 ! 1
2 (0.1)

n, j,m (0.2)

SO(3)

n, j,m
j

m j
D

j
m m " ,# n, j,m (0.3)

Hphys H (gauge transformations) (0.4)
As a consequence, the Hilbert space of the quantum theory is redundant. 
Morally speaking,

1

! !1 ! 1
2 (0.1)

", j,m (0.2)

SO(3)

", j,m
j

m j
D

j
m m # ,$ n, j,m (0.3)

Hphys H (gauge transformations) (0.4)
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gauge transformation

Gauge invariance is imposed on us as the prize of keeping Lorentz invariance 
explicit. Using it we describe the two propagating degrees of freedom of a Yang-
Mills field and their interactions in a Lorentz invariant way.
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Masses and gauge invariance

The phenomenology of weak interactions at low energies requires the 
introduction of massive vector bosons.

A current-current interaction can be “resolved” by the interchange of an 
intermediate vector boson, provided this is massive, e.g.

integrating out    
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Exercise: prove it

Diagrammatically (in the case of the muon decay):

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 d#µu
i$µ%

q2 m2W
%e#%e (0.76)

GF

2
d#µu %e#µe (0.77)

E
1
GF

(0.78)

µ

%e

%µ

W

e

µ

%e

%µ

e

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 d#µu
i$µ%

q2 m2W
%e#%e (0.76)

GF

2
d#µu %e#µe (0.77)

E
1
GF

(0.78)

µ

%e

%µ

W

e

µ

%e

%µ

e

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 #µ$µ 1 $5 µ
i%µ#

q2 m2W
e$# 1 $5 #e (0.76)

GF

2
#µ$µ 1 $5 µ e$# 1 $5 #e (0.77)

E
1
GF

(0.78)

µ

#e

#µ

W

e

µ

#e

#µ

e

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 #µ$µ 1 $5 µ
i%µ#

q2 m2W
e$# 1 $5 #e (0.76)

GF

2
#µ$µ 1 $5 µ e$# 1 $5 #e (0.77)

E
1
GF

(0.78)

µ

#e

#µ

W

e

µ

#e

#µ

e

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 #µ$µ 1 $5 µ
i%µ#

q2 m2W
e$# 1 $5 #e (0.76)

GF

2
#µ$µ 1 $5 µ e$# 1 $5 #e (0.77)

E
1
GF

(0.78)

µ

#e

#µ

W

e

µ

#e

#µ

e

L
1
4
Fµ#Fµ# m2

2
AµAµ gAµJµ (0.79)

Aµ (0.80)

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 #µ$µ 1 $5 µ
i%µ#

q2 m2W
e$# 1 $5 #e (0.76)

GF

2
#µ$µ 1 $5 µ e$# 1 $5 #e (0.77)

E
1
GF

(0.78)

µ

#e

#µ

W

e

µ

#e

#µ

e

L
1
4
Fµ#Fµ# m2

2
AµAµ gAµJµ (0.79)

Aµ (0.80)

L
g2

2m2
JµJµ (0.81)

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 #µ$µ 1 $5 µ
i%µ#

q2 m2W
e$# 1 $5 #e (0.76)

GF

2
#µ$µ 1 $5 µ e$# 1 $5 #e (0.77)

E mW (0.78)

µ

#e

#µ

W

e

µ

#e

#µ

e

L
1
4
Fµ#Fµ# m2

2
AµAµ gAµJµ (0.79)

Aµ (0.80)

L
g2

2m2
JµJµ (0.81)

6

!FP Aµ det
1

igYM
µDµ (0.72)

!FP Aµ det
1

igYM
nµDµ det

1
igYM

nµ µ (0.73)

!FP Aµ DcDcei d
4xc µDµ c (0.74)

H ", j,m E" , j ", j,m (0.75)

g2 #µ$µ 1 $5 µ
i%µ#

q2 m2W
e$# 1 $5 #e (0.76)

GF

2
#µ$µ 1 $5 µ e$# 1 $5 #e (0.77)

E mW E m (0.78)

µ

#e

#µ

W

e

µ

#e

#µ

e

L
1
4
Fµ#Fµ# m2

2
AµAµ gAµJµ (0.79)

Aµ (0.80)

L
g2

2m2
JµJµ (0.81)

Monday, July 11, 2011



To study the physics of massive vector bosons, we begin with the 
simplest example: a massive photon (Proca Lagrangian)
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The Lagrangian is not gauge invariant
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It seems that there is no way of getting rid of the dangerous temporal 
polarization.

Alexander Proca
(1897-1955)

with
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An issue for discussion:

Using the Lorentz condition              the gauge variation of the Proca 
Lagrangian can be written as a total derivative

Does it mean that gauge invariance is “restored”?
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The condition            eliminates the temporal polarization, we do not have any 
further condition, so the massive photon has three physical polarizations (two 
transverse and one longitudinal).

We can get a glimpse of the problems behind massive vector bosons looking at 
the propagator: 7

Gµ! p
i
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pµ p!
m2

(0.84)

unlike the massless propagator, it doesn’t decreases at large momentum.

This offending term cancels when the massive photon 
is coupled to a conserved current

Exercise: get this propagator 
from the Proca Lagrangian

This spells trouble with 
renormalizability (more in 
two lectures) and unitarity.
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We can get a glimpse of the problems behind massive vector bosons looking at 
the propagator: 7
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unlike the massless propagator, it doesn’t decreases at large momentum.

This offending term cancels when the massive photon 
is coupled to a conserved current

Exercise: get this propagator 
from the Proca Lagrangian

This spells trouble with 
renormalizability (more in 
two lectures) and unitarity.
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The extension of this result to nonabelian gauge theories is not possible in 
general:

In the case of QED with a massive photon, the longitudinal polarization 
decouples from the transverse ones and the theory is renormalizable and 
unitary.

A word of warning: the 
massless limit is “singular”
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Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian

L
1
2
Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
1
2
Tr Fµ"Fµ" M2

g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.

• Because of the self-interaction of the gauge fields, not all longitudinal 
components decouple.

• In realistic cases (e.g., weak interactions) the gauge field is coupled to 
currents that are not conserved at low energies.
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To keep things simple we look at a “toy standard model” (for the real thing 
wait for Nuria’s lectures).

We consider a theory of massive fermion doublets transforming chirally under 
SU(2)
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and coupled to a massive SU(2) gauge boson
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To be more specific, we follow a bottom-up approach starting with the 
experimental fact that massive vector bosons exists. 
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Ernst C. G. Stückelberg
(1905-1984)

Gauge invariance can be “restored” using Stückelberg’s trick: we 
introduce a field    taking values in the group SU(2) and 
transforming according to 
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The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian
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Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
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g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.
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The Lagrangian
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We can use the gauge freedom to fix the gauge         . This gives back the 
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By fixing the gauge, the Stückelberg field      transforms into the longitudinal 
components of the three massive gauge fields
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Exercise:

Show that the Lagrangian

has a global                        symmetry acting as

In the gauge-fixed theory this global symmetry is broken down to the vector 
(diagonal)          :

This is called a custodial symmetry (more on this in Nuria’s and Christophe’s 
lectures, together with an explanation of the name)
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This idea of “faking” gauge invariance does not solve the problems of massive 
Yang-Mills fields at high energies. The theory violates unitarity at energies of 
the order

2

U x g x U x (0.15)

U x 1 (0.16)

L
1
2
Tr Fµ!Fµ! M2Tr AµAµ i"LD"L i"R "R m "L"R "R"L

DµJµ A m "LTA"R "RTA"L

#
M
gYM

(0.17)

This indicates that the theory has to be completed in the UV by embedding 
the Stückelberg field into some high energy dynamics.

From the point of view of an observer at low energies this is quite satisfactory: it 
seems that we have managed to construct a gauge “invariant” theory of a 
massive nonabelian gauge field.  

Besides, it is not renormalizable.
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The most popular UV completion of the Stückelberg theory consists in 
embedding it into a complex scalar field        with a gauge invariant “symmetry 
breaking” potential

202 10 The Origin of Mass

Replacing (10.30) by (10.31) does not solve our ultraviolet problems. The theory
is still ill-defined at energies of orderM gYM and should be completed by specifying
the dynamics ofU x at high energies. Here we are faced with various alternatives.
One of them is the Brout-Englert-Higgs mechanism presented: a gauge invariant
potential implementing symmetry breaking is added

V U U
!
4

M
gYM

4 1
2
Tr U U 1

2
, (10.32)

and the fieldU x is linearized around the vacuum

U x U0 x 1 gYM
M

h x , (10.33)

where U0 x SU(2) and h x is the Higgs field of mass m2H 2!M2 g2YM. At en-
ergies below mH the Higgs field is frozen, U x U0 x , and the Stückelberg La-
grangian (10.31) provides a reliable phenomenological description.
This linear realization is the simplest, and historically the first one used. Many

other scenarios have been proposed as alternative ultraviolet cures of the mass gener-
ation mechanism. Among them, technicolor, whereU x is a bound state (analogous
to the pion) of a set of strongly coupled new fermions. There is a large collection of
alternatives to the standard Higgs mechanism (for a clear exposition see [2]), how-
ever they all share the same mechanism of giving masses to the vector bosons by
absorbing the relevant Nambu-Goldstone bosons. This is reasonable, the masses of
the W and Z0 bosons are infrared properties of the theory and their origin is not
necessarily related to the high energy fate of the ”Higgs”-mode.
This discussion should help clarifying the statement contained in the closing

paragraph of section 5.5. The Lagrangian (10.30) can be used to describe the physics
of a nonabelian massive gauge field chirally coupled to massive fermions, as long
as we restrict our attention to energies below the mass scales of the problem. In this
regime, the absence of gauge invariance is no big deal. As the reader has repeatedly
been reminded along the book, gauge invariance is not a real symmetry but rather a
redundancy. The point of Stückelberg’s trick is to “fake” this redundancy, allowing
to write a formally gauge invariant Lagrangian.
The situation is different if we aim at constructing a theory whose predictions

can be trusted to arbitrary high energies, in the spirit of good old QED4. In this case
gauge invariance is a crucial ingredient for consistency. The Brout-Englert-Higgs
mechanism provides a renormalizable, gauge invariant ultraviolet completion of the
massive low energy theory. Historically, this explains the enormous effect the proof
of renormalizability of spontanously broken gauge theories by ’t Hooft and Veltman
[5] had on the acceptance of the Glashow-Weinberg-Salam theory.

4 Let us forget for the moment about the presence of the Landau pole.

and linearize around a vacuum configuration 
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The Brout-Englert-Higgs 
Mechanism
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is still ill-defined at energies of orderM gYM and should be completed by specifying
the dynamics ofU x at high energies. Here we are faced with various alternatives.
One of them is the Brout-Englert-Higgs mechanism presented: a gauge invariant
potential implementing symmetry breaking is added
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and the fieldU x is linearized around the vacuum
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where U0 x SU(2) and h x is the Higgs field of mass m2H 2!M2 g2YM. At en-
ergies below mH the Higgs field is frozen, U x U0 x , and the Stückelberg La-
grangian (10.31) provides a reliable phenomenological description.
This linear realization is the simplest, and historically the first one used. Many

other scenarios have been proposed as alternative ultraviolet cures of the mass gener-
ation mechanism. Among them, technicolor, whereU x is a bound state (analogous
to the pion) of a set of strongly coupled new fermions. There is a large collection of
alternatives to the standard Higgs mechanism (for a clear exposition see [2]), how-
ever they all share the same mechanism of giving masses to the vector bosons by
absorbing the relevant Nambu-Goldstone bosons. This is reasonable, the masses of
the W and Z0 bosons are infrared properties of the theory and their origin is not
necessarily related to the high energy fate of the ”Higgs”-mode.
This discussion should help clarifying the statement contained in the closing

paragraph of section 5.5. The Lagrangian (10.30) can be used to describe the physics
of a nonabelian massive gauge field chirally coupled to massive fermions, as long
as we restrict our attention to energies below the mass scales of the problem. In this
regime, the absence of gauge invariance is no big deal. As the reader has repeatedly
been reminded along the book, gauge invariance is not a real symmetry but rather a
redundancy. The point of Stückelberg’s trick is to “fake” this redundancy, allowing
to write a formally gauge invariant Lagrangian.
The situation is different if we aim at constructing a theory whose predictions

can be trusted to arbitrary high energies, in the spirit of good old QED4. In this case
gauge invariance is a crucial ingredient for consistency. The Brout-Englert-Higgs
mechanism provides a renormalizable, gauge invariant ultraviolet completion of the
massive low energy theory. Historically, this explains the enormous effect the proof
of renormalizability of spontanously broken gauge theories by ’t Hooft and Veltman
[5] had on the acceptance of the Glashow-Weinberg-Salam theory.

4 Let us forget for the moment about the presence of the Landau pole.
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the Higgs particle
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Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian

L
1
2
Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
1
2
Tr Fµ"Fµ" M2

g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.
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We can illustrate the mechanism in a more familiar fashion by writing      in 
terms of a complex SU(2) scalar doublet
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The potential now reads

At the bottom of the potential,     acquires a vev 
that we can take to be
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The excitations around this vacuum can be parametrized by 3
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Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian
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Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
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i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.
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Exercise:  prove that 
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3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)

Monday, July 11, 2011



We can illustrate the mechanism in a more familiar fashion by writing      in 
terms of a complex SU(2) scalar doublet
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The potential now reads

At the bottom of the potential,     acquires a vev 
that we can take to be
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The excitations around this vacuum can be parametrized by 3
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Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian

L
1
2
Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
1
2
Tr Fµ"Fµ" M2

g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.

2

U x g x U x (0.15)

U x 1 (0.16)
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U0 x SU 2 (0.19)

U x
gYM
M

$0 $

$ $0
(0.20)

%
$

$0
(0.21)

V %
&
4

% %
M2

g2YM

2

(0.22)

0 % 0
0
v
2

(0.23)

v
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Exercise:  prove that 

transforms as a SU(2) doublet

3

! x
1
2
U0 x

0

v h x
(0.25)

U x U0 x 1
gYM
2M

h x (0.26)

U x exp i"a x
#a
2

(0.27)

Aa3 x a 1,2,3 (0.28)

SU(2) (0.29)

!
$0

$
(0.30)
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We can illustrate the mechanism in a more familiar fashion by writing      in 
terms of a complex SU(2) scalar doublet
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The potential now reads

At the bottom of the potential,     acquires a vev 
that we can take to be
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The excitations around this vacuum can be parametrized by 3

! x
1
2
U0 x

0

v h x
(0.25)

“angular” 
excitation

“radial” 
excitation Higgs fieldStückelberg field

(gauged away)
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Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian

L
1
2
Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
1
2
Tr Fµ"Fµ" M2

g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.
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Exercise:  prove that 

transforms as a SU(2) doublet
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Expanding the Lagrangian to second order in       we find the mass of the Higgs 
mode to be

7
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This mass depends not only on “low energy” quantities like M and      , but also 
on the self-coupling    .
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Exercise: prove it

The big advantage of the Brout-Englert-Higgs mechanism we can describe a 
massive vector field at low energies without giving up unitarity and 
renormalizability. 

The reason is that the full theory is gauge invariant, although the vacuum is not.
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g x SU(2) (0.93)

so gauge invariance is not lost, only hidden (more on this on Wednesday).

Monday, July 11, 2011



To summarize, the breaking of gauge invariance in the massive SU(2) Lagrangian.

is no big deal at low energies: the gauge redundancy can be introduced by hand 
using Stückelberg’s trick, to write something that is formally gauge invariant.

2

U x g x U x (0.15)

U x 1 (0.16)

L
1
2
Tr Fµ!Fµ! M2Tr AµAµ i"LD"L i"R "R m "L"R "R"L

The theory however is sick at high energies (i.e., nonunitary and 
nonrenormalizable), and has to be completed in the UV:

• The Brout-Englert-Higgs mechanism gives a unitary and renormalizable 
theory, although it provides no physical explanation for the shape of the 
potential. 

• There are other scenarios where the Stückelberg field is dynamically 
generated at low energies (wait for Christophe’s lectures).

So far, in the standard model we have only detected the “angular” part of 
the field       (i.e., the Stückelberg field, or the longitudinal components of 
the      and    bosons). However, its “radial” part (i.e., the Higgs boson) is 
still at large.
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Remarks on symmetry breaking in the standard model

The Higgs sector of the standard model cannot be regarded as a mere attachment
to it, as just a smart “trick” intended to circumvent the conflict between masses
and gauge invariance. There are more fundamental reasons to think that the Higgs
particle, or something very similar, should be there. It is an experimental fact that
theW and Z0 bosons are massive and therefore have longitudinal components that
have been detected.
If we only worry about giving masses to the vector bosons and fermions, it is

clear that freezing the field h x in eq. (10.12) suffices. For all practical purposes
the theory we obtain has massiveW and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.
This naive Higgsless standard model has problems: the scattering involving the

longitudinal components of the gauge bosons behaves badly as the energy ap-
proaches the scale v mW,Z g. The amplitudes grow so fast with the energy as
to be incompatible with something as basic as the conservation of probability. This
problem is automatically solved by including a neutral scalar field in the theory that
couples to the massive gauge bosons and fermions in precisely the same way as the
Higgs particle does. But this is not the only possibility.
We illustrate this point in more detail using the example of a SU(2) massive

gauge field coupled to a pair of chiral doublets!L,!R transforming as

!L x g x !L x , !R x !R x , (10.29)

where g x belongs to the fundamental representation of SU(2). The Lagrangian

L
1
2
Tr Fµ"Fµ" M2Tr AµAµ i!LD!L i!RD!R

m !L!R !R!L (10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U x , called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U x
g x U x . The Lagrangian

L
1
2
Tr Fµ"Fµ" M2

g2YM
Tr U DµU U DµU

i!LD!L i!RD!R m !LU!R !RU !L (10.31)

is gauge invariant. Using this gauge freedom we can set U x 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U x becomes the longitudinal component of the massive vector field.

Monday, July 11, 2011


