

Taller de Altas Energías

Bilbao 2011

PHYSICS WITH CMS - PART I

Jorge F. de Trocóniz <u>Universidad Autónoma de Madrid</u>

Jorge F. de Trocóniz (U.A. Madrid)

CMS at the LHC

The Modular Design of CMS

Jorge F. de Trocóniz (U.A. Madrid)

CMS Detector Slice

CMS Superconducting Magnet

central magnetic field: 4 T

> nominal current: 20'000 A

stored energy: 2.7 GJ

magnetic inductance: 14 T

weight of cold mass: 220 t

> length: 12.5 m

diameter: 6 m

The strong magnetic field of 4 Tesla is a key feature of the CMS experiment.

- Allows precise determination of charged particle momenta.
- Sweeps away background of low momentum charged particles before entering the calorimeter and muon detection systems.

Jorge F. de Trocóniz (U.A. Madrid)

CMS Superconducting Magnet

B-Field Mapping

- Magnetic field is 3.8 T inside the coil
- Around 2 T in the return yoke
- Field known with 0.1% (3%) accuracy in solenoid (return yoke).

All Silicon Tracker

Pixel Detector

Cell size 100 x 150 microns Spatial resolution 10 (Φ) – 20 (z) microns (due to large Lorentz angle) Average channel occupancy ~ 10⁻⁴ at high luminosity 3 pixel layers in barrel (4.3, 7.2, and 11.0 cm away from Interaction Point)

2 disks in each endcap

66 Million pixels, Area: 1.1 m²

Silicon Microstrip Tracker

16000 modules of 27 different types

Pitch: 80 – 180 microns

Hit resolution: 20 – 50 microns

Occupancy always below 10⁻²/Cm²_{Habao 2011}

CMS Tracker

Electromagnetic Calorimeter

ECAL: PbWO4 Crystals

> 80000 PbWO₄ crystals
> approx. 26 interaction lengths
> Energy resolution < 1%, (E>30 GeV)

Characteristics of PbWO₄ $X_0 = 0.89$ cm $\rho = 8.28$ g/cm³ R_M (Molière radius) = 2.2cm

Barrel:

- 2.2 x 2.2 x 23 cm³
- 17 crystal shapes
- 36 supermodules

Endcap:

- 2.9 x 2.9 x 22 cm³
- 1 crystal shape
- 4 Dees

CMS ECAL

Hadronic Calorimeter

Jorge F. de Trocóniz (U.A. Madrid)

HCAL Segmentation and Coverage

HF: $3 < |\eta| < 5$ $\Delta \phi \ge \Delta \eta = 0.17 \ge 0.17$

CMS HCAL

Muon Detectors

Jorge F. de Trocóniz (U.A. Iviaorio)

CMS Muon System

Final Closure

Physics Selection at LHC

Jorge F. de Trocóniz (U.A. Madrid)

CMS Trigger Levels

Level-1 Trigger

Macro.granular information from calorimeters and muon system (electron, muon, jets, $E_T^{missing}$) Threshold and topology conditions possible Latency: 3.2 µs Input rate: 40 MHz; no dead time Output rate: up to 100 kHz Custom designed electronics system

High Level Trigger (several steps)

More precise information from calorimeters, muon system, pixel detector and tracker Thresholds, topology, mass, ... criteria possible as well as matching with other detectors Latency: between 10 ms and 1 s Input rate: up to 100 kHz Output (data acquisition) rate: approx. 100 Hz Industrial processors and switching network

Online Selection Flow

Physics Online Selection Summary

DETECTOR PERFORMANCE AND EXPERIMENTAL METHODS

Tracker Efficiency, Scale, Resolution

□ Using low mass resonances.

- \Box Measurement of track efficiencies: for instance, muon efficiency from J/ ψ tag-and-probe.
- Validation of momentum scale and resolution; detailed comparison to MC provides information about possible sources of bias.

Jorge F. de Trocóniz (U.A. Madrid)

Pion Tracking Efficiency

Jorge F. de Trocóniz (U.A. Madrid)

Vertexing

Track impact parameter resolution

Primary vertex transverse resolution

Particle Id with dE/dx

Tracker Material

Photon conversions: up to 1.8 X_0 ; 70% of photons convert. Vertex resolution: 2-5 mm. Nuclear interactions: 0.1 – 0.5 λ_l ; 5% of charged pions interact. Vertex resolution: 0.1 mm. Particle "radiography": tracker material known at 10% level.

B-tagging

Track Counting (above some 3D impact parameter significance threshold), for high efficiency.

D 3D Secondary Vertex reconstruction, for high purity. Jorge F. de Trocóniz (U.A. Madrid)

B-tagging

B-tagging in Top Events

Top events are a high purity B-tagging test bench at the LHC.

Muons

Muons

Muons

Jorge F. de Troconiz (U.A. Madrid)

Electrons

900 GeV data CMS Experiment at the LHC, CERN CMS Experiment at the LHC, CERN Data recorded. 2009-Dec-11 23 26 16 323226 GMT Data recorded: 2009-Dec-11 23:26:16.323226 GMT 124022 Run: 124022 Run: Event: 8325178 Event: 8325178 71 Lumi section: 71 Lumi section: Orbit: 73894545 Orbit: 73894545 51 Crossing 51 Crossing Pout Pin Etot Eseed NAME AND DODATE DESIGNATION. (c) CERN 2009. All rights http://igu.an.a.com.dv/ispy

E_{tot} = 2.32, P_{in} = 2.56 GeV/c: E_{tot}/P_{in} = 0.91

Jorge F. de Trocóniz (U.A. Madrid)

Electrons

Jorge F. de Trocóniz (U.A. Madrid)

Efficiencies

Tag-and-Probe method uses resonance decays: J/ψ , Z.

- One lepton satisfying tight selection criteria.
- The second lepton is used to measure trigger, isolation and reconstruction/id efficiencies, as a function of momentum and position.

Particle Flow

- Charged particles get well separated due to the huge tracker volume and the high magnetic field.
- Excellent tracking resolution, able to go to down to very low momenta.
- Excellent electromagnetic calorimeter with good granularity.
- In multijet events, only 10% of the energy corresponds to neutral (stable) hadrons.

Big improvement in energy resolution and tau identification using particle-flow techniques.

Jorge F. de Trocóniz (U.A. Madrid)

Particle Flow Event Reconstruction

Particle Flow Event Reconstruction

Clustering Algorithms: Anti-k_T

Jorge F. de Trocóniz (U.A. Madrid)

Detector Objects for Jet Clustering

Calorimeter Jets clustered from calorimeter towers

Track Jets clustered from tracks

Jet plus Tracks correct Calorimeter Jets using momentum of tracks

Particle Flow Jets

clustered from identified particles reconstructed using all detector components

Jet Reconstruction at CMS

1. Calorimeter Jets: calorimeter towers

2. Jet Plus Tracks: correct for tracks

3. Particle Flow: particle candidates

PROS: simple, robust **CONS:** worst resolution

PROS: improve resolution with tracks **CONS:** seeded on calorimeter jets

best resolution used in most analyses

Jet Calibration

Additional corrections (e.g. flavour) are analysis dependent

Jet Relative Response

Flaten jet response in η using di-jet p_T balance method.
Barrel calorimeter response as reference.

> Jet response uniformity as a function of η better than 1%.

Jorge F. de Trocóniz (U.A. Madrid)

Jet Absolute Response

- □ Photon vs jet (p_T balance)
- □ Photon vs missing E_T (MPF)

Jet energy scale uncertainty:
3-5% over whole p_T range

Jet Resolution

> Dijet asymmetry method:

> Jet energy resolution:10% @ $p_T = 100$ GeV

Jorge F. de Trocóniz (U.A. Madrid) TAE, Bilbao 2011

Missing Transverse Energy (MET)

□ Well calibrated: data vs. MC comparison.

 E_{τ}^{miss} [GeV]

- □ Big improvement in MET resolution using Particle Flow.
- □ Excellent performance for physics.

Jorge F. de Trocóniz (U.A. Madrid)

Luminosity

- Intensities N_1, N_2 measured by LHC beam current transformers.
- Shape and size of the interaction region, A_{eff}, measured via Van der Meer scans: relative variations or rate as a function of the transverse separation between beams.
- Rates measured in CMS using fraction of zero counts of HF and vertexing.

$\mathbf{Systematic}$	Error (%)
Effective Area Determination	2.7
Beam Intensity	2.9
Sample Dependence	0.7
Total	4.0

Uncertainty: 4% Luminosity correction with respect to initial estimates: -0.7%

Jorge F. de Trocóniz (U.A. Madrid)

LHC/CMS Operation in 2010

Integrated luminosity delivered to CMS **43** pb⁻¹. Overall data taking efficiency > **92%**. Efficiency with all subsystems good ~**90%**.

Results shown today based on 2010 data; use up to 40 pb⁻¹ of integrated luminosity.

Rediscovering the SM in 2010

Jorge F. de Trocóniz (U.A. Madrid)

Start of 2011 Operation

Sunday March 13, 18:20 Stable beams in LHC and CMS taking good data.

Jorge F. de Trocóniz (U.A. Madrid)

LHC/CMS Operation in 2011

Integrated luminosity delivered to CMS > 1fb⁻¹. Overall data taking efficiency > 92%.

The official goal for the whole 2011 has been achieved in less than 3 months. In terms of yearly goal we are virtually at ~1fb⁻¹/month. If the machine continues to make progress we might exceed 5 fb⁻¹ by the end of the year.

Jorge F. de Trocóniz (U.A. Madrid)

Example of CMS/LHC Current Conditions

- > LHC Fill 1901; CMS Run 167898-913; 28/6/2011 2am to 2pm
- Beta-star: 1.50 m; Crossing angle: 120 µrad (H)
- Bunches: 1318; Bunch separation: 50 ns
- Luminous size: 26.8 μm (x), 24.3 μm (y), 63.3 mm (z)
- Current: 1.6E14 protons; Current per bunch: 1.2E11 protons
- Max Inst. Luminosity: 1.22E33 cm⁻² s⁻¹; PU: ~6 collisions/BX
- Beam Energy: 3500 GeV
- Event size: 370 kB
- L1 Accept Rate: 50 kHz; Data to HLT: 1.8E4 MB/s
- HLT Accept Rate: 300 Hz; Data to tape: 110 MB/s
- Integrated luminosity: 44 pb⁻¹

Pileup

Consequences of Pileup

