VNiVERSiIDAD
D SALAMANCA

Five lectures on

Quantum Field Theory

An introduction to selected topics

Miguel A.Vazquez-Mozo
Dpto. Fisica Fundamental, Universidad de Salamanca

TAE 201 I, Bilbao

Monday, July 11, 2011



Summary

® Gauge Theories

® Symmetries (mostly discrete)
® Renormalization

® Anomalies

® Effective Field Theories
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® |ectures:

| st week

2nd week

Plan of the Course

® Practical work (afternoon sessions):

| st week

2nd week

Monday Wednesday Friday
12:30-13:30 10:00-11:00 10:00-11:00

Monday Wednesday
10:00-11:00 12:30-13:30

Monday Wednesday Friday

Tutor: Daniel Fernandez

Monday

Wednesday

Tutor: Francesco Aprile
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What you are presumed to know

® Advanced quantum mechanics (including path integral methods).

® FElementary quantum field theory (e.g., basics of field quantization,
general ideas about Feynman diagrames,...).

® Rudiments of particle physics

But never fear if there is something you don’t know. Ask at any moment
and/or bring your questions to the afternoon sessions.

And remember: there are no stupid questions, only stupid answers.
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Some warnings before we start:

® We use the “mostly minus” metric (a.k.a. western coast metric):

(10 0 0)
0-10 0
Tw=100 =1 0

\0 0 0 —1/.

® Unless otherwise said, natural units are used throughout:

h=c=1

® We use Heaviside-Lorentz electromagnetic units:

1 qq' dF 1 I o= _°
—_— r —_— =
4 3 Al 2mc? d 4mhe

F

and
(Coulomb) (Ampere) e ~ 0.303
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Lecture |

Gauge Theories

® C(lassical gauge theories
® Quantization of gauge theories

® What is gauge invariance!

® (Gauge invariance vs. mass: the Brout-Englert-Higgs mechanism.
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Gauge invariance in nonrelativistic QM

The most familiar example of a gauge theory is Maxwell electrodynamics

V-E =p,

V-B =0, OA
a E:_ch__a

VxE = —2B, ot
ot B =VxA.
0

VxB=j+—FE

- J+6t ’

When expressed in terms of the scalar and vector potentials, the Maxwell
equations are invariant under the gauge transformations:

@(t,Xx) = @(t,x) + %e(t,x), A(t,x) — A(t,x) — Ve(t,x).

with €(¢,X) an arbitrary function.

Physical (i.e., measurable) quantities have to be gauge invariant.
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In quantum mechanics, however, the Schrodinger equation depends on the
(gauge dependent) electromagnetic potentials

0 1 ,
Y= |—— (V—igA 173
i [ 2m( igA)” +q@

Under a gauge transformation

@(t,x) > @(t,X) + %e(t,x), A(t,x) = A(t,x) — Ve(t,x).

the wave equation remains invariant provided the wave function is multiplied by
a honconstant phase:

P(r,xX) —> e EEP (1 x),

Hence, gauge invariance means that the global phase of the wave function can be
changed locally.
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Classical gauge field theories |

The abelian case

The Maxwell equations can be recast in a Lorentz covariant form using the
four-vector potential A" = (¢,A) and the covariant field strength tensor

s
O FHY = jH
FMV — aMAV — avAM m <

L eV Fon =0 (Bianchi identities)

with j* = (0,J). Gauge transformations now read
The Maxwell equations are now derived from the gauge invariant Lagrangian

1
D%Maxwell — _Z MVF'LW
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We saw how in quantum mechanics the Schrodinger equation of a charged
particle is obtained by promoting the global phase invariance of the wave
function to a local symmetry (this is called the gauge principle).

To find the electromagnetic coupling of a complex classical field we use the
same guiding principle and gauge the global phase symmetry.

For the Dirac field, for example,
Lirae =P (iy"0y —m)y  ininvariant under Y — e 110

To make this invariance local we need to replace the ordinary derivative 0y by
a covariant one D, transforming under ¥ — ¢’ = e "My as

D, — D;L with D;ﬂpl _ D;L [e—iqe(x)w] _ €_iq8(X)Duw

Such a covariant derivative can be constructed from the gauge potential as

r

[DWDV] = 1qF v

(keep in mind for later use)
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With this we can write the Lagrangian of QED (i.e., a Dirac fermion coupled to
the electromagnetic field)

1 .
Zqep = — 7 Fu F* + 9 (i —m)y

1 . _
= — 7 Fav +0(i7 —m)y — gA Py y
invariant under the gauge transformations

Y —> e_iqg(x)w AM —> AM + aMS(X)

In particular, the QED Lagrangian is invariant under global transformations with
constant €. Noether’s theorem implies the existence of a conserved current

J* = quyty Ouj* =0

which is identified with the electric four-current in the Maxwell equations.
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- Yang-Mills theories

/
T ———

Chen Ning Yang
b. 1922

ﬁ .l,/(fi |
= =F |  Classical gauge field theories |l ﬂ

WAl 7

——
Robert Mills

(1927-1999)

To construct nonabelian generalization of QED we begin by considering the a

Lie group G whose generators satisfy the Lie algebra

[TA,TB] — l ABCTC

AB.C=1,....dimG

As generalization of the photon field we introduce the Lie-algebra-valued field

Ap = ALT

with a gauge transformation given by:

1
Uo,U ' +UAU™!

=~

Ay — A, = —-
! 3 l8ym

1 .
0A, = —0ux —ilAu, X]

Sym

U = X(X)
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We consider now a “matter” field @ transforming in a representation R of the
gauge group
D —> @ =Ur® Ur € G

Following the the abelian case, we couple @ to the nonabelian field Aﬁ by
replacing ordinary derivatives by covariant ones in the globally invariant

Lagrangian

Dfmauer(@,@u CD) — ogmatter(CD,D‘u CD) with D‘/u@, — URDMQD
The covariant derivative can be written in terms of the gauge field as

D,® =0, —igyyA,® where A, = AT ‘Exerase: prove it '

When @ transforms in the adjoint representation, the covariant derivative
takes the form

(Taﬁj)g — _ifABC

D‘uq) — a‘udj — igYM[Aua @]

The transformation of the gauge field can be written as 0A, = g_DuX
YM
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We still need to build an action functional for the nonabelian gauge fields. We
define the field strength by

[DM7DV] = —igym Fuv
An explicit calculation shows
Fuv = 0uAy — 0yA, —igym[Au, Ay ] (Fuv = F,T)
Applying the transformation of the covariant derivative we find

Fuy — UF,U™! _

A gauge invariant Lagrangian quadratic in derivatives can be now written as

1

where the generators are normalized according to

T (TATB) — iéAB
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Quantization I: the Abelian case

The quantization of the field A" (x) is complicated by the gauge ambiguity. There
are various strategies to deal with the problem. Our approach begins with
eliminating the unphysical degrees of freedom by fixing the gauge

@MAM =0 (Lorentz condition)
Imposing this condition, the equations of motion are

O FHY =0

0= 0,0"AY — 0¥ (0, AM) = 0,01 A

so the gauge field satisfies a massless Klein-Gordon equation, with plane wave
(positive energy) solutions
£y (k’)\')e—i|k|t+ik-x

In principle, there would be four independent polarizations (1 =0,1,2,3)

e (k,0) ~ 8, en(k,3) ~ 8, k; eu(k,1), £.(k,2)

(temporal) (longitudinal) (transverse to K )
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The plane wave solutions, however, should satisfy the Lorentz condition:
ke (k,A) =k"e (K,A)* =0

This can be used to set the temporal polarization to zero

‘ Exercise! .

£, (k,0) =0

no negative probability states!

The Lorentz condition does not fix completely the gauge. 0,A" =0 is preserved
by gauge transformations

Au(x) — Au(x) +0ue(x) with 0,0"e(x) =0

Using the residual gauge transformation of the polarization vectors we eliminate
the longitudinal polarization

eu(k,A) — £, (K,A) + aky eu(k,3)=0

This leaves us with two transverse propagating modes:

e(k,\) A=12
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Having got rid of the spurious states, we proceed to quantize A" (x)

(1) = ) J 2|k| ek, A)a(k, 2 ) IR £y (k,2)* @ 1(k, 2 eI =k |
A=172

where a'(k,A) creates a photon of momentum k and polarization A out of the
vacuum |0)

[a(k,2),a"(k",2")] = (27)* (2[k[)6 (k — k") 831/

[a(k,2),a(k’,2")] = [a'(k,A),a"(k’,1")] =0

The two physical polarizations can be taken to be the two helicity states

S k S k
*—» S
A =1 (positive helicity) A = 2 (negative helicity)
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Generically, the basic issue in the quantization of gauge theories is avoiding
overcounting physically equivalent configurations. For example, in

7 = [ TTDp A Sl

we have to integrate over field configurations that are not “gauge equivalent”.

To factor out the gauge redundancy we
introduce an appropriate gauge fixing condition

F(A,) =0

Each field configuration belongs to an orbit that
intersect the gauge fixing slice. We introduce
the identity in the form

1 = App[A,] J@U@ [ﬁ(Ag)]

Arp|[Ayu] is called the Faddeev-Popov determinant and it is gauge invariant.

‘Exercise: prove it '
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Inserting the identity we are left with
¥ = f DYDY DAL DU App[A,|8[F (AY)] eSeen A0 v]

Changing variables to 4, —>Ag_1 Y — U~ 'y, and using the invariance of the action,
we have

7 - (J@U> J@@@w@AMAFP[AM]a[g(AM)]eiSQED[A“’w’w]

N -
Y—

dimG

With this we have factored out the gauge redundancy. The (divergent) prefactor
cancels out of the amplitudes.

For a more explicit expression of the Faddeev-Popov determinant we use

= Y —dlr—x) EEEE s[F(a))] = ]
x;=zeros of g |g (xl)| U=U’
' Hence the name! '

—1
5(U—U")

8.7 (AY
det[ ( “)
oU

oU

0.7 (AY)
This leads to:  Arp|Ayu]| = det

U=1
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The value gauge-fixed path integral should not change if you move the gauge
slice, i.e.,

7 J TPIY DA Arp[A)S[F (Ay) — f(x)] a0l v:v]
should be independent of f(x), Hence, we insert the constant term

TR 2
f@fe_zg YT _ constant

and integrate over f(x) using the functional delta

7 = | TTIp DAyl ] S TV O
(Remember: global constants in the path integral are irrelevant!)
We have eliminated the gauge redundancy by introducing the Faddeev-Popov

determinant in the functional integral and adding a gauge fixing term to the
action.

Monday, July 11, 2011



The value gauge-fixed path integral should not change if you move the gauge
slice, i.e.,

7 J TPIY DA Arp[A)S[F (Ay) — f(x)] a0l v:v]
should be independent of f(x), Hence, we insert the constant term

Uy f(x)?
f@ fe 2% YT _ constant
gauge fixing term
and integrate over f(x) using the functional delta

R B N N
(Remember: global constants in the path integral are irrelevant!)
We have eliminated the gauge redundancy by introducing the Faddeev-Popov

determinant in the functional integral and adding a gauge fixing term to the
action.
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We can use the Lorentz condition .#(A,) = d,A" .The Faddeev-Popov determinant
is now independent of the gauge field
det (——é’ @“)
e

9(Ag) = 0, A" +0,0"¢ » App[A,] =

It can be factored out of the path integral, so we are left with

ZQED = f@ Yoy QAMei(SQEDJFng)

where

1

Soeo +Sut = [ ' | T@—m)y— 3 Fun " = 5 (0,47 |

N e e~

SQED Sof

The constant S is called the gauge-fixing parameter. It can be chosen arbitrarily.

Monday, July 11, 2011



To quantize QED we resort to perturbation theory. The contributions to each

order in the electric charge are computed using the Feynman rules (in the
Feynman gauge & =1):

Incoming fermion: o —»@ —  uq(p,s)

o - S — : . Incoming antifermion:  « —4—@ —  Vu(p,s)
p—m+tie) g,
Outgoing fermion: @—»— o =  Uq(p,s)
—iNyuy
U AAANANAANAAL V > > -
p-+ie

Outgoing antifermion: @—4— o =  vu(p,s)
Incoming photon: u f\/\@ —  &u(p)
u S —le y;; iy
Outgoing photon: @W u — *

For example, in the case of Bhabha scattering ¢™ +¢~ — ¢" + ¢~ at leading order
in ¢ we have to compute the contribution of the two diagrams:

e e e e e

Watch out for the
relative minus sign!
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Quantization ll: the Yang-Mills case

The path integral quantization of nonabelian gauge theories can be done using
the Faddeev-Popov trick we just introduced

ZF — @AM AFP[AM] S [gg(AM)] e—% Sd4xTI'(FMvFMV)

— | 24, Appl[A] 1T F (0]

where again,

App|Ayu] = det [635(145)]

oU

U=1

Using the Lorentz gauge condition .7 (A,) = 0,A* we find

0Ay, = gYLMDMX App|Ay] =

1
det ( , 6MD“>
I&ym

The Faddeev-Popov determinant depends now on the gauge field and cannot be
factored out of the integral.
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A very practical way to handle the Faddeev-Popov determinant is by

representing it using anticommuting complex scalar fields, called Faddeev-Popov
ghosts

Arpl|Ay| = f PTPcelSdFeub! ¢

Alternatively, we can use a gauge condition fixing the gauge completely. For
example the axial gauge condition,

n*A, =0 with nun“ <0 ' Not Lorentz covariant! '

Using this condition, we have
det ( n“é’u) ‘
18 yM

det ( n“D ) ‘
1SYM T

n*A, =0

App|Ay] =

and the Faddeev-Popov determinant can be again factored out

: : 1 v_ 1 %
Z = f DAL O[n* Ay] e 33T Fur ) J DAy ST T gttt Ay
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The perturbative quantization of a Yang-Mills field coupled to a Dirac fermion

leads to the Feynman rules (we work again in the Feynman gauge )
o,C
. E=1
a,i [ B,.j = <¢_ni+i8>ﬁa6,-j E{m u,A = ngBC[n“V(p?—pg)+permutations]
v,B

o,C A,D
[D”j _ _l-gz [fABEfCDE (nuanvk . nuAnva)
+ permutations]
WA = —igyg w,A v.B
a,i
A ........ » ....... B
B.
+ ghost propagator and vertex >
Q00009 #:C

Ghosts cannot appear as asymptotic states (only in loops).

Unlike the photon, the Yang-Mills field couples to itself. This has very important
physical consequences (more on this in two lectures).
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What is gauge invariance?

Although in many occasions we talk about “gauge symmetry”, gauge invariance is
not a symmetry, but rather a redundancy.

In quantum mechanics, a symmetry relates different quantum states that have the
same energy. For example:

SO(3) J .
o, j,m) > o, jymy =" 2 (6,¢)|n, j,m)

m=—j

ﬁ|a7j7m> — Ea’]’|OC,_].,m>

Gauge transformations, on the other hand, relate states that are physically
identical:

gauge transformation

[phys) > )phys’) = |phys)

As a consequence, the Hilbert space of the quantum theory is redundant.
Morally speaking, 7% s = 7 /(gauge transformations)

Gauge invariance is imposed on us as the prize of keeping Lorentz invariance

explicit. Using it we describe the two propagating degrees of freedom of a Yang-
Mills field and their interactions in a Lorentz invariant way.
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Masses and gauge invariance

The phenomenology of weak interactions at low energies requires the
introduction of massive vector bosons.

A current-current interaction can be “resolved” by the interchange of an
intermediate vector boson, provided this is massive, e.g.

E <m

1 uv m’ u u g Exercise: it
Cg:_z v F +7AMA —gAuJ q L =L g Xercise: prove |

2m?

integrating out A,

Diagrammatically (in the case of the muon decay):

E < my

_ iy
g [Vur" (1 —ys)u] p 5 [er” (1 —ys)vel
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To study the physics of massive vector bosons, we begin with the
simplest example: a massive photon (Proca Lagrangian)

1 m? , :
. . . . Al der P
The Lagrangian is not gauge invariant (1897-1955)

0A, = 0y¢€ == 0L =m*A" 0, ¢

It seems that there is no way of getting rid of the dangerous temporal
polarization.
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To study the physics of massive vector bosons, we begin with the
simplest example: a massive photon (Proca Lagrangian)

1 m? , :
. . . . Al der P
The Lagrangian is not gauge invariant (1897-1955)

0A, = 0y¢€ == 0L =m*A" 0, ¢

It seems that there is no way of getting rid of the dangerous temporal
polarization.

But don’t panic yet! taking the divergence of the field equations
6MF“V —|—m2A" _ jv
we find the integrability condition

0u0vF" +m*0,AY = 0, "
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To study the physics of massive vector bosons, we begin with the
simplest example: a massive photon (Proca Lagrangian)

1 m? , :
. . . . Al der P
The Lagrangian is not gauge invariant (1897-1955)

0A, = 0y¢€ == 0L =m*A" 0, ¢

It seems that there is no way of getting rid of the dangerous temporal
polarization.

But don’t panic yet! taking the divergence of the field equations
6MF“V —|—m2A" _ jv

we find the integrability condition

Y 0 y _ This condition eliminates
W +m=0vA ZM = aMAM =0 |the “dangerous” temporal

m =0 polarization
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To study the physics of massive vector bosons, we begin with the
simplest example: a massive photon (Proca Lagrangian)

1 m? , :
L = -2 wFHY + TAMA“ — juA" with Ouj" =0
. . . . Al der P
The Lagrangian is not gauge invariant (1897-1955)
O0A, = 0y¢ 8L =m A" 0, ¢

mporal

we find the integrability condition

) , This condition eliminates
Mv +m”0yA" :M = aMAM =0 |the “dangerous” temporal

m %0 polarization
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The condition eliminates the temporal polarization, we do not have any
further condition, so the massive photon has three physical polarizations (two
transverse and one longitudinal).

We can get a glimpse of the problems behind massive vector bosons looking at
the propagator:

unlike the massless propagator, it doesn’t decreases at large momentum.

=

This spells trouble withJ

renormalizability (more in

ThiS Offending tel"m CanCGIS When the maSSive PhOtOn [two |ectures) and unitarity.
is coupled to a conserved current

Ouj'(x) =0 === pui'(p)=0 @V\;W v~ j*(p)Guv(p)
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The conditiond,A* =0 eliminates the temporal polarization, we do not have any
further condition, so the massive photon has three physical polarizations (two
transverse and one longitudinal).

We can get a glimpse of the problems behind massive vector bosons looking at
the propagator:

unlike the massless propagator, it doesn’t decreases at large momentum.

=

This spells trouble withJ

renormalizability (more in

ThiS Offending tel"m CanCGIS When the maSSive PhOtOn [two |ectures) and unitarity.
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In the case of QED with a massive photon, the longitudinal polarization
decouples from the transverse ones and the theory is renormalizable and
unitary.

A word of warning: the
massless limit is “singular”

The extension of this result to nonabelian gauge theories is not possible in
general:

1
L = =T (FuF" ) + MTr (4,41
® Because of the self-interaction of the gauge fields, not all longitudinal

components decouple.

® |n realistic cases (e.g., weak interactions) the gauge field is coupled to
currents that are not conserved at low energies.
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To be more specific, we follow a bottom-up approach starting with the
experimental fact that massive vector bosons exists.

To keep things simple we look at a “toy standard model” (for the real thing
wait for Nuria’s lectures).

We consider a theory of massive fermion doublets transforming chirally under
SU(2)

¥ (x) — g(x)¥L(x), Pr(x) — Wr(x) g(x) = % e SU(2)
and coupled to a massive SU(2) gauge boson

1 _ _ _ _
L= =T (FWFW) + MTr (AMA“) + T DY, + i Pr) W —m (‘IJL‘I’R + ququ)
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To be more specific, we follow a bottom-up approach starting with the
experimental fact that massive vector bosons exists.

To keep things simple we look at a “toy standard model” (for the real thing
wait for Nuria’s lectures).

We consider a theory of massive fermion doublets transforming chirally under
SU(2)

W (x) — g(x)¥L(x), Wr(x) — Pr(x) g(x) = W e SU(2)

and coupled to a massive SU(2) gauge boson

1 __ __
Y = —ETI' (FMVFMV) M ZII[LmlIIL_I_ZIIIR@IIIR_

Gauge invariance is broken by the mass terms

2M?

gYm

0L =

Tr(A*Dyx) +im (EPLXIPR — ‘I’RXIPL)
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Gauge invariance can be “restored” using Stuckelberg’s trick: we

introduce a field U(x) taking values in the group SU(2) and
transforming according to

U(x) — g(x)U(x)

The Lagrangian

Ernst C. G. Stuckelberg
(1905-1984)

1 M _ _ _ _
L = —STr (FuF"™ ) = S=Tr | (U'DU)(UTD"U) | 4 W, oW, + i Wk — m (VLU +WrU )
IS gauge invariant.

We can use the gauge freedom to fix the gauge U(x) = 1. This gives back the
original massive Lagrangian.

UlD, U 5 —igyA,

By fixing the gauge, the Stiickelberg field U(x) transforms into the longitudinal
components of the three massive gauge fields

U(x) = exp [ina(x)%] s A4 (x) (a=1,2,3)

M
SU(2)

unitary gauge
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From the point of view of an observer at low energies this is quite satisfactory: it
seems that we have managed to construct a gauge “invariant” theory of a
massive nonabelian gauge field.

This idea of “faking” gauge invariance does not solve the problems of massive
Yang-Mills fields at high energies. The theory violates unitarity at energies of
the order

M
A~

gym

Besides, it is not renormalizable.

This indicates that the theory has to be completed in the UV by embedding
the Stuckelberg field into some high energy dynamics.

Monday, July 11, 2011



The Brout-Englert-Higgs
Mechanism

&
—

Robert Brout Frangois Englert Peter Higgs
(1928-2011) (b. 1932) (b. 1929)

The most popular UV completion of the Stuckelberg theory consists in
embedding it into a complex scalar field U(x) with a gauge invariant “symmetry
breaking” potential

4 2
vty =2 (ﬂ) [lTr(UTU) _ 1] U(x) ¢ SU2)
4 gym 2
and linearize around a vacuum configuration
U(x) = Up(x) [1 " j;;&h(x)] Uo(x) € SU(2)

The SU(2) gauge freedom can be used to eliminate Uj(x) (unitary gauge), so we
are left with h(x) as a physical excitation. .

the Higgs particle
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We can illustrate the mechanism in a more familiar fashion by writing U(x) in
terms of a complex SU(2) scalar doublet

+ O +
¢=(Cpo) e U@):%(_@H Cpo)

¢

The potential now reads

At the bottom of the potential, @ acquires a vev
that we can take to be

0 oM
ol@loy=( with  v= V2
NG SYMm

The excitations around this vacuum can be parametrized by

1 0
Pl = 5t (v—l—h(x))
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We can illustrate the mechanism in a more familiar fashion by writing U(x) in
terms of a complex SU(2) scalar doublet

+ O +
¢=(Cpo) e U@):%(_@H Cpo)

¢

The potential now reads

At the bottom of the potential, @ acquires a vev
that we can take to be

0 oM
ol@loy=( with  v= V2
NG SYMm

The excitations around this vacuum can be parametrized by

0
B(x) = (+@l
“radial”

“angular” L
> excitation
excitation

Monday, July 11, 2011



We can illustrate the mechanism in a more familiar fashion by writing U(x) in
terms of a complex SU(2) scalar doublet

+ O +
¢=(Cpo) — U(@:%(_qu Cpo)

¢

The potential now reads

At the bottom of the potential, @ acquires a vev
that we can take to be

0 oM
ol@loy=( with v Y2
NG SYMm

The excitations around this vacuum can be parametrized by

1 0
D(x) =
0 (”@l
Stuckelberg field ~ “radial”

=== Higgs field

angular” excitation
(gauged away) excitation
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Expanding the Lagrangian to second order in /(x) we find the mass of the Higgs

mode to be
A MNA ‘Exercise: prove it '
myg = VA — =

2 8YMm

This mass depends not only on “low energy” quantities like M and gvwm, but also
on the self-coupling A .

The big advantage of the Brout-Englert-Higgs mechanism we can describe a
massive vector field at low energies without giving up unitarity and
renormalizability.

The reason is that the full theory is gauge invariant, although the vacuum is not.

g(x)( ? ) ” ( (v) ) g(x) € SU(2)
V2 V2

so gauge invariance is not lost, only hidden (more on this on VWednesday).
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To summarize, the breaking of gauge invariance in the massive SU(2) Lagrangian.
] _ _ _ _
L = =T (Fun ") + MPTr (AuA" ) + WPLPWL + Wrd W — m (V1 Wk + PR )

is no big deal at low energies: the gauge redundancy can be introduced by hand
using Stuckelberg’s trick, to write something that is formally gauge invariant.

The theory however is sick at high energies (i.e., nonunitary and
nonrenormalizable), and has to be completed in the UV:

® The Brout-Englert-Higgs mechanism gives a unitary and renormalizable
theory, although it provides no physical explanation for the shape of the

potential.

® There are other scenarios where the Stuckelberg field is dynamically
generated at low energies (wait for Christophe’s lectures).

So far, in the standard model we have only detected the “angular” part of
the field U(x) (i.e., the Stiickelberg field, or the longitudinal components of

the W and Z" bosons). However, its “radial” part (i.e., the Higgs boson) is
still at large.
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