Lecture |V

Anomalies

® Symmetries and quantum corrections

® The Adler-Bell-Jackiw anomaly

® (Gauge anomalies and anomaly cancellation




Symmetries and Quantum Corrections

-

From Lecture Ill:

In the presence of continuous symmetries, the conserved charges Q¢ are
converted upon quantization in operators such that

{0% H}pg =0 0%, H| =0
These charges generate the action of the symmetry on the Hilbert space
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Upon quantization, however, conserved currents and charges are defined by
products of operators evaluated at the same spacetime point. It is possible that
the renormalized composite operator does not satisfy the conservation

equation of the classical one.

When this happens, we say that the theory has an anomaly.




We say that a classical symmetry is anomalous if it cannot be realized in the
quantum theory. This might happen for both continuous and discrete
symmetries (e.g., parity anomaly in 3D).

The presence of anomalies is not the result of a clumsy choice of the regulator
used to renormalize the theory. If a symmetry is anomalous it means that the
classical symmetry cannot be realized in the quantum theory, no matter how
smart we are in choosing the regularization procedure.

Whether anomalies are good or bad news depends on the type of symmetry
affected by them:

® Global symmetries: since these can be considered accidental symmetries
of the theory, its breaking by anomalies does not spoil its consistency.

Gauge invariance: current conservation is crucial for the consistency of
gauge theories. Hence, an anomaly associated with a gauge current renders
the theory inconsistent.




In fact, we have already encountered an anomaly in these lectures. Let us look,

for example, to the Lagrangian of pure Yang-Mills theory does not contain any
mass parameter
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The classical action is scale invariant, i.e., the physics does not change when we
change the scale,

W M = AL(x) —> Ad(x) = A72A4(A ") with A=

Nevertheless, we have learned in Lecture lll how this scale invariance is broken
by quantum corrections and a nonvanishing beta function appears. For SU(V,)
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Classical scale invariance is broken by quantum correction: it is an anomalous

symmetry. This anomaly is not dangerous and it actually explains lots of
physics




The Adler-Bell-Jackiw Anomaly

Let us consider a massless fermion coupled to an external classical
electromagnetic field 7, (x)

L =iy +ely Ay, with Iy =Py

This theory is invariant under vector and chiral phase rotations of the spinor

field
U(l)y : 3 —> el U(Da 1 — €5y

which implies the conservation of the vector and axial currents
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To check whether the axial current is conserved also quantum mechanically,
we have to compute the quantity
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Expanding in powers of ¢, the first nonvanishing term is quadratic one
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To compute this correlation function we use Wick’s theorem.

| e 1 | ‘ | |

C* (x,y) = 0[Py ysp () Py y(y) P GW(0)|0>+<0|W“Y5w(xWYW(y)WY"UIJ(O)|0>

These Wick contractions are codified in the celebrated triangle diagram:

CH(x,y) =

symmetric

where we have to symmetrize over the “photon legs”.



We compute this diagram in momentum space

= 1"V (p1,p2) + 1"V (p2,p1)

- symmetric
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To compute the anomaly we only need to evaluate

i(p1 -I-Pz)u[lum(l?lapz) +I“GV(P2>P1)]

The integral to be computed is linearly divergent and has to be regularized,

using for example Pauli-Villars or dimensional regularization (but being very
careful of how V5 is defined!)




After a quite long calculation one finds
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In position space this gives the Adler-Bell-Jackiw anomaly:
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Thus, the conservation of the axial current is spoiled by quantum
corrections. This is not a problem, since the axial symmetry is a

global one and the anomaly does not render the theory
Inconsistent.

In fact, the anomaly explains the electromagnetic
decay of the neutral pion
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Chiral Symmetry in QCD

The Adler-Bell-Jackiw anomaly has very important consequences for the physics
of strong interactions. Let us then focus on QCD in the chiral limit

Ny
1 ‘_ ‘_
f=1

The action is invariant under the UNy), xU(Ny)r symmetry

U(Nf)L S

Since U(WV)=U(1)xSU(N) the symmetry group can be written as

SUNy), x SUNg), x U(1), x U(1)g




The left-right global transformations can be now decomposed into vector-axial
(remember the second exercise of Lecture Il)
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From the ABJ calculation we know that, in principle, the axial currents are
potentially anomalous.

To see whether this is the case, we have to compute the correlation function of
one axial current and two gauge currents. For the abelian part:
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where jadige = )| 0’ y"v'0’ . The group theoretical factor multiplying this diagram is
f=1

Tr{',;A7 1;3} £ 0 with 7" the generators of SU(N,)

so the anomaly does not cancel. An explicit calculation gives
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In the case of the SU(WVy), current, we directly look at the group theoretical factor
that multiplies the triangle diagram

~TrT! Tr{z*, 7%} =0 since TrT/ =0

symmetric

We might rush to conclude that SU(Vy), is nonanomalous. We have to take into
account, however, that quarks also couple to the electromagnetic field. There is
thus a second contribution to the anomaly:
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The computation of the diagram gives the anomaly

Ne

A
" 1672 e" " FuvFon,




We specialize our results to the case of QCD with the two light flavors u and d.
Taking into account that

qu = 3€ dd = —3¢€

we find
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Hence, only J3" is algomalous This current has the quantum numbers of the
neutral pion and 9.J" is the interpolating field between 7° and the vacuum
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so the neutral pion field can be written as

The anomaly of Ji“ gives the amplitude for the electromagnetic decay of the
neutral pion into two photons. The existence of this decay is a direct
consequence of the existence of the AB] anomaly.




Gauge Anomalies

Unlike the anomalies in global currents, gauge anomalies are a serious threat for
the consistency of a gauge theory (e.g., nondecoupling of unphysical states). The
cancelation of anomalies poses strong restrictions on these theories.

Gauge anomalies can only appear in chiral gauge theories, such as the
electroweak sector of the standard model. Here we consider a Lagrangian

N, N_

1 e P IR

L =~ FWE 4 > P p Tyl +i > Pl pTy!
i—1 i=1

where the right- and left-handed fermions transform in the representation 7/ and
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An anomaly on the gauge current comes from the parity-violating part of the
correlation function of three gauge currents. This is given by
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To compute the anomaly we need to sum over all fermion species. Each one
contributes a group-theoretical factor
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The anomaly is the proportional to
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An anomaly on the gauge current comes from the parity-violating part of the
correlation function of three gauge currents. This is given by
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To compute the anomaly we need to sum over all fermion species. Each one
contributes a group-theoretical factor
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The anomaly is the proportional to
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The cancellation condition of the gauge anomaly
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imposes very strong conditions on both the number of fermion species and the
representations of the gauge group under which they transform.

On physical grounds, the most interesting case is the standard model (see also
Nuria’s lectures). Its fermion content is

i
quarks: ( Z,- )
L.}
leptons: ( Ve )
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or in terms of the labels (n.,n, )y of the representations of SU(3) x SU(2) x U(1)y

left-handed fermions: (3,2) (1, 2)L_

right-handed fermions: (3,1) (3,1)R (1,1)%,

_1
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To check that the standard model is anomaly-free we have to compute the
triangle diagram with all possible combination of the three group factors
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and compute
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The result is that all gauge anomalies cancel within each family.




As an example we work out the case U(1)’

left-handed left-handed right-handed
quarks leptons “up” quarks
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right-handed right-handed
“down” quarks lepton

quarks leptons

We see how the anomaly cancels between quarks and leptons.

What about higher loops! The Adler-Bardeen theorem states that once
the anomalies are cancelled at one loop there are no further anomalies
coming from higher loop diagrams.

And nonperturbative anomalies? There is also a nonperturbative form of the
anomaly associated with the SU(2) factor of the standard model group
(Witten’s anomaly). It cancels whenever the total number of fermion
species is even, which is the case in the standard model.




