
Lecture IV

Anomalies

• The Adler-Bell-Jackiw anomaly

• Gauge anomalies and anomaly cancellation

• Symmetries and quantum corrections



Symmetries and Quantum Corrections

Upon quantization, however, conserved currents and charges are defined by 
products of operators evaluated at the same spacetime point. It is possible that 
the renormalized composite operator does not satisfy the conservation 
equation of the classical one.

When this happens, we say that the theory has an anomaly.

In the presence of continuous symmetries, the conserved charges    are 
converted upon quantization in operators such that
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U ! U " ! " (7.29)

and are antilinear, i.e.

U a ! b " a U ! b U " , a,b C. (7.30)

To find the transformation of operator matrix elements under an antiunitary trans-
formation we compute

! O " O ! " U " U O ! . (7.31)

Writing now U O ! U O ! and inserting the identity we arrive at the final
result

! O " " U O U 1 ! . (7.32)

Continuous symmetries are implemented only by unitary operators. This is be-
cause they are continuously connected with the identity, which is a unitary operator.
Discrete symmetries, on the other hand, can be implemented by either unitary or
antiunitary operators. An example of the latter is time reversal, that we will study in
detail in chapter 11.
In the previous section we have seen that in canonical quantization the conserved

chargesQa associated with a continuous symmetry by Noether’s theorem are opera-
tors generating the infinitesimal transformations of the quantum fields. The conser-
vation of the classical charges Qa,H PB 0 implies that the operatorsQa commute
with the Hamiltonian

Qa,H 0. (7.33)

The symmetry group generated by the operators Qa is implemented in the Hilbert
space of the theory by a set of unitary operators U ! , where !a (with a
1, . . . ,dimg) labels the transformation2. That the group is generated by the con-
served charges means that in a neighborhood of the identity, the operators U !
can be written as

U ! ei!
aQa . (7.34)

A symmetry group can be realized in the quantum theory in two different ways,
depending on how its elements act on the ground state of the theory. Implementing
it in one way or the other has important consequences for the spectrum of the theory,
as we now learn.

2 A quick survey of group theory can be found in Appendix B.
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These charges generate the action of the symmetry on the Hilbert space
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From Lecture II:



Whether anomalies are good or bad news depends on the type of symmetry 
affected by them:

• Global symmetries: since these can be considered accidental symmetries 
of the theory, its breaking by anomalies does not spoil its consistency.

• Gauge invariance: current conservation is crucial for the consistency of 
gauge theories. Hence, an anomaly associated with a gauge current renders 
the theory inconsistent.

We say that a classical symmetry is anomalous if it cannot be realized in the 
quantum theory. This might happen for both continuous and discrete 
symmetries (e.g., parity anomaly in 3D).

The presence of anomalies is not the result of a clumsy choice of the regulator 
used to renormalize the theory. If a symmetry is anomalous it means that the 
classical symmetry cannot be realized in the quantum theory, no matter how 
smart we are in choosing the regularization procedure.



In fact, we have already encountered an anomaly in these lectures. Let us look, 
for example, to the Lagrangian of pure  Yang-Mills theory does not contain any 
mass parameter

The classical action is scale invariant, i.e., the physics does not change when we 
change the scale,

Nevertheless, we have learned in Lecture III how this scale invariance is broken 
by quantum corrections and a nonvanishing beta function appears. For 
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higher energies. If, on the contrary, the beta function is positive (as it happens in
QED) the coupling constant approaches the critical value as the energy decreases.
This is the case of an infrared stable fixed point.
This analysis that we have motivated with the examples of QED and QCD is

completely general and can be carried out for any quantum field theory. In fig. 8.1
we have represented the beta function for a hypothetical theory with three fixed
points located at couplings g1 , g2 and g3 . The arrows in the line below the plot
represent the evolution of the coupling constant as the energy increases. We learn
that g1 0 and g3 are ultraviolet stable fixed points, while g2 is infrared stable.
In order to understand the high and low energy behavior of a quantumfield theory

it is crucial to know the structure of the beta functions associated with its couplings.
This can be a very difficult task, since perturbation theory only allows the study of
the theory around “trivial” fixed points, i.e. those that occur at zero coupling like the
case of g1 in fig. 8.1. Any “nontrivial” fixed point occurring in a theory (like g2 and
g3 ) cannot be captured in perturbation theory and requires a full nonperturbative
analysis.
The lesson to be learned from this discussion is that dealing with the ultraviolet

divergences in a quantum field theory has as a consequence the introduction of an
energy dependence in the measured value of the coupling constants of the theory.
This happens even in the case of theories without dimensionful couplings. These
theories are scale invariant at the classical level because the action does not con-
tain dimensionful parameters. In this case the running of the coupling constants can
be seen as resulting from a quantum breaking of classical scale invariance: different
energy scales in the theory are distinguished by different values of the coupling con-
stants. We say that classical scale invariance is an anomalous symmetry. A heuristic
way to understand how the conformal anomaly comes about is to notice that the reg-
ularization of an otherwise scale invariant field theory requires the introduction of
an energy scale (e.g. a cutoff). In general, the classical invariance cannot be restored
after renormalization.
Scale invariance is not completely lost in quantum field theory, however. It is

recovered at the fixed points of the beta function where, by definition, the coupling
does not run. We consider a scale invariant classical field theory whose field ! x
transform under coordinate rescalings as

xµ x µ "xµ , ! x ! x " #! " 1x , (8.27)

where # is called the canonical scaling dimension of the field. An example of such
a theory is a massless !4 theory in four dimensions

L
1
2 µ! µ!

g
4!
!4, (8.28)

where the scalar field has canonical scaling dimension # 1. The Lagrangian den-
sity transforms as

L " 4L ! (8.29)
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Classical scale invariance is broken by quantum correction: it is an anomalous 
symmetry. This anomaly is not dangerous and it actually explains lots of 
physics
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The Adler-Bell-Jackiw Anomaly

Let us consider a massless fermion coupled to an external classical 
electromagnetic field 

This theory is invariant under vector and chiral phase rotations of the spinor 
field

which implies the conservation of the vector and axial currents

To check whether the axial current is conserved also quantum mechanically, 
we have to compute the quantity

9.2 The Triangle Diagram 181

To get this expression we have divided the shift of the spectrum eE !0 by the sepa-
ration between energy levels given by 2"

L [cf. Eq. (9.14)]. The value of the charges
at the time !0 are

QV !0 N 0 0 N 0,
QA !0 N 0 0 N 2N. (9.25)

Therefore we conclude that the coupling to the electric field produces a violation in
the conservation of the axial charge per unit time given by

QA
e
"

E L. (9.26)

This result translates into a nonconservation of the axial vector current

µJ
µ
A

eh̄
"

E , (9.27)

where we have restored h̄ to make clear that we are dealing with a quantum effect. In
addition, the fact that #QV 0 guarantees that the vector current remains conserved
also quantum mechanically, µJ

µ
V 0.

9.2 The Triangle Diagram

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial
anomaly [3]. We have presented a heuristic analysis consisting of studying the cou-
pling of a two-dimensional massless fermion to an external classical electric field to
compute the violation in the conservation of the axial vector current due to quantum
effects.
This suggests an alternative, more sophisticated way to compute the axial anomaly.

Gauge invariance requires that the fermion couples to the external gauge field
through the vector current JµV via a term in the Lagrangian

L i$ $ eJµVAµ , (9.28)

where Aµ x represents the classical external gauge field. To decide whether the
axial vector current is conserved quantum mechanically we compute the vacuum
expectation value

µJµA x A , (9.29)

where the subscript indicates the expectation value is computed in the vacuum of the
theory coupled to the external field. This quantity can be evaluated in powers ofAµ

using either the operator formalism or functional integrals. The first nonvanishing
term is

with
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U(1)V : u ei!u , (9.2)

whereas in the second, the axial U(1), the signs of the phases are different for the
two chiralities

U(1)A : u e i!u . (9.3)

Using Noether’s theorem, there are two conserved currents, a vector current

JµV "#µ" u $ µu u $ µu µJµV 0 (9.4)

and an axial vector current

JµA "#µ#5" u $ µu u $ µu µJ
µ
A 0. (9.5)

The theory described by the Lagrangian (9.1) can be coupled to the electromag-
netic field. The resulting classical theory is still invariant under the vector and axial
U(1) symmetries (9.2) and (9.3). Surprisingly, upon quantization it turns out that the
conservation of the axial vector current (9.5) is spoiled by quantum effects

µJµA h̄E B. (9.6)

To understand more clearly how this result comes about we study first a simple
model in two dimensions that captures the relevant physics involved in the four-
dimensional case [2]. We work in a two-dimensional Minkowski space with coor-
dinates x0,x1 t,x and where the spatial direction is compactified to a circle
S1 with length L. In this setup we consider a fermion coupled to a classical electro-
magnetic field. Notice that in our two-dimensional world the field strengthFµ% has
only one independent component that corresponds to the electric field, F01 E
(in two dimensions there are no magnetic fields!).
To write the Lagrangian for the spinor field we need to find a representation of

the algebra of #-matrices

#µ ,#% 2&µ% with &
1 0
0 1 . (9.7)

In two dimensions the dimension of the representation of the #-matrices is 2. In fact,
remembering the anticommutation relation of the Pauli matrices $i,$ j 2'i j is
not very difficult to come up with the following representation

#0 $1
0 1
1 0 , #1 i$2

0 1
1 0 . (9.8)

This is a chiral representation since the matrix #5 is diagonal1

1 In any even number of dimensions #5 is defined to satisfy the conditions #5 2 1 and #5,#µ

0.
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µJµA h̄E B. (9.6)

To understand more clearly how this result comes about we study first a simple
model in two dimensions that captures the relevant physics involved in the four-
dimensional case [2]. We work in a two-dimensional Minkowski space with coor-
dinates x0,x1 t,x and where the spatial direction is compactified to a circle
S1 with length L. In this setup we consider a fermion coupled to a classical electro-
magnetic field. Notice that in our two-dimensional world the field strengthFµ% has
only one independent component that corresponds to the electric field, F01 E
(in two dimensions there are no magnetic fields!).
To write the Lagrangian for the spinor field we need to find a representation of

the algebra of #-matrices

#µ ,#% 2&µ% with &
1 0
0 1 . (9.7)

In two dimensions the dimension of the representation of the #-matrices is 2. In fact,
remembering the anticommutation relation of the Pauli matrices $i,$ j 2'i j is
not very difficult to come up with the following representation

#0 $1
0 1
1 0 , #1 i$2

0 1
1 0 . (9.8)

This is a chiral representation since the matrix #5 is diagonal1

1 In any even number of dimensions #5 is defined to satisfy the conditions #5 2 1 and #5,#µ

0.
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e µ 2

12"2
log

µ2

!2
O e µ 6 (0.158)

Nc number of colors Nf number of flavors (0.159)

!Landau 1019GeV (0.160)

g1 g2 g3 (0.161)

1015-1016 GeV (0.162)

e0 ! (0.163)

a 2a (0.164)

S #a,! (0.165)

$µ% q !2&µ% transverse part (0.166)

L
1
4 µA%A µAµA

1
4 µA%A %AµA

1
2
gYM f ABCAµAA%B µAC% g2YM f

ABC f ADEAB
µA

C
%A

µDA%E

AA
µ x A A

µ x ' (AA
µ ' 1x (0.167)

( 1 (0.168)

) gYM
11g3YMNc
48"2

0 (0.169)

SU(Nc) (0.170)

U(1)V : * ei+* U(1)A : * ei+,5* (0.171)

µJµA x A

1
Z

D*D* µJµA x ei d
4y i* * eJµVA (0.172)



Expanding in powers of e, the first nonvanishing term is quadratic one
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µJµA x A ie d2y µCµ! y A! x y , (9.30)

where

Cµ! x 0 T JµA x J!V 0 0
JµA J!V

(9.31)

In this correlation function the state 0 represents the Fock space vacuum of the free
fermion theory. Therefore it can be evaluated using Wick’s theorem. The Feynman
diagram summarizes the Wick contractions required to compute the timer-ordered
correlation function of the two currents

Cµ! x 0 "#µ#5" x "#!" 0 0 . (9.32)

We have concluded that the axial anomaly is controlled by the quantity µCµ! x .
In computing the anomaly we have to impose the conservation of the vector current.
This is crucial, since the gauge invariance of the theory depends upon it2. Doing this
one arrives at the result

µJ
µ
A A

eh̄
2$

%!&F!& , (9.33)

with %01 %10 1 and Fµ! is the field strength of the external gauge field. It is
immediate to check that the diagramatic calculation renders the same result (9.27)
obtained in the previous section using a more heuristic argumentation.
The calculation of the axial anomaly can be also carried out in four dimensions

along the same lines. Again, we have to compute the vacuum expectation value
of the axial vector current coupled to an external classical gauge field Aµ . Now,
however, the first nonvanishing contribution comes from the term quadratic in the
external gauge field, namely

µJµ A
e2

2
d4y1d4y2

x
µ Cµ!& x,y A! x y1 y2 A& x y2 , (9.34)

where now

Cµ!& x,y 0 T JµA x J!V y J&V 0 0 . (9.35)

This correlation function can be computed diagrammatically as

2 In fact there is a tension between the conservation of the vector an axial vector currents. The
calculation of the diagram shown in eq. (9.31) can be carried out imposing the conservation of
the axial vector current, which results in an anomaly for the vector current. Since this would be
disastrous for the consistency of the theory we choose the other alternative.
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where

To compute this correlation function we use Wick’s theorem. 
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Cµ!" x,y
JµA J!V

J"V

symmetric

(9.36)

This is the celebrated triangle diagram. The subscript indicates that, in fact, Cµ!"

is given by two triangle diagrams with the two photon external legs interchanged.
This is the result of Bose symmetry and can be explicitly checked by performing
the Wick contractions in the correlation function (9.35).
The evaluation of the integral in the right-hand side of (9.34) is complicated by

the presence of divergences that have to be regularized. As in the two-dimensional
case the conservation of the vector currents has to be imposed. The calculation gives
the following anomaly for the axial vector current [3]

µJ
µ
A A

e2

16#2
$µ!"%Fµ!F"% . (9.37)

This result has very important consequences in the physics of strong interactions as
we will see in the next section.
Here we have paid attention to the axial anomaly in two and four dimensions.

Chiral fermions exists in all even-dimensional space-times and, as a matter of fact,
the axial vector current has an anomaly in all even-dimensional space-times. More
precisely, if the dimension of the space-time is d 2k, with k 1,2, . . ., the anomaly
is given by a one-loop diagram with one axial current and k vector currents, i.e.
a k 1 -gon. For example, in 10 dimensions the axial anomaly comes from the
following hexagon diagram

As in the four-dimensional case, Bose symmetry and the conservation of all vector
currents has to be imposed.

9.3 Chiral Symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quan-
tum Chromodynamics (QCD) introduced in section 5.3 (see also [5] for reviews).
Here we will consider a slightly more general version with an arbitrary number of

where we have to symmetrize over the “photon legs”. 

These Wick contractions are codified in the celebrated triangle diagram:

14

Cµ!" x,y 0 #$µ$5# x #$!# y #$"# 0 0 0 #$µ$5# x #$!# y #$"# 0 0



We compute this diagram in momentum space
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Iµ!" p1, p2 Iµ"! p2, p1 (0.173)
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where
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Iµ!" p1, p2 ie2
d4q
2% 4

Tr $µ$5q$! q p1 $" q p1 p2
q2 i& q p1 2 i& q p1 p2 2 i&

To compute the anomaly we only need to evaluate
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d4q
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q2 i& q p1 2 i& q p1 p2 2 i&

i p1 p2 µ Iµ!" p1, p2 Iµ"! p2, p1 (0.175)

The integral to be computed is linearly divergent and has to be regularized, 
using for example Pauli-Villars or dimensional regularization (but being very 
careful of how      is defined!)
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!5 !0!1
1 0
0 1 . (9.9)

Writing a two-component Dirac spinor " as

"
u
u (9.10)

and defining as usual the projectors P 1
2 1 !5 we find that the components u

of " are respectively right- and left-handed Weyl spinors in two dimensions.
Once we have a representation of the !-matrices we can write the Dirac equation.

Expressed in terms of the components u of the Dirac spinor, we have

0 1 u 0, 0 1 u 0. (9.11)

The general solution of these equations can be immediately written as

u u x0 x1 , u u x0 x1 . (9.12)

Hence u are two wave packets moving along the spatial dimension respectively
to the left u and to the right u . Notice that according to our convention the
left-moving u is a right-handed spinor (positive helicity) whereas the right-moving
u is a left-handed spinor (negative helicity).
If we insist in interpreting (9.11) as the wave equation for two-dimensional Weyl

spinors we find the following properly normalized wave functions for free particles
with well defined energy-momentum pµ E, p

v E x0 x1
1
L
e iE x0 x1 with p E. (9.13)

As it is always the case with a relativistic wave equation we have found both positive
and negative energy solutions. For v E , since E p, we see that the solutions with
positive energy are those with negative momentum p 0, whereas the negative
energy solutions are plane waves with p 0. For the left-handed spinor u the
situation is reversed. Besides, since the spatial direction is compact with length L
the momentum p is quantized according to

p
2#n
L

, n Z. (9.14)

The spectrum of the theory is represented in Fig. 9.1.
Once we have the spectrum of the theory the next step is to obtain the vacuum.

As with the Dirac equation in four dimensions we identify the ground state of the
theory with the one where all states with E 0 are filled (see Fig. 9.2). Exciting
a particle in the Dirac sea produces a positive energy fermion plus a hole that is
interpreted as an antiparticle. This gives us the key on how to quantize the theory. In
the expansion of the operator u in terms of the modes (9.13) we associate positive



After a quite long calculation one finds 
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In position space this gives the Adler-Bell-Jackiw anomaly:

You can try it as 
an exercise, but 
it’s very long.
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µJµA A

e2

16%2
&'(")F'(F") (0.177)

Steven Adler
(b. 1939)

John S. Bell
(1928-1990)

Roman Jackiw
(b. 1939)

Jack Steinberger
(b. 1921)

Thus, the conservation of the axial current is spoiled by quantum 
corrections. This is not a problem, since the axial symmetry is a 
global one and the anomaly does not render the theory 
inconsistent.

In fact, the anomaly explains the electromagnetic 
decay of the neutral pion
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%0 2$ (0.179)

as we will see now.



Chiral Symmetry in QCD

The Adler-Bell-Jackiw anomaly has very important consequences for the physics 
of strong interactions. Let us then focus on QCD in the chiral limit
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colors and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a
number Nf of quarks. These are spin- 12 particles Q

f
i labelled by the color and flavor

quantum numbers i 1, . . . ,Nc and f 1, . . . ,Nf . The interaction between them is
mediated by the N2c 1 gauge bosons, the gluons AA

µ , with A 1, . . . ,N2c 1. Let us
recall that in the real world Nc 3 and Nf 6, corresponding to the six quarks: up
(u), down (d), charm (c), strange (s), top (t) and bottom (b).
For reasons that will be clear later we work in the limit of vanishing quark

masses3, mf 0. In this case the QCD Lagrangian is given by

LQCD
1
4
FA
µ!FAµ!

Nf

f 1
iQ f

LDQ
f
L iQf

RDQ
f
R , (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Qf
L,R

1
2
1 "5 Qf , (9.39)

and the field strength FA
µ! and covariant derivative Dµ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(Nf )L U(Nf )R acting on the flavor indices and defined by

U(Nf )L :
Qf
L

Nf

f 1
UL f f Q

f
L

Qf
R Qf

R

U(Nf )R :

Qf
L Qf

L

Qr
R

Nf

f 1
UR f f Q

f
R

(9.40)

with UL,UR U Nf . Since U(N)=U(1) SU(N) this global symmetry group can
be written as SU(Nf )L SU(Nf )R U(1)L U(1)R. The abelian subgroup U(1)L
U(1)R can be now decomposed into their vector U(1)B and axial U(1)A subgroups
defined by the transformations

U(1)B :
Qf
L ei#Qf

L

Qf
R ei#Qf

R

U(1)A :
Qf
L ei#Qf

L

Qf
R e i#Qf

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JµV

Nf

f 1
Qf
"µQf , JµA

Nf

f 1
Qf
"µ"5Qf . (9.41)

The conserved charge associated with the vector current JµV is the baryon number
counting the number of quarks minus the number of antiquarks.

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.
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The action is invariant under the                      symmetry
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The nonabelian part of the global symmetry group SU(Nf )L SU(Nf )R can also
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whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges
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f , f 1
Qf
!µ T I f f Q f ,
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f , f 1

Qf
!µ!5 T I f f Q f . (9.43)

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed into its chiral and vector subgroups according
to

U(Nf )L U(Nf )R SU(Nf )V SU(Nf )A U(1)B U(1)A. (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.
As argued in section 9.1, the conservation of the axial vector currents JµA and J

Aµ
A

can in principle be spoiled by an anomaly. In the case of the abelian axial current JµA
the relevant quantity to compute is the correlation function

Cµ"# x,x 0 T JµA x jA"gauge x jB#gauge 0 0

Nf

f 1 JµA
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g

Qf

gQf

symmetric

(9.45)

Here jAµgauge is the nonabelian conserved current coupling to the gluon field

j Aµgauge
Nf

f 1
Qf

!µ$AQf , (9.46)
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The associated classically conserved currents are
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be decomposed into its vector and axial subgroups, SU(Nf )V SU(Nf )A, defined
by the following transformations of the quarks fields
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(9.42)

whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges
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f , f 1
Qf
!µ T I f f Q f ,

JI µA

Nf

f , f 1

Qf
!µ!5 T I f f Q f . (9.43)

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed into its chiral and vector subgroups according
to

U(Nf )L U(Nf )R SU(Nf )V SU(Nf )A U(1)B U(1)A. (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.
As argued in section 9.1, the conservation of the axial vector currents JµA and J

Aµ
A

can in principle be spoiled by an anomaly. In the case of the abelian axial current JµA
the relevant quantity to compute is the correlation function

Cµ"# x,x 0 T JµA x jA"gauge x jB#gauge 0 0

Nf

f 1 JµA
Qf

g

Qf

gQf

symmetric

(9.45)

Here jAµgauge is the nonabelian conserved current coupling to the gluon field

j Aµgauge
Nf

f 1
Qf

!µ$AQf , (9.46)
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From the ABJ calculation we know that, in principle, the axial currents are 
potentially anomalous.

 To see whether this is the case, we have to compute the correlation function of 
one axial current and two gauge currents. For the abelian part:
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so the anomaly does not cancel. An explicit calculation gives
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In the case of the          current, we directly look at the group theoretical factor 
that multiplies the triangle diagram
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whereU is a SU(Nf ) matrix. Again, the application of Noether’s theorem shows the
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where, to avoid confusion with the generators of the global symmetry we have de-
noted by !a the generators of the gauge group SU(Nc). The anomaly can be read now
from x

µ Cµ"# x,x . If we impose Bose symmetry with respect to the interchange
of the two outgoing gluons and the conservation of the vector currents, we find that
the axial abelian global current has an anomaly given by4

µJµA
g2Nf
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µ"F
Aµ" . (9.47)

In the case of the nonabelian axial global symmetry SU(Nf )A the calculation of
the anomaly is made as above. The result, however, is quite different since in this
case we conclude that the nonabelian axial vector current JAµA is not anomalous.
This can be easily seen by noticing that associated with the axial vector current
vertex we have a generator T I of SU(Nf ), whereas for the two gluon vertices we
have the generators !A of the gauge group SU(Nc). Therefore, the triangle diagram
is proportional to the group-theory factor
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vanishing because the generators of SU(Nf ) are traceless.
From here we would conclude that the nonabelian axial symmetry SU(Nf )A is

nonanomalous. However this is not the whole story since quarks are charged par-
ticles that also couple to photons. Hence there is a second potential source of an
anomaly coming from the the one-loop triangle diagram coupling J I µA to two pho-
tons
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symmetric

(9.49)

where jµem is the electromagnetic current

jµem
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f 1
q f Q

f
'µQf , (9.50)

with q f the electric charge of the f -th quark flavor. A calculation of the diagram in
(9.49) shows the existence of the Adler-Bell-Jackiw anomaly given by

4 The normalization of the generators T I of the global SU(Nf ) is given by Tr T IT J 1
2 (

IJ .
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We might rush to conclude that        is nonanomalous. We have to take into 
account, however, that quarks also couple to the electromagnetic field. There is 
thus a second contribution to the anomaly:
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µJ I µA
Nc
16!2

Nf

f 1
T I f f q2f "µ#$%Fµ#F$% , (9.51)

where Fµ# is the field strength of the electromagnetic field coupling to the quarks.
The only chance for the anomaly to cancel is that the factor between brackets in this
equation be identically zero.
Before proceeding let us summarize the results found so far. Due to the presence

of anomalies the axial part of the global chiral symmetry, SU(Nf )A and U(1)A are
not realized quantum mechanically in general. We found that U(1)A is always af-
fected by an anomaly. However, the right-hand side of the anomaly equation (9.47)
is a total derivative, thus the anomalous character of JµA does not explain the ab-
sence of U(1)A multiplets in the hadron spectrum, since a new current can be con-
structed which is conserved. In addition, the nonexistence of candidates for a Gold-
stone boson associated with the right quantum numbers indicates that U(1)A is not
spontaneously broken either, so it has to be explicitly broken somehow. This is the
so-called U(1)-problem solved by ’t Hooft [6], who showed how the contribution in-
stantons describing quantum transitions between vacua with topologically nontrivial
gauge field configurations results in an explicit breaking of this symmetry.
Due to the dynamics of the SU(Nc) gauge theory the axial nonabelian symmetry

is spontaneously broken due to the presence at low energies of a vacuum expectation
value for the fermion bilinear QfQf

0 QfQf 0 0 (no summation in f !). (9.52)

This nonvanishing vacuum expectation value for the quark bilinear breaks chiral
invariance spontaneously to the vector subgroup SU(Nf )V, so the only subgroup of
the original global symmetry that is realized by the full theory at low energy is

U(Nf )L U(Nf )R SU(Nf )V U(1)B. (9.53)

Associated with this breaking, Nambu-Goldstone bosons should appear with the
quantum numbers of the broken nonabelian currents. For example, in the case
of QCD the Nambu-Goldstone bosons associated with the spontaneous symmetry
breaking induced by the vacuum expectation values uu , dd and ud du
have been identified as the pions !0, ! . These bosons are not exactly massless due
to the nonvanishing mass of the u and d quarks. Since the global chiral symmetry is
already slightly broken by mass terms in the Lagrangian, the associated Goldstone
bosons also have masses although they are very light compared to the masses of
other hadrons.
In order to have a better physical understanding of the role of anomalies in the

physics of the strong interactions we particularize our analysis to the case of real
QCD. Since the u and d quarks are much lighter than the other four flavors, QCD at
low energies can be well described by including only these two flavors and ignoring
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the low energy global symmetry of the theory is SU(2)V U(1)B, where now the



We specialize our results to the case of QCD with the two light flavors u and d.  
Taking into account that
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vector group SU(2)V is the well-known isospin symmetry. The axial U(1)A current
is anomalous due to Eq. (9.47) with Nf 2. In the case of the nonabelian axial
symmetry SU(2)A, taking into account that qu 2

3e and qd
1
3e and that the three

generators of SU(2) can be written in terms of the Pauli matrices as TK 1
2!K we

find

f u,d
T 1 f f q2f

f u,d
T 2 f f q2f 0,

f u,d
T 3 f f q2f

e2

6
. (9.54)

Therefore J3µA is anomalous.
The anomaly in the axial vector current J3µA has important physical consequence.

As we learned in chapter 5 the flavor wave function of the neutral pion "0 is given
by

"0
1
2

ūu d̄d . (9.55)

The isospin quantum numbers of "0 are those of J3µA . In fact, the correspondence
goes even further. The divergence of the axial vector current µJ3µA has precisely the
same quantum numbers as the pion. This means that, properly normalized, it can be
identified as the operator creating a pion "0 out of the vacuum

"0 µJ3µA 0 . (9.56)

This leads to the physical interpretation of the triangle diagram (9.49) with J3µA as
the one loop contribution to the decay of a neutral pion into two photons

"0 2# . (9.57)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [7] pre-
sented a calculation, using current algebra techniques, according to which the decay
of the pion into two photons should be suppressed. This however contradicted the
experimental evidence showing the existence of such a decay. The way out to this
paradox, as pointed out in [3], is the axial anomaly. What happens is that the cur-
rent algebra analysis overlooks the ambiguities associated with the regularization
of divergences in quantum field theory. A QED evaluation of the triangle diagram
leads to a divergent integral that has to be regularized. It is in this process that the
Adler-Bell-Jackiw axial anomaly appears resulting in a nonvanishing value for the
"0 2# amplitude5.

5 An early computation of the triangle diagram for the electromagnetic decay of the pion was made
by Steinberger in [4].
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Hence, only   is anomalous. This current has the quantum numbers of the 
neutral pion and           is the interpolating field between       and the vacuum
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so the neutral pion field can be written as
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The anomaly of      gives the amplitude for the electromagnetic decay of the 
neutral pion into two photons. The existence of this decay is a direct 
consequence of the existence of the ABJ anomaly.
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Gauge Anomalies

Unlike the anomalies in global currents, gauge anomalies are a serious threat for 
the consistency of a gauge theory (e.g., nondecoupling of unphysical states). The 
cancelation of anomalies poses strong restrictions on these theories.

Gauge anomalies can only appear in chiral gauge theories, such as the 
electroweak sector of the standard model. Here we consider a Lagrangian
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9.4 Gauge Anomalies

The existence of anomalies associated with global currents does not necessarily
mean difficulties for the theory. On the contrary, as we saw in the case of the axial
anomaly its existence provides a solution of the Sutherland-Veltman paradox and an
explanation of the electromagnetic decay of the pion. The situation is very differ-
ent when we deal with local symmetries. A quantum mechanical violation of gauge
symmetry leads to many problems, from lack of renormalizability to nondecoupling
of negative norm states. This is because the presence of an anomaly in the theory im-
plies that the Gauss’ law constraint D EA !A cannot be consistently implemented
in the quantum theory. As a consequence states that classically were eliminated by
the gauge symmetry become propagating in the quantum theory, thus spoiling the
consistency of the theory.
Anomalies in a gauge symmetry can be expected only in chiral theories where

left and right-handed fermions transform in different representations of the gauge
group. Physically, the most interesting example of such theories is the electroweak
sector of the standard model where, for example, left handed fermions transform
as doublets under SU(2) whereas right-handed fermions are singlets. On the other
hand, QCD is free of gauge anomalies since both left- and right-handed quarks
transform in the fundamental representation of SU(3).
We consider the Lagrangian

L
1
4
FAµ"FA

µ" i
N

i 1
# i D # i i

N

j 1
# j D # j

, (9.58)

where the chiral fermions # i transform according to the representations $Ai, of the
gauge group G (A 1, . . . ,dimG). The covariant derivatives Dµ are, as usual,
defined by

Dµ # i
µ# i igYMAA

µ$
A# i . (9.59)

The anomaly is determined by the parity-violating part of the triangle diagram with
three external gauge bosons, summed over all chiral fermion species running in the
loop. All three vertices in the diagram include a projector P or P and the parity-
violating terms are identified as those containing a single %5. Splitting the gauge
current into its vector and axial vector part, we conclude that the gauge anomaly
comes from the triangle diagram with one axial and two vector gauge currents

0 T jAµA x jB"V x jC&V 0 0
jAµA jB"V

jCµV

symmetric

(9.60)
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where the right- and left-handed fermions transform in the representation      and
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An anomaly on the gauge current comes from the parity-violating part of the 
correlation function of three gauge currents. This is given by
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where j AµV and j AµA are given by

j AµV
N

i 1
! i "A #µ! i

N

j 1
! j "A #µ! j

,

j AµA
N

i 1
! i "A #µ! i

N

i 1
! j "A #µ! j

. (9.61)

Luckily, we do not have to compute the whole diagram in order to find an anomaly
cancellation condition. It is enough if we calculate the overall group theoretical
factor. In the case of the diagram in Eq. (9.60) for every fermion species running in
the loop this factor is equal to

Tr "Ai, "Bi, ,"Ci, , (9.62)

where the sign corresponds respectively to the generators of the representation of
the gauge group for the left and right-handed fermions. Hence the anomaly cancel-
lation condition reads

N

i 1
Tr "Ai, "Bi, ,"Ci,

N

j 1
Tr "Aj, "Bj, ,"Cj, 0. (9.63)

Knowing this we can proceed to check the anomaly cancellation in the standard
model SU(3) SU(2) U(1)Y . Left handed fermions (both leptons and quarks) trans-
form as doublets with respect to the SU(2) factor whereas the right-handed compo-
nents are singlets. The charge with respect to the U(1)Y part, the weak hypercharge
Y , is determined by the Gell-Mann-Nishijima formula

Q T3 Y, (9.64)

where Q is the electric charge of the corresponding particle and T3 is the eigenvalue
with respect to the third generator of the SU(2) group in the corresponding repre-
sentation: T3 1

2$3 for the doublets and T3 0 for the singlets. For the first family
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An anomaly on the gauge current comes from the parity-violating part of the 
correlation function of three gauge currents. This is given by
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L
1
4
FAµ"FA

µ" i
N

i 1
# i D # i i

N

j 1
# j D # j

, (9.58)

where the chiral fermions # i transform according to the representations $Ai, of the
gauge group G (A 1, . . . ,dimG). The covariant derivatives Dµ are, as usual,
defined by

Dµ # i
µ# i igYMAA

µ$
A# i . (9.59)

The anomaly is determined by the parity-violating part of the triangle diagram with
three external gauge bosons, summed over all chiral fermion species running in the
loop. All three vertices in the diagram include a projector P or P and the parity-
violating terms are identified as those containing a single %5. Splitting the gauge
current into its vector and axial vector part, we conclude that the gauge anomaly
comes from the triangle diagram with one axial and two vector gauge currents

0 T jAµA x jB"V x jC&V 0 0
jAµA jB"V

jCµV

symmetric

(9.60)vector

axial

where
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The cancellation condition of the gauge anomaly
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imposes very strong conditions on both the number of fermion species and the 
representations of the gauge group under which they transform.

On physical grounds, the most interesting case is the standard model (see also 
Nuria´s lectures). Its fermion content is

or in terms of the labels             of the representations of 

15

0 JIµA x !J p i f!" IJ pµe iEpt ip x (0.186)

SU(3) SU(2) U(1)Y (0.187)
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left-handed fermions: 3,2 L
1
6

1,2 L
1
2

(9.66)
right-handed fermions: 3,1 R

2
3

3,1 R
1
3

1,1 R
1.

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3) SU(2) U(1)Y appears in each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)U(1)

SU(3)2U(1) SU(2)U(1)2

SU(3)SU(2)2

SU(3)SU(2)U(1)

SU(3)U(1)2

It is easy to verify that some of them do not give rise to anomalies. For example the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term using the Pauli matrices identity ! j!k " jk i# jk!!! leading to

Tr !i ! j,!k 2 Tr!i " jk 0. (9.67)

The hardest condition comes from the three U(1)’s. In this case the absence of
anomalies within a single family is guaranteed by the nontrivial identity

left
Y 3

right
Y 3 3 2

1
6

3
2

1
2

3
3

2
3

3

3
1
3

3
1 3 3

4
3
4

0. (9.68)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. Therefore we see how the matter content of
the standard model conspires to yield a consistent quantum field theory.
In all our discussion of anomalies we only considered the computation of one-

loop diagrams. It might happen that higher loop orders impose additional condi-
tions. Fortunately this is not so: the Adler-Bardeen theorem [8] guarantees that the
axial anomaly only receives contributions from one loop diagrams. Therefore, once
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SU(3) SU(2) U(1)Y (0.187)
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32!2
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A
%& µKµ (0.188)
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'! x
1

f!m2!
µJ
3µ
A x (0.190)

iM !0 2( (0.191)

1
f!m2!

#$ p1 #% p2 p1 p2 µ

JµA J$V

J%V
p1 p2

p1

p2
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µJµA
g2Nf

32!2
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A
%& µKµ (0.192)

diR, 1
3

(0.193)
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To check that the standard model is anomaly-free we have to compute the 
triangle diagram with all possible combination of the three group factors
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It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. Therefore we see how the matter content of
the standard model conspires to yield a consistent quantum field theory.
In all our discussion of anomalies we only considered the computation of one-

loop diagrams. It might happen that higher loop orders impose additional condi-
tions. Fortunately this is not so: the Adler-Bardeen theorem [8] guarantees that the
axial anomaly only receives contributions from one loop diagrams. Therefore, once

Exercise: prove this result

and compute
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with respect to the third generator of the SU(2) group in the corresponding repre-
sentation: T3 1

2$3 for the doublets and T3 0 for the singlets. For the first family
of quarks (u, d) and leptons (e, %e) we have the following field content

quarks: ui
di L, 16

uiR, 23
diR, 23

leptons: %e
e L, 1

2

eR, 1 (9.65)

where i 1,2,3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y . Denoting the representations of SU(3) SU(2)
U(1)Y by nc,nw Y , with nc and nw the representations of SU(3) and SU(2) re-

spectively and Y the hypercharge, the matter content of the standard model consists
of a three family replication of the representations:

The result is that all gauge anomalies cancel within each family.



As an example we work out the case 
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left-handed fermions: 3,2 L
1
6

1,2 L
1
2

(9.66)
right-handed fermions: 3,1 R

2
3

3,1 R
1
3

1,1 R
1.

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3) SU(2) U(1)Y appears in each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)U(1)

SU(3)2U(1) SU(2)U(1)2

SU(3)SU(2)2

SU(3)SU(2)U(1)

SU(3)U(1)2

It is easy to verify that some of them do not give rise to anomalies. For example the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term using the Pauli matrices identity ! j!k " jk i# jk!!! leading to

Tr !i ! j,!k 2 Tr!i " jk 0. (9.67)

The hardest condition comes from the three U(1)’s. In this case the absence of
anomalies within a single family is guaranteed by the nontrivial identity

left
Y 3

right
Y 3 3 2

1
6

3
2

1
2

3
3

2
3

3

3
1
3

3
1 3 3

4
3
4

0. (9.68)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. Therefore we see how the matter content of
the standard model conspires to yield a consistent quantum field theory.
In all our discussion of anomalies we only considered the computation of one-

loop diagrams. It might happen that higher loop orders impose additional condi-
tions. Fortunately this is not so: the Adler-Bardeen theorem [8] guarantees that the
axial anomaly only receives contributions from one loop diagrams. Therefore, once
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left-handed 
quarks

left-handed 
leptons

right-handed 
“up” quarks

right-handed 
“down” quarks

right-handed 
lepton

quarks leptons

We see how the anomaly cancels between quarks and leptons.

What about higher loops? The Adler-Bardeen theorem states that once 
the anomalies are cancelled at one loop there are no further anomalies 
coming from higher loop diagrams.

And nonperturbative anomalies? There is also a nonperturbative form of the 
anomaly associated with the SU(2) factor of the standard model group
(Witten’s anomaly). It cancels whenever the total number of fermion 
species is even, which is the case in the standard model.


