EXERCISES FOR HIGH ENERGY COSMIC RADIATION TAE 2011

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
\section*{Germany}
email: sigl@mail.desy.de
tel: 040-8998-2224

1. Derive the threshold for pion production of high energy nucleons in the cosmic microwave background, $N+\gamma_{\mathrm{CMB}} \rightarrow N+\pi$. Express it in terms of the energy ε of the cosmic microwave background photon.
2. Derive the threshold for pair production of high energy photons in the cosmic microwave background, $\gamma+\gamma_{\mathrm{CMB}} \rightarrow e^{+} e^{-}$. Express it in terms of the energy ε of the cosmic microwave background photon.
3. Assume that primordial neutrinos are non-relativistic and have a mass m_{ν}. Calculate the threshold for production of a Z^{0} boson through high energy neutrinos $\nu+\bar{\nu} \rightarrow Z^{0}$ and express it in terms of the mass m_{ν} of the primordial neutrinos.
4. The interstellar density in our Galaxy is about 1 (mostly hydrogen) atom per cm^{3} and the confinement time of a high energy cosmic ray is of the order of 10^{7} years or smaller. Estimate the interaction probability of a cosmic ray during its propagation within the Galaxy.
5. Assume that a cosmic ray particle interacts with a photon beam that comes from a fixed direction, with a cross section $\sigma(s)$ which depends on the squared center of mass energy s (also known as the first Mandelstam-variable). Per definition of a cross section, in the rest frame of the cosmic ray particle (unprimed quantities) its interaction rate is given by

$$
\Gamma=j \sigma(s),
$$

where $j=|\mathbf{j}|=c_{0} n$ is the flux density of the photon beam, corresponding to a photon density n. Using Lorentz transformations, show that the interaction rate in the system in which the particle moves with velocity \mathbf{v} (primed quantities) is given by

$$
\Gamma^{\prime}=c_{0} n^{\prime}\left(1-\frac{v}{c_{0}} \cos \theta\right) \sigma(s)
$$

where θ is the angle between \mathbf{v} and the direction of the photon beam. Use the fact that the four-vector flux density $\left(c_{0} n, \mathbf{j}\right)$ and $\left(c_{0} n^{\prime}, \mathbf{j}^{\prime}\right)$, respectively, represent a four-vector j^{μ} with zero norm, $j^{2}=j_{\mu} j^{\mu}=0$.
6. Consider the equation for the mean free path for the interaction of a high energy particle with an isotropically distributed low energy background photon target with a distribution $d n_{b}(\varepsilon) / d \varepsilon$ for a cross section $\sigma\left[s=m_{\mathrm{CR}}^{2}+2 E \varepsilon\left(1-\mu \beta_{\mathrm{CR}} \beta_{b}\right)\right]$,

$$
\begin{equation*}
l(E)^{-1}=\int d \varepsilon \frac{d n_{b}(\varepsilon)}{d \varepsilon} \int_{-1}^{+1} d \mu \frac{1-v \mu}{2} \sigma(s), \tag{1}
\end{equation*}
$$

with $\beta \equiv v / c_{0}$. Express the integral over μ in this equation through an integration over the energy ε_{0} of the target particles in the rest frame of the high energy particles (cosmic radiation). What are the integration limits for ε_{0} if the interaction has a threshold $\varepsilon_{\mathrm{th}}^{0}$ in the rest frame of the high energy particle (example: GZK effekt/pion production has a threshold of $\varepsilon_{\mathrm{th}}^{0} \simeq 150 \mathrm{MeV}$)?
7. Estimate the cross section for pair production by photons, $\gamma \gamma \rightarrow e^{+} e^{-}$close to the threshold, $s \sim m_{e}^{2}$ with m_{e} the electron mass ("Thomson regime"), and for $s \gg m_{e}^{2}$ ("Klein-Nishina regime"). You can use dimensional analysis for these estimates.
8. The power of synchrotron emission by an electron of energy E in a magnetic field B is given by

$$
P_{\mathrm{synch}}=\frac{\sigma_{T} E^{2} B^{2}}{6 \pi m_{e}^{2}},
$$

where $\sigma_{T} \equiv e^{4} /\left(6 \pi m_{e}^{2}\right)$ is the Thomson cross section. Assuming the average Galactic magnetic field strength is $\simeq 5 \mu \mathrm{G}$, estimate the energy loss length of an electron in the Galaxy as a function of its energy.
9. How far does the electron diffuse before it looses most of its energy assuming that the diffusion coefficient is given by the Larmor radius?
10. Derive the formula

$$
\begin{equation*}
\langle\Delta p\rangle=\frac{4}{3}\left(u_{1}-u_{2}\right) p_{1} \tag{2}
\end{equation*}
$$

for the average energy gain of a relativistic charged particle during one acceleration cycle "upstream-downstream-upstream" at a non-relativistic shock, $u_{1}, u_{2}, v \equiv u_{1}-u_{2} \ll 1$. In order to do this, compute the average change of momentum

$$
\langle\Delta p\rangle=\frac{\int\left(p_{1}^{\prime}-p_{1}\right)\left|\mu_{1}\right| d \mu_{1}\left|\mu_{2}\right| d \mu_{2}}{\int\left|\mu_{1}\right| d \mu_{1}\left|\mu_{2}\right| d \mu_{2}}
$$

weighted by the particle flux over the shock front where $0 \lesssim \mu_{1} \leq 1$ and $-1 \leq \mu_{2} \lesssim 0$ are the projections of the cosmic ray momentum onto the shock normal upon crossing the shock. Here,

$$
p_{1}^{\prime} \simeq p_{1}\left(1-v \mu_{2}\right)\left(1+v \mu_{1}\right)
$$

follows from Lorentz-transformations between the upstream and downstream frames in the non-relativistic limit.

