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• If I can't picture it, I can't understand it.
You know, it would be su�cient to really understand the electron.

A. Einstein1

• Everything should be as simple as possible, but not simpler.

A. Einstein?, William of Ockham?2

• If a spinning particle is not quite a point particle, nor a solid three dimensional top, what
can it be? What is the structure which can appear under probing with electromagnetic
�elds as a point charge, yet as far as spin and wave properties are concerned exhibits a
size of the order of the Compton wavelength?

A.O. Barut 3

• The picture on the front page represents the circular motion, at the speed of light, of the
center of charge of the electron in the center of mass frame. This motion is not modi�ed
by any interaction. The center of mass is always a di�erent point that the center of charge.
The radius of this motion is R = ~/2mc, half Compton's wavelength, as is sugggested by
Barut. The frequency of this motion, when the center of mass is at rest, is ω = 2mc2/~.
This frecuency, twice the frequency postulated by De Broglie, decreases when the center
of mass moves. The local clock is going slower when moving. In this way, elementary
matter has an internal periodic motion, and thus a frequency, like waves. We can also
associate to matter a wavelength, as the displacement of the center of mass during a
complete turn of this internal motion. The spin S has two parts: one Z associated to this
relative internal motion and another W in the opposite direction related to the rotation
of a local Cartessian frame associated to the center of charge. This frame is not depicted
in the �gure. The magnetic moment of the electron is produced by the motion of the
charge and is related to the orbital part Z of the angular momentum but when expressed
in terms of the total spin S, which is half the orbital Z, is when we obtain the concept of
gyromagnetic ratio g = 2.

• Classical particle physics, when using so extensively the point particle model to describe
experiments, which are always performed with spinning particles, is making a simpli�ca-
tion, opposite to the espirit of the above quotations. We have to use spinning particle
models to analyze real experiments, because in nature there are no spinless elementary
particles.
In this sense, General Relativity as a theory of gravitation, also makes a simpli�cation
when assuming that spacetime has a Riemannian metric structure. This assumption is
unnecessary because spacetime has a more general Finslerian metric structure associated
to the variational formalism, as we discuss in section 1.6. To assume that the metric is
Riemannian is equivalent to consider a low velocity limit of a more general gravitational
theory.

1H. Dehmelt, Proc. Natl. Acad. Sci. USA, 86, 8618�19 (1989).
2See the discussion in http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363, about the au-

thorship of this sentence.
3A.O. Barut, Brief History and recent developments in electron theory and Quantumelectrodynamics, in The

electron, New Theory and Experiment, D. Hestenes and A. Weingartshofer (ed.), Kluwer Academic Publishers,
Dordrecht (1991).



ii



Contents

Preface 1

Preamble 5

The center of charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Rigid body arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Invariance arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Geometrical arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Free motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Two centers, two spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Appendix: Elementary particles (Standard model) . . . . . . . . . . . . . . . . . . . 16

1 Lagrangian formalism 19

1.1 Newtonian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Fundamental principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Restricted Relativity Principle . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Atomic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.3 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.4 Quantization Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Generalized Lagrangian formalism . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Kinematical space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.3 Replacement of time as evolution parameter . . . . . . . . . . . . . . . . 28
1.3.4 Homogeneity of the Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.5 Recovering the Lagrangian from the Action function . . . . . . . . . . . 29
1.3.6 Symmetry of a dynamical system . . . . . . . . . . . . . . . . . . . . . . 29
1.3.7 Lagrangian gauge functions . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Generalized Noether's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5 Elementary systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5.1 Aplication to the simplest kinematical groups . . . . . . . . . . . . . . . 39
1.6 Metric structure of the kinematical space . . . . . . . . . . . . . . . . . . . . . . 39

1.6.1 Examples of Finsler spaces . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.2 Causality Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.7 Summary of the formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.8 Appendix: Lie groups of transformations . . . . . . . . . . . . . . . . . . . . . . 49

1.8.1 Casimir operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.8.2 Homogeneous space of a group . . . . . . . . . . . . . . . . . . . . . . . 51
1.8.3 Exemples of continuous grups . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



iv CONTENTS

2 Soluble examples of spinning particles 53

NONRELATIVISTIC PARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1 Nonrelativistic point particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1.1 Interaction with some external source . . . . . . . . . . . . . . . . . . . 56
2.2 Galilei free spinning particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2.1 Noether constants of the motion . . . . . . . . . . . . . . . . . . . . . . 62
2.2.2 Spin with respect to the center of mass . . . . . . . . . . . . . . . . . . . 64
2.2.3 Spin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.4 Transformation of several observables . . . . . . . . . . . . . . . . . . . . 66
2.2.5 Galilei spinning particle of (anti)orbital spin . . . . . . . . . . . . . . . . 67
2.2.6 Interaction with an external electromagnetic �eld . . . . . . . . . . . . . 69
2.2.7 Spinning particle in a uniform magnetic �eld . . . . . . . . . . . . . . . 71
2.2.8 Spinning Galilei particle with orientation . . . . . . . . . . . . . . . . . . 80

RELATIVISTIC PARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3 Relativistic point particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 Relativistic spinning particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.5 Luxons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.5.1 Massless particles. (The photon) . . . . . . . . . . . . . . . . . . . . . . 85
2.5.2 Massive particles. (The electron) . . . . . . . . . . . . . . . . . . . . . . 87
2.5.3 Dirac analisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.6 The dynamical equation of the spinning electron . . . . . . . . . . . . . . . . . 93
2.6.1 The relativistic spinning electron . . . . . . . . . . . . . . . . . . . . . . 94
2.6.2 The center of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.6.3 Interaction with some external �eld . . . . . . . . . . . . . . . . . . . . . 99

2.7 Appendix: Rotation group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.7.1 Normal or Canonical parameterization of the group SO(3) . . . . . . . . 102
2.7.2 Composition law of rotations . . . . . . . . . . . . . . . . . . . . . . . . 104
2.7.3 Kinematics of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.7.4 Dynamics of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.8 Appendix: Galilei group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.9 Appendix: Poincaré group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.9.1 Lorentz group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3 Quantization of the models 119

3.1 Feynman's quantization of Lagrangian systems . . . . . . . . . . . . . . . . . . 120
3.1.1 Transformation of the wave function . . . . . . . . . . . . . . . . . . . . 121
3.1.2 Hilbert space structure of the probability amplitudes . . . . . . . . . . . 122
3.1.3 Representation of Observables . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2 Nonrelativistic spinning particles . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.2.1 Nonrelativistic spinning particles. Bosons . . . . . . . . . . . . . . . . . 126
3.2.2 Nonrelativistic spinning particles. Fermions . . . . . . . . . . . . . . . . 128

3.3 Appendix: Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.3.1 Unit vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.3.2 Spin projection on the unit vectors . . . . . . . . . . . . . . . . . . . . . 132
3.3.3 Spinor wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.4 Spinor representation on SU(2) . . . . . . . . . . . . . . . . . . . . . . . 134
3.3.5 Matrix representation of internal observables . . . . . . . . . . . . . . . 138
3.3.6 Peter-Weyl theorem for compact groups . . . . . . . . . . . . . . . . . . 139
3.3.7 General spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.4 Summary of Classical and Quantum Mechanics . . . . . . . . . . . . . . . . . . 143



CONTENTS v

4 Dirac particle 145

4.1 Quantization of the u = c model . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2 Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.2.1 Dirac operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.2 Dynamics of observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.2.3 Probability Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2.4 PCT Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.2.5 Two plausible experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.2.6 Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.3 Dirac algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.4 Additional spacetime symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.4.1 Analysis of the enlarged symmetry group . . . . . . . . . . . . . . . . . 162
4.4.2 Enlargement of the kinematical space . . . . . . . . . . . . . . . . . . . 163
4.4.3 Relationship with the standard model . . . . . . . . . . . . . . . . . . . 164

4.5 An interaction Lagrangian for two Dirac particles . . . . . . . . . . . . . . . . . 165
4.5.1 Synchronous description . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.6 Appendix: The group W ⊗ SU(2)T ⊗ U(1)Q . . . . . . . . . . . . . . . . . . . . 167

5 Electromagnetic structure of the electron 175

5.1 Electromagnetic structure of the electron . . . . . . . . . . . . . . . . . . . . . . 175
5.1.1 The time average electric and magnetic �eld . . . . . . . . . . . . . . . . 175
5.1.2 Electromagnetic energy and angular momentum . . . . . . . . . . . . . . 184

6 Some spin features 187

6.1 Gyromagnetic ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2 The electron clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.2.1 Measuring the electron clock . . . . . . . . . . . . . . . . . . . . . . . . 189
6.3 Instantaneous electric dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.4 Classical Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.4.1 Spin polarized tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5 Formation of a bound state of two electrons . . . . . . . . . . . . . . . . . . . . 202
6.6 The kinematical group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

References 209



vi CONTENTS



Preface

The present notes contain some basic materials, physical and mathematical, of the general
formalism for analyzing elementary particles, which under the general name of Kinematical

Theory of Elementary Spinning Particles, I have been working during the last years.
The name kinematical makes reference to its close relationship with the kinematical group of
space-time transformations associated to the Restricted Relativity Principle which a theoretical
framework must necessarily satisfy.

In a certain sense it is a revision of the basic fundamentals of the Lagrangian formalism which
leads to Euler-Lagrange equations, Noether's theorem, etc., but looking for solutions which go
through the postulated initial and �nal states of the variational formalism. This produces a
classical formalism which is going to be expressed in terms of the end point variables of the
dynamical evolution. This formalism is, therefore, closer to the quantum mechanical dynamical
theory and it is through Feynman's path integral approach that we can �nd the bridge between
them.

These end point variables of the variational formalism, which I propose to call them kine-

matical variables, in the case of elementary particles will necessarilly span a homogeneous
space of the kinematical group. In this way, the kinematical group not only re�ects the space-
time symmetries of the system. It also supplies the necessary variables to describe elementary
matter. It is crucial for the description of matter to improve in our knowledge of this kinemat-
ical group. In the present notes we shall deal mainly with the Galilei and Poincaré groups, but
the formalism is so general that it can be accomodated to any further group we consider as the
basic symmetry group of matter.

Another advantage of expressing the variational formalism in terms of the kinematical vari-
ables is that the formalism is equivalent to a geodesic formalism on the kinematical space. This
manifold for any arbitrary Lagrangian system is always a metric Finsler space. In this sense
when we consider the interaction of any mechanical system what produces from the mathemat-
ical point of view is a change of the Finsler metric of the kinematical space. When we consider
the relativistic point particle, the kinematical space is the spacetime manifold with a constant
Minkowski metric. This metric is considered Riemannian but it is in fact a constant Finslerian
metric which is modi�ed by any interaction. The postulate of General Relativity that gravity
produces a pseudo-Riemannian modi�cation of Minkowski metric is an unnecessary restriction.

The formalism is very general, but at the same time is very restrictive, because once this
kinematical group is �xed the kind of classical variables which de�ne the initial and �nal states
of an elementary particle in a variational approach, are restricted to belong to homogeneous
spaces of the group. This kinematical group is the fundamental object of the formalism and
must be de�ned as a preliminary statement.

For the Galilei and Poincaré groups, a general spinning elementary particle is just a localized
and orientable mechanical system. By localized we mean that to analyse its evolution in space
we have just to describe the evolution of a single point r, where the charge is located and
in terms of which the possible interactions are determined. This point r also represents the
centre of mass of the particle for spinless particles, while for spinning ones must necessarily be a

1



2 PREFACE

di�erent point than q, the centre of mass, very well de�ned classically and where we can locate
the mass of the particle. It is the motion of the charge around the centre of mass which gives
rise to a classical interpretation of the zitterbewegung, or trembling motion in Schroedinger's
words, and also to the dipole structure of the particle. By orientable we mean that in addition
to the description of the evolution of the center of charge we also need to describe the change
of orientation of the system by analyzing the evolution of a local comoving and rotating frame
attached to that point.

If we consider that the kinematical group is Weyl group W, then an elementary particle
in addition of being a localizable and orientable system, it is also reescalable. It contains
an additional degree of freedom which represents a phase or a change of scale. This means
that the most general spacetime symmetry group of the dynamics must contain additional
transformations, like local rotations and scale changes. It is possible to �nd a Lagrangian
invariant under the group W ⊗ SU(2)⊗ U(1).

The notes pretend to be selfcontained and in this way we have included at the end of the
chapters some mathematical appendices which contain not very well spread materials. The
lecture notes are organised as follows. We begin with a Preamble, which could have been
written as late as the end of the XIX-th century, and which suggests that the center of charge
of an elementary particle moves in a helical motion at the speed of light, so that this point
will satisfy, in general, fourth order di�erential equations. This implies that in a Lagrangian
approach we shall have a Lagrangian depending up to the acceleration of this point. We are in
the framework of generalized Lagrangian systems.

Instead of postulating models of elementary particles with two separate centers we shall
analyze what are the basic fundamental principles that a theory of matter should satisfy. Among
these fundamental principles we �nd the variational formalism and that is the reason we shall
study in the �rst chapter the formalism of generalized Lagrangian systems, mainly to enhance
the role of the kinematical variables in de�ning a concept of elementary particle. Chapter two
will be devoted to the analysis of several relativistic and nonrelativistic models, to show how the
standard methods of analyzing symmetries leads to the de�nition of the relevant observables. In
particular, we shall pay attention to the de�nition of the spin. The spin, as any other observable,
will be de�ned in the classical case in terms of the degrees of freedom and their derivatives, and
we shall analyze its mathematical structure.

The next two chapters will cover the quantization of the formalism and the analysis of some
relativistic and nonrelativistic examples. The separate fourth chapter is devoted to the model
which satis�es Dirac's equation. Special attention is paid to the analysis of Dirac's algebra and
its relationship with the classical observables and to show a geometrical interpretation of the
di�erence in chirality between matter and antimatter. This chapter ends with the analysis and
enlargement of the spacetime symmetry group of the Dirac particle, going from the Poincaré
group to the eleven parameter Weyl group. We shall �nd a plausible Weyl-invariant interaction
Lagrangian which describes a short and long range interaction between two Dirac particles,
which has a Coulomb-like behaviour when the spin of the particles is supressed. It also shows
that equal charged spinning particles can form metastable bound states provided some boundary
conditions are ful�lled.

The electromagnetic structure of the model which satis�es Dirac's equation when quantized,
is analyzed in a separate �fth chapter. It is not a static electromagnetic �eld for the center of
mass observer but its time average value has a Coulomb-like behavior in any direction for the
electric �eld and the time average magnetic �eld is the �eld of a static magnetic dipole at the
origin. The main di�erence of these �elds when compared with the point particle �eld is that
the �elds do not diverge at the origin.

Finally, some physical features which are related to the spin of the elementary particles,
are described. The electron, because it has an internal frequency it can be considered as a
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clock. Can we measure this internal frequency? We shall propose to enlarge the energy range
of an experiment to determine indirectly the value of this frequency. We shall analyze the
gyromagnetic ratio and the dipole structure of the electron, which in the quantum case has
a relationship with the Darwin term of Dirac's Hamiltonian. We shall also see how the spin
structure allows us to justify in a classical framework the tunnel e�ect, which will be responsible
of the gyant magnetoresistence of several materials. We are entering what in technological terms
is called spintronics. To end this section we shall consider the possibility from the classical point
of view that under certain conditions two electrons with their spins parallel to each other can
form a metastable bound state of spin 1 and charge 2e, and therefore the justi�cation of the
formation of a Bose-Einstein condensate at �nite temperature. In some places, the lectures will
be complemented with numerical simulations whenever the theoretical solution is not available
or very di�cult to interpret because of the mathematical complexity.

Martín Rivas

Bilbao, April 2016.
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Preamble: Helical motion of the center

of charge

In this preliminary chapter we shall give three di�erent kinds of arguments suggesting that
the center of charge and the center of mass of an elementary particle are two di�erent points.
The center of charge moves in a helical motion at the speed of light, and it thus satis�es,
in general, a fourth order di�erential equation. This analysis selects the relativistic formalism
instead of the nonrelativistic one, and the fact that the dynamical equations of a point are fourth
order di�erential equations, as di�erential geometry shows, opposite to the usual suggestion of
second order di�erential equations of many classical mechanics books.

This means that a Lagrangian formalism for describing elementary particles has to depend,
at least, up to the acceleration of the position of the charge, to properly obtain fourth order
dynamical equations. By this reason, we shall start our formalism by describing in chapter 1,
the way the generalized Lagrangian formalism produces the general results of Euler-Lagrange
equations, the conserved quantities through Noether theorem, and the generalized canonical
formalism.

We shall begin with a physical, and therefore restricted, concept of center of charge of an
elementary particle.

The center of charge

The concept of center of mass of any distribution of matter is well known. If we have n
point particles of masses mi located at the corresponding points ri the center of mass location
of the system is

RCM =

∑
miri∑
mi

.

If we also assume Newton's third law, this point describes a trajectory such that the time
variation of the linear momentum is the sum of the external forces.

From the electromagnetic point of view, if we have an arbitrary distribution of charges and
currents, the electromagnetic �eld they generate can be expressed as the �eld produced from
a single point where we locate there the total charge and the di�erent electric and magnetic
multipoles de�ned with respect to this point. If we consider a di�erent point the total charge
is the same but the multipoles are di�erent. If we try to de�ne a center of charge RCC like the
above de�nition of the center of mass we have the problem that

∑
i qi = 0. We can alternatively

de�ne the center of charge of either the positive and negative charges R±
CC , and the separate

�elds they generate with the corresponding multipoles, because Maxwell's equations are linear
in the sources.

Another question is to calculate the external force produced on a system of charges and
currents. Is it possible to write this external force in terms of the total charge and the di�erent
multipoles located at a single point or at least in two points? In general this will not be possible
for an arbitrary system. But to �x ideas let us consider a simple system of a static and spherical

5



6 PREAMBLE: Two centers

positive charge distribution in an inertial reference frame. The �eld it produces is the Coulomb
�eld from the symmetry center of the distribution. If now an external �eld is acting on this
system, and we consider it behaves like a conductor, this will produce in general a modi�cation
of the charge distribution and therefore the appearence of dipole momenta with respect to the
symmetry center. If it behaves like an insulator some electric polarization will arise.

We do not know if an elementary particle behaves like a conductor or like an insulator, if it
is a rigid body or it is not. But in the section devoted to fundamental principles we shall make
the hypothesis that an elementary particle is an undeformable mechanical system (Atomic
Principle). If its charge and current distribution have a spherical symmetry with respect to
some point, such that the electric and magnetic �eld it produces will be expressed in terms of
the location and velocity of this point and no further multipoles, we shall call this point the
center of charge. If the elementary particle cannot be deformed by any interaction leads us
to postulate that the external force acting on it is just the Lorentz force de�ned at the center
of charge. We are making the physical hypothesis that, from the electromagnetic point of view,
it behaves like a unique charge located at the center of charge and no other multipoles.

Rigid body arguments

Let us consider that an elementary particle were described as a rigid body. A rigid body
is a mechanical system of six degrees of freedom. Three represent the position of a point and
the other three the orientation of a body frame attached to that point. Usually, it is described
by the location of the center of mass, which is represented by the point q, and the orientation
by the principal axis of inertia located around q. The center of mass satis�es second order
dynamical equations and moves like a point of mass m, the total mass of the system, under the
total external force. In this way a rigid body moves and rotates.

If instead of considering the description of the center of mass we take a di�erent point r, it
will follow a helical trajectory around the center of mass, like the one depicted in the �gure.

If an elementary particle is a charged rigid body, it is clear that we also need to know its
electromagnetic structure, which can be reduced to the knowledge of the center of charge and
the di�erent multipoles. If assumed a spherical symmetry for the electric �eld produced by
the particle we are left with the location of the center of charge to compute the actions of the
external �elds. In general, depending how the mass and charge are distributed, these two points
will be di�erent points as we shall assume here. Therefore, if we try to describe the evolution
of the center of mass we have to determine also at any time the location of the center of charge
to compute the external forces. Newton's dynamical equations for the center of mass will be
written as

m
d2q

dt2
= e

(
E(t, r) +

dr

dt
×B(t, r)

)
= F (t, r, dr/dt). (1)
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The electromagnetic force F depends, in general, on the electric and magnetic external �elds
de�ned at the charge position r and on the velocity of the charge dr/dt which appears in the
magnetic term.

For the relative motion of the center of charge around the center of mass we have that if
this relative motion between r and q is a kind of circular motion, in particular in the free case,
we can de�ne a unit vector n in the direction of the normal acceleration d2r/dt2 of point r,
and thus

n =
1

ω2R

d2r

dt2
,

where R is the radius of the circular motion and ω its angular velocity. Then the center of mass
position can be written as

q(t) = r(t) +
1

ω2

d2r

dt2
. (2)

Then, it will be simpler, from a theoretical point of view, just to describe the evolution of a
single point, the center of charge r, instead of the center of mass q, which will be in some
average position of the other, and obtained from (2) once the trajectory of r is computed. The
elimination of the d2q/dt2 among equations (1) and (2) will give us, in general, a fourth order
di�erential equation for the variable r. Because the angular velocity is also orthogonal to the
plane subtended by the velocity and acceleration of point r,

ω =
1

u2
dr

dt
× d2r

dt2
, (3)

we have also solved the problem of the rotation of the charged rigid body by analyzing the
evolution of just the center of charge.

The second order di�erential equations for the center of mass position and the orientation
of the principal axes of inertia α, of the free rigid body become

q̈ = 0, ω̇ = 0,

and they have been replaced by the fourth-order dynamical equations of the center of charge r,

d4r

dt4
+ ω2d

2r

dt2
= 0.

In this way a rigid body can be interpreted as a system of three degrees of freedom, the center
of charge r, which satis�es fourth order di�erential equations and therefore in a variational
description, the Lagrangian will depend on the acceleration of the center of charge.

The dynamical equations under interaction are:

m

ω2

d4r

dt4
+m

d2r

dt2
= e

(
E(t, r) +

dr

dt
×B(t, r)

)
, (4)

in terms of the three degrees of reedom r, where the external �elds are de�ned.
A plausible nonrelativistic Lagrangian depending on the acceleration of the point r, like this

L =
m

2

(
dr

dt

)2

− m

2ω2

(
d2r

dt2

)2

− eϕ(t, r) + eA(t, r) · dr
dt

will reproduce the above dynamical equations (4), where the rigid body will rotate with a
constant angular velocity ω, which in this example represents a constant and unmodi�ed intrinsic
property.
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Invariance arguments

Let us consider the trajectory r(t), t ∈ [t1, t2] followed by a point of a mechanical system for
an arbitrary inertial observer O. Any other inertial observer O′ is related to the previous one
by a transformation of the kinematical group such that their relative space-time measurements
of any space-time event are given by

t′ = T (t, r; g1, . . . , gα), r′ = R(t, r; g1, . . . , gα),

where the functions T and R de�ne the corresponding transformation of the kinematical group
G, of parameters (g1, . . . , gα), among any two observers. Then the description of the trajectory
of that point for observer O′ is obtained from

t′(t) = T (t, r(t); g1, . . . , gα), r′(t) = R(t, r(t); g1, . . . , gα), ∀t ∈ [t1, t2].

If we eliminate t as a function of t′ from the �rst equation and substitute into the second we
shall get

r′(t′) = r′(t′; g1, . . . , gα). (5)

Since observer O′ is arbitrary, equation (5) represents the complete set of trajectories of the
point for all inertial observers. Elimination of the g1, . . . , gα group parameters among the
function r′(t′) and their time derivatives will give us the di�erential equation satis�ed by all the
trajectories of the point. Let us assume that the trajectory is unrestricted in such a way that
the above group parameters are essential in the sense that no smaller number of them gives the
same family of trajectories. This di�erential equation is invariant under the transformations of
the kinematical group by construction because it is independent of the group parameters and
therefore independent of any inertial observer. In fact, because (5) is a three-vector expression,
each time we take a time derivative we obtain three equations to eliminate the group parameters.
When we reach the third order derivative we have up to nine equations. If G is either the Galilei
or Poincaré group, it is a ten-parameter group so that we have to work out in general up to the
fourth derivative to obtain su�cient equations to eliminate the group parameters. Therefore
the order of the invariant di�erential equation is dictated by the number of parameters and the
structure of the kinematical group. If the point r represents the position of the center of charge
of an elementary particle we get again that it satis�es, in general, a fourth order di�erential
equation.

But at the same time it is telling us that to obtain the invariant di�erential equation satis�ed
by the center of charge of an elementary particle, it is su�cient to obtain its trajectory in an
arbitrary reference frame, for instance in the center of mass frame, and to follow the above
procedure of elimination of the group parameters. We shall use this method to obtain the
invariant di�erential equation of a spinning electron in section 2.6.

Geometrical arguments

As is well known in di�erential geometry, a continuous and di�erentiable curve in three-
dimensional space, r(s), has associated three orthogonal unit vectors, t, n and b, called respec-
tively the tangent, normal and binormal. If using the arc length s as the curve parameter, they
satisfy the Frenet-Serret (1847) equations

ṫ = κn, ṅ = −κt+ τb, ḃ = −τn,

where κ is the curvature and τ the torsion and the overdot means ˙≡ d/ds. The knowledge of
the functions of s, the curvature κ(s) and torsion τ(s), together the boundary values r(0), t(0),
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n(0) and b(0), completely determine the curve, because the above equations are integrable. If
we de�ne the vector ω = τt + κb, known as Darboux vector, the Frenet-Serret equations can
be rewritten as

ṫ = ω × t, ṅ = ω × n, ḃ = ω × b,

so that, in units of arc length, Darboux vector represents the instantaneous angular velocity of
the local frameof the three orthogonal unit vectors.

If we call r(k)(s) ≡ dkr/dsk, and, in particular

r(1) = t, r(2) = κn, r(3) = κ̇n+ κ(−κt+ τb)

and eliminate the three unit vectors t, n and b, in terms of the derivatives r(k), k = 1, 2, 3, we
get

t = r(1), n =
1

κ
r(2), b =

κ2

τ
r(1) − κ̇

κτ
r(2) +

1

κτ
r(3)

and thus
κ = |r(2)|, τ =

1

κ2
(r(1) × r(2)) · r(3)

are expressed in terms of the derivatives up to the third order. If we replace the three Frenet-
Serret unit vectors in the next order derivative, one obtains that the most general di�erential
equation satis�ed by the point r, is the fourth order di�erential system

r(4) −
(
2κ̇

κ
+
τ̇

τ

)
r(3) +

(
κ2 + τ2 +

κ̇τ̇

κτ
+

2κ̇2 − κκ̈

κ2

)
r(2) + κ2

(
κ̇

κ
− τ̇

τ

)
r(1) = 0, (6)

where the coe�cients are only functions of the derivatives of r up to fourth order.
This conclussion is easily obtained if we realize that the three-dimensional space is also a

vector space. Any curve in three-space is called regular if at any point it has a tangent vector
r(1). If it is also diferentiable, they will be also de�ned the subsequent derivatives r(2) and r(3),
which, in general, will be no collinear. But the next derivative r(4), will be necessarily a linear
combination of the other three. Every regular curve in three dimensional space satis�es a fourth
order di�erential equation. This is what equation (6) represents.

Let us consider that an elementary particle, instead of being a rigid body, is just a localized
mechanical system. By localized we mean that, at least, it is described by the evolution of a
single point r. This point could be the center of mass, but, as mentioned before, in order to
determine the external forces to obtain the center of mass evolution, we also need to know the
location of the center of charge to compute the actions of the external �elds. Let us assume that
the elementary particle is charged. By the previous arguments, if assumed spherical symmetry
of its electric �eld, we are reduced to know the evolution just of the center of charge. The
particle will have a center of mass but we make the assumption that the center of mass and the
center of charge are not necessarily the same point.

Then, the center of charge of an elementary particle will satisfy, in general, a fourth order
di�erential equation of the form (6) where κ(s) and τ(s) will depend on the external forces and
torques.

Free motion

Let us assume now that the motion of the particle is free. This means that we cannot
distinguish one instant of the evolution from another, so that the above equations (6) must be
explicitely independent of the parameter s. The Frenet-Serret triad moves and rotates. It is
desplaced at a velocity of constant absolute value and the Darboux vector is a constant vector
in the comoving frame. The velocity ds/dt = u and the value of Darboux vector ω2 = κ2 + τ2

must be constant.
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The curvature and torsion are necessarily constants of the motion. Thus κ̇ = τ̇ = 0, and, in
the free case, these equations are simpli�ed and reduced to

r(4) +
(
κ2 + τ2

)
r(2) =

d2

ds2

(
r(2) + ω2r

)
= 0.

If the curvature and torsion are constant the curve is a helix, which can be factorized in terms
of a central point

q = r +
1

κ2 + τ2
r(2),

d2q

ds2
= 0,

which is moving along a straight trajectory, while the point r satis�es

r(2) + ω2 (r − q) = 0,

an isotropic harmonic motion of frequency ω =
√
κ2 + τ2, around point q. The point q clearly

represents the centre of mass position of the free particle. Going further, let us assume that
the free evolution is analyzed by some inertial observer. Then this observer cannot distinguish
one instant from another, so that, the arc length ds = |u|dt, where u = dr/dt is the velocity
of the charge, must be also independent of the time t. Otherwise, if ds is not the same we can
distinguish one instant of the evolution from another, as far as the displacement of the charge is
concerned. The center of charge of a free elementary particle is describing a helix at a constant
velocity for any inertial observer.

A �rst conclusion is that the velocity of the center of charge has to be an unreachable velocity
for every inertial observer. The helical motion is an accelerated motion in one frame and thus
it is accelerated in all inertial frames. If one observer is at rest with respect to the charge at
one instant. t, it measures u = 0 at this time, but u ̸= 0 at time t+ dt, which contradicts that
the velocity has to be constant in this frame. This means that the constant velocity cannot be
zero in any frame and no inertial observer can reach that velocity.

If we make a nonrelativistic analysis, the relationship of the velocity measurements among
two arbitrary inertial observers O and O′, is given by u′ = u + v, where v is the constant
velocity of O as measured by O′. Now,

u′
2
= u2 + v2 + 2v · u.

If u′ has to be also constant for observer O′, irrespective of v, this means that the vector u
must be a constant vector. The center of charge necessarily moves along a straight trajectory
at a constant velocity, for every inertial observer, and the above general helix degenerates into a
straight line and q = r. This is the usual description of the spinless or pointlike free elementary
charged particle, whose center of charge and center of mass are represented by the same point.

In the relativistic case we get simmilarly

u′ =
u+ γ(v)v + γ2

(1+γ)c2
(v · u)v

γ(1 + v · u/c2)
, u

′2 =
u2 − c2

γ2 (1 + v · u/c2)2
+ c2.

where γ = (1 − v2/c2)−1/2, and taking the time derivative we also obtain that v · u̇ = 0, and
thus u has to be a constant vector, for any time t, irrespective of the value of v.

However, in the relativistic analysis, there is one alternative not included in the nonrelativis-
tic approach. The possibility that the charge of an elementary particle will be moving at the
speed of light and, in that case, u = u′ = c, for any inertial observer. This means that the center
of the helix is always moving at a velocity |dq/dt| < c, and, if it represents the center of mass,
this particle is a massive particle. In a variational description of this system the Lagrangian
should depend up to the acceleration of the point r in order to obtain fourth order di�erential
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equations. We will show that this dependence on the acceleration will give a contribution to
the spin of the particle and there is also another contribution from the rotation of the system,
because the body frame rotates with angular velocity ω. The motion of the charge around the
center of mass produces the magnetic moment of the particle.

In summary, there are only two possibilities for a free motion of the center of charge of an
elementary particle. One, the charge is moving along a straight line at any constant velocity,
and the system has no magnetic moment. In the other, the particle has spin and magnetic
moment, and the charge moves along a helix at the speed of light. Because all known elementary
particles, quarks and leptons, are spin 1/2 particles, we are left only with the last possibility.
This is consistent with Dirac's theory of the electron, because the eigenvalues of the components
of Dirac's velocity operator are ±c. This means that Dirac's spinor ψ(t, r) is expressed in terms
of the position of the charge r, because the external �elds Aµ(t, r) are de�ned and computed
at this point.

This last possiblity is the description of the center of charge of a relativistic spinning el-
ementary particle obtained in the kinematical formalism to be developed in this course, and
which satis�es Dirac's equation when quantized.

In this formalism Dirac particles are localized and also orientable mechanical systems. By
orientable we mean that we have to attach to the above point r, a local cartesian frame to
describe its spatial orientation. This frame could be the Frenet-Serret triad. The rotation of
the frame will also contribute to the total spin of the particle. When quantizing the system,
the spin 1/2 is coming from the presence of the orientation variables. Otherwise, if there are
no orientation variables, no spin 1/2 structure is described when quantizing the system. This
twofold structure of the classical spin has produced a pure kinematical interpretation of the
gyromagnetic ratio 4. The dependence of the Lagrangian on the acceleration is necessary for
the particle to have magnetic moment and for the separation between the center of mass and
center of charge.

Two centers, two spins

It is usually called spin to the angular momentum of an elementary particle. But an angular
momentum is a mechanical property which is de�ned with respect to some de�nite point. If
an elementary particle has two characteristic points, we can determine the angular momentum
with respect to both of them.

Let us consider an electron which is characterized by the location of its center of mass (CM)
q, and its center of charge (CC) r, and let k be another point of the electron, di�erent from
the previous ones, in a certain reference inertial frame with origin at the point O (see �gure 1).

Let us call S the angular momentum of the particle with respecto to the centre of charge
(CC) r. The angular momentum SCM with respect to the centre of mass (CM) q, will be

SCM = (r − q)× p+ S,

where p is the linear momentum of the particle in this frame.
Let us call v = dq/dt and u = dr/dt, to the velocities of CM and CC, respectively. Let Sk

be the angular momentum with respect to the point k. The total angular momentum of the
particle with respect to the origin of the reference frame of any inertial observer, can be written
as

J = r × p+ S, or J = q × p+ SCM , or J = k × p+ Sk.

4M. Rivas, J.M. Aguirregabiria and A. Hernández, �A pure kinematical explanation of the gyromagnetic ratio
g = 2 of leptons and charged bosons�, Phys. Lett. A 257, 21�25 (1999).
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Figure 1: Di�erent angular momenta S, SCM , Sk and J of the electron with respect to
di�erent points in some inertial reference frame, with origin at the point O. It is also
depicted the external electromagnetic force F de�ned at the Center of Charge. The dotted
line suggests some arbitrary, but localized, form or shape of the electron.

If the particle is free, p and also J are conserved. Since dJ/dt = 0, this leads to

dS

dt
= p× u,

dSCM

dt
= 0,

because p has the direction of v, but not of u.
The center of mass spin SCM is a conserved magnitude for a free particle, but the center

of charge spin S is not. It satis�es a dynamical equation which implies that its time variation
is orthogonal to the linear momentum. It is suggesting that S precess or oscillate around the
constant vector p. Morover, for a free particle u cannot be a constant vector, otherwise the
centre of charge spin S, will rise continuosly.

Let F be the external electromagnetic force applied at the centre of charge r. Now neither
J nor p are conserved quantities. The force and the torque with respect to the origin satisfy

dp

dt
= F ,

dJ

dt
= r × F ,

and thus

dS

dt
= p× u,

dSCM

dt
= (r − q)× F ,

dSk

dt
= p× dk

dt
+ (r − k)× F .

We can distinguish between these spins by their di�erent dynamical behavior. The spin dynam-
ics not only supplies information about the spin evolution. It also gives us information about
what is the point where these spins are de�ned.

It is clear that if r = q, the center of mass spin must always be conserved. Conversely, if
SCM is not conserved, this means that r ̸= q, and therefore the electron has a centre of mass
and center of charge which are di�erent points.

We can �nd in the literature examples of both spins. Bargmann, Michel and Telegdi spin 5

satis�es a dynamical equation which is a covariant generalization of the dynamics of the SCM .
5V. Bargmann,L. Michel y V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous

electromagnetic �eld, Phys. Rev. Lett. 2, 435 (1959).
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It is linear in the external �elds and is conserved for a free particle. The center of charge spin
S, satis�es the same dynamical equation than Dirac's spin operator in the quantum case, as
we shall see in this lecture course. The existence of these di�erent dynamical equations for the
di�erent spins suggest that the two centers are di�erent points.

In this formalism we are going to �nd a de�nition of elementary particle which produces
relativistic and nonrelativistic models of spinning particles, such that one of the main features
is the separation between the center of mass and the center of charge. Finally, the only model
which satis�es Dirac equation when quantized is the model, depicted on the front page, whose
center of charge is moving at the speed of light.

Predictions

The formalism we are going to introduce in this course is not complete. Nevertheless it
predicts several phenomena which are consistent with the standard model description of matter
and others which have to be determined experimentally. They are analyzed along the quoted
sections and chapters, and we just ennumerate them here:

1. The center of charge and center of mass of an elementary particle which satis�es Dirac's
equation are two di�erent points, separated by a distance R0 = ~/2mc, in the center of
mass frame. (Sec. 2.5.2)

2. The center of charge is moving at the speed of light around the center of mass, with
a frequency ν0 = 2mc2/h, or period T0 = 1/ν0 = h/2mc2, in the center of mass frame.
There exists a natural clock associated to this internal motion of the electron. (Sec. 2.5.2)

3. For another inertial observere who sees the center of mass of the electron moving at the
velocity v, the electron clock is going slower, with a greater period T = γ(v)T0, where
γ(v) = (1− v2/c2)−1/2. (Sec.6.2.1)

4. For the center of mass observer, an elementary particle has, in addition to charge, a
magnetic moment with respect to the center of mass µ, orthogonal to the trajectory plane
of the center of charge and also an electric dipole moment d orthogonal to µ. (Sec.2.5.3)

5. The magnetic moment of an elementary particle is produced by this relative motion of
the center of charge, which is not modi�ed by any external interaction. (Sec.2.5.3)

6. If we assume, like in the standard model, that elementary matter are Dirac particles, then
from the quantum point of view their spin is necessarily S = ~/2, independently of its
mass and charge. This means that leptons and quarks are fermions of spin S = ~/2.
(Cap.4)

7. In three-dimensional space, if the center of charge of an elementary particle moves at the
speed of light, the kinematical group of spacetime symmetries has to be a 11-dimensional
group. This extension of the Poincaré group can be the Weyl group W, which in addition
to spacetime translations, rotations and boosts also include spacetime scale transforma-
tions which conserve the speed of light c. (Sec.6.6)

8. If we admit that the spacetime symmetry group of an elementary particle is the Weyl
group, then every elementary particle has nonvanishing mass and spin ~/2. In the standard
model, leptons and quarks are massive objects of spin ~/2. (Sec. 4.4)

9. If an elementary particle do not interact strongly (leptons), its electric charge is unique
and independent of the value of its mass. This value will be the electron electric charge
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e, but this value is not yet predicted. The three leptons electron, muon and tau have
di�erent masses, but the same electric charge. (Sec. 5.1.2)

10. If an elementary particle interacts also stronlgy (quarks), its electric charge is necessarily
smaller than e. The formalism does not predict that this charge will be a fraction e/3 or
2e/3. (Sec. 5.1.2)

11. The relative orientation between the spin and magnetic moment of electrically charged
elementary particles is the same for the particle and the antiparticle. It depends on the
sign of the charge of what we consider is the particle. If we consider that the electron,
of negative electric charge, is the particle and the positron its antiparticle, then electrons
and positrons have their spin and magnetic moment in the same direction. This relative
orientation for leptons has never been measured experimentally. (Sec. 4.2.5)

12. Tunnel e�ect is not a pure quantum e�ect. It can also be produced in a classical framework
for spinning particle, and it is related to the separation between the center of mass and
the center of charge. (Sec. 6.4)

13. Two electrons, from the classical point of view, can form a metastable bound state of
charge 2e and spin 1, i.e., a boson, provided their spins are parallel and the relative
velocity among their center of masses is below to 0.01c and the phases of their internal
motions are opposite to each other. This bound state is stable under external electric
�elds but not stable under magnetic �elds orthogonal to the spins. (Sec. 6.5)

14. In a conductor, under an external magnetic �eld, if the number of conducting electrons is
su�cient, and the temperature is not very high, pairings of electrons with parallel spins
can be produced and the paired conducting electrons can be in a superconducting phase.
This is possible classically up to a certain high temperature. This maximal temperature
from the quantum point of view has not been determined yet. (Sec. 6.5)

15. The classical electromagnetic �eld generated by a spinning electron at rest is not static.
The time average value of the electric �eld, during a turn of the center of charge, is
Coulomb like in any direction and does not diverge at the center of mass. The time
average value of the magnetic �eld, during a turn of the center of charge, is the same as
the magnetic �eld produced by a static magnetic dipole located at the center of mass,
with a gyromagnetic ratio g = 2. (Cap. 5)

16. The quantum gyromagnetic ratio g = 2, is related to the double structure of the spin from
the classical and quantum mechanical point of view. The spin has two parts S = W +Z,
one W related to the rotation of the particle and which does not produce magnetic
moment and another Z associated to the relative motion between the center of mass and
center of charge (Zitterbewegung). (Sec. 6.1)

17. In the ground state of the Hydrogen atom the electron is in a S-state of orbital angular
momentum l = 0. This implies, from the classical point of view, that the center of mass of
the electron is going through the center of mass of the proton. This is impossible for the
spinless point particle. Nevertheless this can be justi�ed classically, because the center
of mass and the center of charge of a spinning electrons are di�erent points and their
separation is greater than the estimated size of the proton. Then in the ground state of
the atom the center of mass of the electron describes a straight trajectory passing through
the center of mass of the proton.

18. From a theoretical point of view, the Lagrangian of an interacting elementary particle is
written as L̃ = L̃0 + L̃I , where L̃0 is the free Lagrangian of the particle, which describe
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its mechanical properties, and L̃I = −eϕ(t, r)ṫ+ eA(t, r)ṙ, is the interacting Lagrangian
which predicts only an electromagnetic interaction. (Sec. 2.5.2)

19. If we call kinematical variables x, the boundary variables of any mechanical system in a
variational approach, then the classical Lagrangian of any mechanical system L̃(x, ẋ) is
always a homogenous function of degree 1 of the derivatives of the kinematical variables
ẋ. (Sec. 1.3.4)

20. The kinematical space of any mechanical system X is always a metric Finsler space, and
the variational formulation is equivalent to a geodesic problem on the kinematical space
X, where the metric depends on the kind of interaction. For an elementary particle, any
interaction modi�es the metric of its kinematical space. (Sec. 1.6)

21. The point particle is a possible model for an elementary particle in this formalism, but
it corresponds to a spinless elementary particle. The extensive use of this model has to
be rejected for the analysis of the behavior of the real elementary matter. It seems that
there are no spinless elementary particles in nature. All physical properties associated to
the spin will be masked with the use of this model. (Sec. 2.1)

22. The kinematical space of the point particle is Minkowski space time. Gravity, considered
as another interaction, when applied to the point particle, would modify the Minkowski
metric and will be rise, in general, to a Finsler metric but not to a Riemannian metric as
is postulated in General Relativity. (Sec. 1.6)

23. Gravity, considered as another interaction, when applied to the spinning elementary par-
ticle, would modify the metric of its kinematical space and will be rise, in general, to a
Finsler metric of this manifold, and not only of the spacetime submanifold. (Sec. 1.6)
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Appendix: Elementary particles (Standard model)

We list the elementary particles of the standard model, beginning with the intermediate
bosons of spin 1, (gluon g, photon γ and massive bosons W± and Z), the 6 leptons (electron
e, muon µ and tau τ and the corresponding neutrinos) and the 6 quarks, all fermions of spin
1/2. Several quantum numbers, in addition to the mass and charge, are included. The isospin,
spin, parity, leptonic number L, barionic number B, strangeness S and colour. We do not
include information of the hypothetic graviton, which would be a massless particle of spin 2.
We also include information on the recently measured Higgs boson. The leptonic number is
characteristic of the three leptons, i.e., they exist three di�erent leptonic numbers Le, Lµ and
Lτ . They exist the antiparticles of all of them, of the same mass and spin, but opposite quantum
numbers.

mass·c2 charge Isospin Spin Par. L B S Colour Life
g 0 0 0 1 − 0 0
γ < 2× 10−16eV 0 0 , 1 1 − 0 0
W 80.398 GeV ±e 1 0 0
Z 91.187 GeV 0 1 0 0
e 0.511 MeV −e 1/2 1 0 0 stable
µ 105.65 MeV −e 1/2 1 0 0 10−6s
τ 1.777 GeV −e 1/2 1 0 0 10−15s
νe <0.5 eV 0 1/2 1 0 0
νµ <0.17 MeV 0 1/2 1 0 0
ντ <18.2 MeV 0 1/2 1 0 0
u 1.5 ∼ 3.3 MeV 2e/3 1/2 1/2 + 0 1/3 0 1
d 3.5 ∼ 6.0 MeV −e/3 1/2 1/2 + 0 1/3 0 1
c 1.27 GeV 2e/3 0 1/2 + 0 1/3 0 1
s 104 MeV −e/3 0 1/2 + 0 1/3 -1 1
t 171.2 GeV 2e/3 0 1/2 + 0 1/3 0 1
b 4.2 GeV −e/3 0 1/2 + 0 1/3 0 1

Higgs 125.3 GeV 0 0 0 0 0 0

Intensity of the Interactions

Quarks have colour charge with three possible values, electric charge and mass and can
interact under the four forces: strong, electromagnetic, weak and gravitational. Leptons have
no colour and they do not interact strongly. They can interact under the other three forces,
except neutrinos which do not interact electromagnetically. The interchange of gluons between
quarks implies the change of the colour charge. Ordinary matter, made of aggregates of quarks
and leptons, has no colour and therefore quarks and antiquarks can only form bound states of
neutral colour. This is called con�nement.

If the intensity of the strong interaction between quarks is 1 and of a range of order 10−15m,
the electromagnetic interaction, by interchange of photons γ, is of the order of the �ne structure
constant α = 1/137 and of in�nite range. The weak force is of very short range, around 10−18m
with the interchange of massive bosons W± and Z (m> 80 GeV) and of intensity 10−6 while
the gravitational force, of in�nite range, is of intensity of 6× 10−39. Nevertheless, this intensity
depends on the energy of the interacting particles. What it seems to happen is that with
increasing energy all three interactions (gravity excluded) have the same intensity and the
behavior is like if the particle were free. This is called asymptotic freedom. At very high energy
quarks behave like free particles.



PREAMBLE: Two centers 17

Several observables for the electron

for di�erent velocities

v/c v2/c2 γ(v) p (MeV/c) E (MeV) T (K)

0 0 1 0 0.511003 0
0.0001 10−8 1. 0.0000511003 0.511003 8.475
0.001 10−6 1. 0.000511004 0.511004 847.54
0.01 10−4 1.00005 0.00511029 0.511029 8.47·104
0.1 0.01 1.00504 0.0513578 0.513578 8.47·106
0.5 0.25 1.1547 0.295028 0.590056 2.11·108
0.86603 0.750 2.00003 0.885103 1.02202 · · ·
0.9 0.81 2.29416 1.05509 1.17232 · · ·
0.99 0.9801 7.08881 3.58618 3.62241 · · ·
0.999 0.99800 22.3663 11.4178 11.4292 · · ·
0.9999 0.99980 70.7124 36.1307 36.1343 · · ·
0.99999 0.99998 223.607 114.263 114.264 · · ·
0.999995 0.999990 316.532 161.748 161.749 · · ·
0.999999 0.999998 707.107 361.334 361.334 · · ·
0.9999999 0.9999998 2236.07 1142.64 1142.64 · · ·

The observables of the table are

γ(v) =

(
1− v2

c2

)−1/2

, p = γ(v)mv, E = γ(v)mc2.

γ(v) ≈ 1 +
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

the factor γ takes the value 2 for v/c ≈0.86603. Please remark that it is necessary to reach
the velocity v/c = 0.99999999999987 (twelve nines) with a factor γ = 2 · 106, in order that the
electron energy will be 1.00213 TeV. Today's accelerators (Tevatrón (FermiLab), LHC (Cern))
reach energies of order from 4 to 8 TeV.

The last column corresponds to the temperature in Kelvin of a nonrelativistic electron gas
whose mean velocity is the indicated, and considered a system of seven degrees of freedom. The
dots of some sections imply that for those velocitites the nonrelativistic analysis of statistical
mechanics does not apply.

7

2
κT =

1

2
mv2, κ = 1.38 · 10−23 J/K (Boltzmann′s Constant).

The �rst boldface line, corresponding to v/c = 0.01, represents the maximal velocity of the
center of masses of two electrons with parallel spins, to form a bound state, as we shall analyze
in section 6.5.

The second boldface line corresponds to the experiment, not of very high energy, we shall
analize in section 6.2 to measure the electron clock.
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Chapter 1

Lagrangian formalism

1.1 Newtonian formulation

To our knowledge, the �rst important approach for a theory of matter where all objects
are bound systems of smaller particles is due to Newton. By de�nition, the simplest material
particle is the point. For Newton, matter is composed of aggregates of points of mass m, of
arbitrary but �xed value. Each elementary point particle satis�es a dynamical equation

m
d2r

dt2
= F

where r is the location of the point and F is the total external force acting on it. If we also
admit that forces satisfy Newton's third law, we arrive to the conclusion that any aggregate of
matter has a characteristic point, its center of mass q, de�ned as

q =

∑
miri∑
mi

, m =
∑

mi

which satis�es ∑
F ext = m

d2q

dt2
.

This is known as the center of mass theorem: The center of mass of any material system behaves

like a point particle of mass the total mass of the system, under the sum of only the external

forces acting on the particles.

Newton postulates that matter atracts each other with the universal gravitation law, which
satis�es Newton's third law. If we try to sepparate a sheet of paper into two parts, assuming
two pieces of around 1 g each and separated 10 cm, the gravitational force between them is

F = G
m2

d2
= 6.672× 10−11 × 0.0012/0.12 = 6.672× 10−15 N,

much much smaller than the actual force we have to do to separate the sheet into two parts.
Cohesion forces of matter are not of gravitational nature. Among material systems another
kind of force should exist to form bound objects. Newtonian theory does not restrict the kind
of forces we can have in Nature. If the point particle has a property called charge, this will
be located at the same point r. Then all matter will be built from arbitrary material points
of arbitrary masses and charges, which in addition to the gravitational interaction they attract
and sometimes repel each other with another kind of force of higher intensity.

If we can make a time travel, come back to Newton's time in Cambridge, and ask him:
Sir, we are coming from the future and we know that matter, in addition of having mass, has
another unmodi�ed property called spin. It is possible that Sir Isaac, would think about and

19



20 CHAPTER 1. LAGRANGIAN FORMALISM

would modify his second law to take into account the dynamics of the angular momentum
in terms of the external torques. The important aspect is that when around 1920 quantum
mechanics enters into the scene, it would produce a di�erent quantization scenario.

Newtonian formalism is not restrictive and for the forces F among particles many kind of
interactions are allowed. It is the gauge theory in the quantum case, and the atomic principle
in our formalism, which will establish a limit to the allowed interactions. In another context
charges, masses, angular momenta of elementary particles are not resticted and can take any
value. It is quantum theory which should predict these values. Nevertheless, up to now,
quantum theory has only been able to predict the values of the spin, with a total freedom for
the remaing properties, like masses and charges.

Newton was already aware of this possibility of internal forces of short and long range, as
he writes in his dissertation in the book III of Opticks: 1

Now the smallest particles of matter may cohere by strongest attractions, and compose bigger

particles of weaker virtue; and many of these may cohere and compose bigger particles whose

virtue is still weaker, and so on for diverse successions, until the progression ends in the biggest

particles on which the operations in chemistry, and the colors of natural bodies depend, and

which by cohering compose bodies of a sensible magnitude.

For we must learn from the phenomena of nature what bodies attract one another, and what

are the laws and properties of the attraction, before we inquire the cause by which the attraction

is perform'd. The attractions of gravity, magnetism, and electricity, reach to very sensible

distances, and so have been observed by vulgar eyes, and there may be others which reach to so

small distances as to escape observation.

1.2 Fundamental principles

Because all known elementary particles, the quarks and leptons, are spinning particles and
it seems that there are no spinless elementary particles in nature, we take the challenge of
obtaining a classical formalism for describing spin. The interest of a classical description of
spinning matter is not important in itself, because matter, at this level, behaves according
to the laws of quantum mechanics. But �ner a classical description of elementary matter a
deeper quantum mechanical formalism, because we will have at hand, when quantizing the
system, more classical variables to deal with, and therefore with a more clear physical and/or
geometrical interpretation. A second feature is that a classical formalism supplies models. Both
goals, in my opinion, have been succesfully achieved.

Feynman, in the �rst chapter of his Lectures on Physics 2, states that "If, in some cataclysm,

all of scienti�c knowledge were to be destroyed, and only one sentence passed on to the next gen-

erations of creatures, what statement would contain the most information in the fewest words?

I believe it is the atomic hypothesis (or the atomic fact or whatever you wish to call it) that all

things are made of atoms-little particles that move around in perpetual motion, attracting each

other when they are a little distance apart, but repelling upon being squeezed into one another."

If the atomic hypothesis is such an important principle, physics has to take advantage of this
fact, and, properly formulated, should be included as a preliminary fundamental principle of
elementary particle physics, as we shall do in what follows. The books of Physics, when dealing
with the subject of atomism, they just mention Leuccipus and Democritus of Abdera, as the
�rst scientists who proposed the idea that matter is �nally a set of discrete undivisible objects
(atoms). Democritus adds that these objects are also immutable. It is di�cult to understand

1I. Newton, Opticks, A treatise of the Re�ections, Refractions, In�ections and Colours of Light, Dover, NY
1952, p.394.

2Feynman RP, Leighton RB and Sands M 1968 The Feynman Lectures on Physics, (NY: Addison Wesley)
Vol 1, Sec 1-2.
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what Democritus would mean around 2500 years ago, about immutability. But this idea what
perhaps means is that a compound system can be modi�ed but an elementary particle cannot.
We can excite a molecule, rotate it with some angular velocity, even deform and modify its
mass, but this is not possible for an electron. We cannot change the electron mass and charge
and we cannot rotate an electron around itself with an arbitrary angular velocity. The most
we can do is to modify its orientation in space. The mass and absolute value of its spin are
immutable. The atomic principle is going to restrict the number and the kind of classical
variables we have to use to describe an elementary particle. These variables are not restricted
for arbitrary material systems, but they are restricted for elementary particles. It is a very
restrictive principle which will suggest a kind of minimal coupling interaction when analyzing
compound systems of elementary particles.

The kinematical formalism for describing elementary spinning particles, previously aimed for
the classical spin description of matter, has proven to be a general framework for the description
of elementary particles, because it supplies a very precise de�nition of a classical elementary
particle which has, as a quantum counterpart, Wigner's de�nition. All elementary systems
described within this formalism have the feature that, when quantized, their Hilbert space of
pure states carries a projective unitary irreducible representation of the kinematical group. It
is through Feynman's path integral approach that both formalisms complement each other.

The formalism we propose is based upon the four fundamental principles:

• Restricted Relativity Principle,

• Atomic Principle,

• Variational Principle,

• Quantization Principle.

1.2.1 Restricted Relativity Principle

The Restricted Relativity Principle states that, in absence of gravitation, there exists
a set of equivalent observers, historically called inertial observers, to whom the laws of physics
must be the same. When using the same kind of variables the fundamental physical laws have to
be written in the same form in the di�erent inertial reference frames. The equivalent observers
are de�ned with respect to each other by a spacetime transformation group, usually called the
kinematical group of the formalism.

We shall deal mainly with the Galilei and Poincaré groups but in chapter 4 we shall analyze
some enlargement of the Poincaré group as the spacetime symmetry group of a Dirac particle.
In addition to the Poincaré group transformations it also contains spacetime dilations and local
rotations.

One example of this principle, in the non-relativistic framework, admits that if the observer
O measures a space-time event given by the values of time and position t and r, respectively,
and observer O′ measures t′ and r′ for the same event, these values are related by means of the
transformation

t′ = t+ b, r′ = R(α)r + vt+ a,

where the ten real numbers (b,a,v,α) are �xed for these two observers and where by α we
want to represent the three parameters which de�ne the relative orientation between the cor-
responding Cartesian reference frames of both observers. These equations represent the action
of the Galilei group of transformations on the space-time, which is the kinematical group in
the nonrelativistic framework. If instead of these transformations we uso those of the Poincaré
group, analized in the appendix at the end of the second chapter, we will be in a relativistic
formalism.
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The kinematical group associated to this fundamental principle has to be �xed once for
ever. This principle is not only a statement about the restricted universality of the physical
laws, but it is also a statement that the relative measurements between inertial observers of
any other observable depends only on this group, i.e., how two inertial observers relate their
relative measurements of space-time events. By restricted universality what we mean is that
the physical laws are not the same for all possible observers, but only for a restricted class of
them, the so called inertial observers, to whom the formalism is restricted.

If some observer is describing an electromagnetic phenomenon and we change to another ac-
celerated observer, in this frame in addition to the corresponding electromagnetic phenomenon
we shall also describe the presence of an inertial �eld, which is undistinguishable from a grav-
itational �eld. These two observers do not describe the same kind of phenomena. They are
not equivalent observers. We are going to restrict the formalism for observers who describe
the same phenomena. It is the General Relativity Principle which admits the invariance of
physical laws under any change of arbitrary observers or the use of any system of coordinates,
but if we include gravity between the phenomena to be described. The reason is that it is not
possible locally to distinguish between a change to an accelerated frame form the presence of
a gravitational �eld. If we admit this restricted relativity principle we have to exclude in its
framework the possibility of description of gravitational phenomena.

1.2.2 Atomic Principle

The Atomic Principle admits that matter cannot be divided inde�nitely. Matter does
not satisfy the hypothesis of the continuum. After a �nite number of steps in the division of
matter we can reach an ultimate and indivisible object, an elementary particle. If a theoretical
framework pretends to describe real matter, it must contain in the formalism some statement
or declaration about the existence of these primordial objects and the possibility to distinguish
theoretically between an elementary system and another one which is not elementary.

If we take a piece of matter and we try to break it, the result is that it is �rst deformed
and if our strength is enough it breaks into two or more pieces. The distinction between an
elementary particle and any other �nite mechanical system is that an elementary particle, in
addition of being indivisible, if not destroyed by its antiparticle, it can never be modi�ed. It
can never have excited states, so that all possible states are only kinematical modi�cations of
any one of them.

Since in the process of breaking matter we need a �nite number of steps to reach this ultimate
object, this implies that the states of an elementary can be described by a �nite set of variables.
If the state of an elementary particle changes, and we assume this fundamental principle, we
can always �nd another inertial observer who describes the particle with the same values of all
essential variables as before. One electron, if not annihilated, remains always as an electron
under any interaction. This will imply a restriction in the kind of classical variables we shall
use to describe the initial and �nal states in the variational dynamical description.

It is this explicit distinction between compound systems and elementary particles, considered
as a basic part of the formalism, what makes sense to consider this atomic principle as a
fundamental principle.

1.2.3 Variational Principle

The Variational Principle states that a property called the action of any mechanical
system during its evolution between some initial and �nal states must be stationary. The action
is described in terms of a Lagrangian function which is an explicit function of the time t, the
independent degrees of freedom and their subsequent time derivatives up to a �nite order, which
is what we are going to consider in this formalism. Usually, most mechanical textbooks restrict
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the Lagrangian to depend up to the �rst order time derivative of the independent degrees of
freedom. This is the case for bound systems of spinless or point particles, for instance in
the Newtonian formalism. This implies that dynamical equations for the degrees of freedom
are at most second order di�erential equations. However, di�erential geometry shows that,
in general, a point in a three-dimensional vector space, satis�es a fourth order di�erential
equation. In another context we do not know yet what are the variables we need to describe
spinning matter. Are we able to restrict to these unknown variables to satisfy only second
order di�erential equations? This is a mathematical restriction which is not justi�ed physically.
Think in the discussion in the Preamble about the motion of the admisible center of charge.
We are not going to restrict Lagrangians to depend only on the �rst order time derivatives of
the independent degrees of freedom. The above atomic principle only restricts the Lagrangian
to depend on a �nite number of degrees of freedom and also of a �nite maximum order in their
derivatives.

According to this variational principle, there will be a Lagrangian function L, which will
be an explicit function of the time, of a �nite number of degrees of freedom and their time
derivatives up to a �nite order, for any mechanical system formed from a �nite number of
elementary particles. It is the atomic principle which will limit the maximum number of variables
to describe an elementary particle.

This variational principle is so strong that when we apply it to material systems which satisfy
the atomic principle, we shall arrive to the conclusion that the only allowed interaction for
classical elementary particles is the electromagnetic interaction, either for spinless or spinning
particles. The dynamical equation of an elementary particle of charge e, in the variational
formulation, will be

dp

dt
= e (E + u×B) ,

where p is the linear momentum of the particle, u is the velocity of the center of charge and E
and B the external electromagnetic �eld. The expression of the linear momentum depends on
the framework, either relativistic or not relativistic, i.e., of the kinematical group and in terms of
the di�erent degrees of freedom and their derivatives. In the classical variational framework, and
with these three fundamental principles, we have not been able to describe other interactions.
Weak and strong interactions are described in a quantum context under the assumption of local
gauge invariance.

In this way we shall start in section 1.3 with the generalized Lagrangian formalism to obtain
the main results in general form.

These three fundamental principles complete our classical framework. To quantize the for-
malism we have to replace this last principle for the next quantization principle.

1.2.4 Quantization Principle

For the quantum description we must substitute this last variational principle by the Quan-
tization Principle, in the form proposed by Feynman 3: all paths of the evolution of any
mechanical system between some initial and �nal states are equally probable. For each path
a probability amplitude is de�ned, which is a complex number of the same magnitude but
whose phase is the action of the system between the end points along the corresponding path.
The probability amplitude for �nding the system in any classical state, i.e, the quantum wave
function, will be a squared integrable and normalized complex function of the variables which
de�ne the states in the variational approach. In this way, classical and quantum mechanics are
described in terms of exactly the same set of classical variables.

3R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, MacGraw Hill, N.Y., (1965).
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This formalism will determine that these variables for an elementary particle, which de�ne
the initial and �nal states of the evolution in the variational description, are a �nite set of
variables which necessarily span a homogeneous space of the kinematical group. We shall call
them the kinematical variables of the particle. The manifold they span is larger than the
con�guration space and in addition to the time and the independent degrees of freedom it
also includes the derivatives of the independent degrees of freedom up to one order less the
highest order they have in the Lagrangian. The Lagrangian for describing these systems will
be thus dependent on these kinematical variables and their next order time derivative. If the
evolution is described in terms of some group invariant evolution parameter τ , then, when
writting the Lagrangian not in terms of the independent degrees of freedom but as a function of
the kinematical variables and their τ−derivatives, it becomes a homogeneous function of �rst
degree of the τ−derivatives of all kinematical variables.

Feynman's path integral method seems to be inspired in a Dirac's paper 4. In this article
Dirac states, when comparing the Lagrangian approach with the canonical aproach, that: the
two formulations are, of course, closely related, but there are reasons for believing that the

Lagrangian one is more fundamental. Later, he expresses that we ought to consider the classical

Lagrangian, not as a function of the coordinates and velocities, but rather as a function of the

coordinates at time t and at time t + dt. Here, he is clearly suggesting the use of boundary
variables, i.e, the kinematical variables for the expression of the Lagrangian.

In the Preface of Feynman and Hibbs book, it is mentioned that Feynman, in a private con-
versation with a European colleague, became aware of the mentioned Dirac's paper, suggesting
that the wave function at time t+ ϵ would be related to the wave function at time t in the form

ψ(t+ ϵ) ∼ eiϵL/~ψ(t).

What Feynman did was to postulate that the above relation is an identity. There is a quotation
in the book 5 that the European colleague was Herbert Jehle, while visiting Princeton in 1941.

We shall analyze several examples of spinning particles. But we shall be surprised that,
for the description of free elementary particles, in particular a Dirac particle, is not necessary
to postulate any Lagrangian. The analysis of Noether's theorem and conservation laws, and
the group invariants will be su�cient to describe the dynamics of a free spinning elementary
particle.

1.3 Generalized Lagrangian formalism

The Lagrangian formalism of generalized systems depending on higher order derivatives was
already worked out by Ostrogradsky. 6 The result is that if the Lagrangian depends on time
t, the n degrees of freedom qi(t) and their �rst order derivatives L(t, qi, q̇i), Euler-Lagrange
equations are

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, . . . , n.

But if the Lagrangian depends up to the derivatives of order k-th of the degrees of freedom, the
equations are

∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k

dk

dtk

(
∂L

∂q
(k)
i

)
= 0, i = 1, . . . , n, (1.1)

4P.A.M. Dirac, The Lagrangian in quantum mechanics, Phys. Zeitsch. der Sowjetunion, 3, 64�72 (1933).
5L.M. Brown (editor), Feynman's thesis: A new approach to quantum theory, (World Scienti�c 2005)
6 M. Ostrogradsky, Mémoire sur les équations di�érentielles relatives au problème des isopérimètres, Mem.

Acad. St. Petersburg, 6(4), 385-517 (1850).
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where we use here an exponent between brackets to express the order of the time derivative
of the corresponding variable. We shall arrive to these dynamical equations as a necessary
condition for the action to be stationary. But it is also important to remark that the general
formalism which brings us to equations (1.1), requires that the end points of the evolution, i.e.,
the boundary conditions for the evolution, remain �xed. In addition to obtain Euler-Lagrange
equations, we are going to see what are these boundary variables which de�ne in an essential
way the initial and �nal states of the evolution, and which we propose to call them kinematical

variables. In particular, it is the atomic principle which will limit what these variables are for
an elementary particle.

Finally we are going to analyze the geometrical structure of the space spanned by the
kinematical variables. We shall see that for any arbitrary system it is always a metric space,
but not Riemannian but rather a Finsler metric space. In this way, if a mechanical system
of a de�nite number of kinematical variables is analyzed under two di�erent interactions, the
kinematical space is the same manifold but the Finsler metrics associated to the corresponding
interactions are di�erent.

1.3.1 Euler-Lagrange equations

Let us consider a mechanical system of n degrees of freedom, characterized by a Lagrangian
that depends on time t and on the n essential coordinates qi(t), that represent the n indepen-
dent degrees of freedom, and their derivatives up to a �nite order k. Because we can have
time derivatives of arbitrary order we use a superindex enclosed in brackets to represent the
corresponding k-th derivative, i.e., q(k)i (t) = dkqi(t)/dt

k. The action functional is de�ned by:

A[q] =

∫ t2

t1

L(t, qi(t), q
(1)
i (t), . . . , q

(k)
i (t))dt, (1.2)

where i = 1, . . . , n. For any trajectory qi(t) introduced into the integral (1.2), we shall obtain
a real number, the action of the system along that trajectory.

Postulate: The trajectory followed by the system is that path which passing
through the end points de�ned at times t1 and t2, respectively, where we �x on
them the values of the variables and their time derivatives q(s)i (t1) and q

(s)
i (t2), i =

1, ..., n, s = 0, 1, ..., k − 1, up to the maximum order k − 1-th, makes stationary the
action functional (1.2), i.e., the value of the action is a maximum or a minimum.

Please remark that we need to �x as boundary values of the variational principle some
particular values of time t, the n degrees of freedom qi and their derivatives up to order k − 1,
i.e., one order less than the highest derivative of each variable qi in the Lagrangian, at both end
points. Although the values we �x as boundary variables correspond to the degrees of freedom
and their derivatives, their �xed values are considered as essential parameters, and therefore
they are selected without constraints. They uniquely de�ne the initial and �nal state.

Conversely we can say that the Lagrangian of any arbitrary generalized system is in general
an explicit function of the variables we keep �xed as end points of the variational formulation
and also of their next order time derivative.

Once the action functional (1.2) is de�ned for some particular path qi(t), to analyze its variation let
us produce an in�nitesimal modi�cation of the functions qi(t), qi(t) → qi(t) + δqi(t) while leaving
�xed the end-points of the variational problem, i.e., such that at t1 and t2 the modi�cation of
the generalized coordinates and their derivatives up to order k − 1 vanish, and thus δq(s)i (t1) =

δq
(s)
i (t2) = 0, for i = 1, . . . , n and s = 0, 1, . . . , k − 1. Then, the variation of the derivatives of the

qi(t) is given by q(s)i (t) → q
(s)
i (t) + δq

(s)
i (t) = q

(s)
i (t) + dsδqi(t)/dt

s, since the modi�cation of the
s-th derivative function is just the s-th derivative of the modi�cation of the corresponding function.
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Figure 1.1: Two close paths q(t) and the modi�ed q′(t), passing thorugh the same end points
1 and 2

This produces a variation in the action functional δA = A[q + δq]−A[q], given by:

δA =

∫ t2

t1

L(t, q
(s)
i (t) + δq

(s)
i (t))dt−

∫ t2

t1

L(t, q
(s)
i (t))dt

=

∫ t2

t1

dt

n∑
i=1

[
∂L

∂qi
δqi +

∂L

∂q
(1)
i

δq
(1)
i + · · ·+ ∂L

∂q
(k)
i

δq
(k)
i

]
, (1.3)

after expanding to lowest order the �rst integral. The term

∂L

∂q
(1)
i

δq
(1)
i =

∂L

∂q
(1)
i

d

dt
δqi =

d

dt

(
∂L

∂q
(1)
i

δqi

)
− d

dt

(
∂L

∂q
(1)
i

)
δqi,

and by integration of this expression between t1 and t2, it gives:∫ t2

t1

∂L

∂q
(1)
i

δq
(1)
i dt =

∂L

∂q
(1)
i

δqi(t2)−
∂L

∂q
(1)
i

δqi(t1)−
∫ t2

t1

d

dt

(
∂L

∂q
(1)
i

)
δqidt

= −
∫ t2

t1

d

dt

(
∂L

∂q
(1)
i

)
δqi dt,

because the variations δqi(t1) and δqi(t2), vanish. Similarly for the next term:

∂L

∂q
(2)
i

δq
(2)
i =

∂L

∂q
(2)
i

d

dt
δq

(1)
i =

d

dt

(
∂L

∂q
(2)
i

δq
(1)
i

)
− d

dt

(
∂L

∂q
(2)
i

)
δq

(1)
i ,

∫ t2

t1

∂L

∂q
(2)
i

δq
(2)
i dt = −

∫ t2

t1

d

dt

(
∂L

∂q
(2)
i

)
δq

(1)
i dt =

∫ t2

t1

d2

dt2

(
∂L

∂q
(2)
i

)
δqi dt,

because δqi and δq
(1)
i vanish at t1 and t2, and �nally for the last term∫ t2

t1

∂L

∂q
(k)
i

δq
(k)
i dt = (−1)k

∫ t2

t1

dk

dtk

(
∂L

∂q
(k)
i

)
δqi dt,

so that each term of (1.3) is written only in terms of the variations of the degrees of freedom δqi
and not of their higher order derivatives. Remark that to reach these �nal expressions, it has been
necessary to assume the vanishing of all δq(s)i , for s = 0, . . . , k−1, at times t1 and t2. By collecting
all terms we get

δA =

∫ t2

t1

dt

n∑
i=1

[
∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k

dk

dtk

(
∂L

∂q
(k)
i

)]
δqi.

If the action functional is extremal along the path qi(t), its variation must vanish, δA = 0. The
variations δqi are arbitrary and therefore all terms between squared brackets cancel out. We obtain
a system of n ordinary di�erential equations, the Euler-Lagrange equations,
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∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k

dk

dtk

(
∂L

∂q
(k)
i

)
= 0, i = 1, . . . , n. (1.4)

1.3.2 Kinematical space

In general, the system (1.4) is a system of n ordinary di�erential equations of order 2k,
and thus existence and uniqueness theorems guarantee only the existence of a solution of this
system for the 2kn boundary conditions q(s)i (t1), i = 1, . . . , n and s = 0, 1, . . . , 2k − 1, at the
initial instant t1. However the variational problem has been stated by the requirement that
the solution goes through the two �xed endpoints, a condition that does not guarantee neither
the existence nor the uniqueness of the solution. Nevertheless, let us assume that with the
�xed endpoint conditions of the variational problem, q(s)i (t1) and q

(s)
i (t2), i = 1, . . . , n and

s = 0, 1, . . . , k − 1, at times t1 and t2, respectively, there exists a solution of (1.4) perhaps
non-unique. This implies that the 2kn boundary conditions at time t1 required by the existence
and uniqueness theorems, can be expressed perhaps in a non-uniform way, as functions of the
kn conditions at each of the two endpoints. From now on, we shall consider systems in which
this condition is satis�ed. It turns out that a particular solution passing through these points
will be expressed as a function of time with some explicit dependence of the end point values

q̃i(t) ≡ qi(t; q
(r)
j (t1), q

(r)
l (t2)), (1.5)

i, j, l = 1, . . . , n, r = 0, 1, . . . k − 1, in terms of these boundary end point conditions.

De�nition: The Action Function 7 of the system along a classical path is the
value of the action functional (1.2) when we introduce in the integrand a particular
solution (1.5) of Euler-Lagrange equations (1.4) passing through those endpoints:∫ t2

t1

L (t, q̃i(t)) dt = A
(
t1, q

(r)
i (t1); t2, q

(r)
i (t2)

)
. (1.6)

Once the time integration is performed, we see that it will be an explicit function of the
kn+1 variables at the initial instant, q(r)j (t1), r = 0, . . . , k− 1 including the time t1, and of the
corresponding kn+ 1 variables at �nal time t2. We write it as

A
(
t1, q

(r)
i (t1); t2, q

(r)
i (t2)

)
≡ A(x1, x2).

We thus arrive at the following

De�nition: The kinematical variables of the system are the time t and the n
degrees of freedom qi and their time derivatives up to order k− 1. The manifold X
they span is the kinematical space of the system.

7Please remark that we use the same letter A( ) for the action function, followed by normal brackets containing
the variables of which it depends, and for the action functional A[ ] which is followed by squared brackets to
enhance that it is not a function but rather a functional over the class of all paths.
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The kinematical space for ordinary Lagrangians is just the con�guration space spanned by
variables qi enlarged with the time variable t. It is usually called the enlarged con�guration

space. But for generalized Lagrangians it also includes higher order derivatives up to one order
less than the highest derivative that appear in the Lagrangian. Thus, the action function

of a system becomes a function of the values the kinematical variables take at the

end points of the trajectory, x1 and x2. From now on we shall consider systems for which
the action function is de�ned and is a continuous and di�erentiable function of the kinematical
variables at the end points of its possible evolution. This function clearly has the property
A(x, x) = 0.

1.3.3 Replacement of time as evolution parameter

The constancy of speed of light in special relativity brings space and time variables on the
same footing. So, the next step is to remove the time observable as the evolution parameter of
the variational formalism and express the evolution as a function of some arbitrary parameter
to be chosen properly. Then, let us assume that the trajectory of the system can be expressed
in parametric form, {t(τ), qi(τ)}, in terms of some arbitrary evolution parameter τ , the same
for all inertial observers. The functional (1.2) can be rewritten in terms of the kinematical
variables and their derivatives and becomes:

A[t, q] =

∫ τ2

τ1

L

(
t(τ), qi(τ),

q̇i(τ)

ṫ(τ)
, . . . ,

q̇
(k−1)
i (τ)

ṫ(τ)

)
ṫ(τ)dτ

=

∫ τ2

τ1

L̃ (x(τ), ẋ(τ)) dτ, (1.7)

where the dot means derivative with respect to the evolution variable τ that without loss of
generality can be taken dimensionless. Therefore L̃ ≡ L(t(τ), q̇

(s)
i /ṫ(τ)) ṫ(τ) has dimensions of

action.

1.3.4 Homogeneity of the Lagrangian

We can also see that the integrand L̃ is a homogeneous function of �rst degree as a function
of the derivatives of the kinematical variables. In fact, each time derivative function q(s)i (t) has

been replaced by the quotient q̇(s−1)
i (τ)/ṫ(τ) of two derivatives with respect to τ . Even the

highest order k-th derivative function q(k)i = q̇
(k−1)
i /ṫ, is expressed in terms of the derivatives of

the kinematical variables q(k−1)
i and t. Thus the original function L is a homogeneous function

of zero degree of the derivatives of the kinematical variables. Finally, the last term ṫ(τ), gives
to the new de�ned L̃ the character of a homogeneous function of �rst degree.

If we replace each ẋi by yi = λẋi, then L̃(x, y) = L̃(x(τ), λẋ(τ)) = λL̃(x(τ), ẋ(τ)). Therefore
Euler's theorem on homogeneous functions gives rise, by taking the derivative with respect to
λ of both sides, and taking λ = 1, to the result

L̃(x(τ), ẋ(τ)) =
∑
j

∂L̃

∂yj
ẋj

∣∣∣∣∣∣
λ=1

=
∑
j

∂L̃

∂ẋj
ẋj =

∑
j

Fj(x, ẋ)ẋ
j . (1.8)

This possibility of expressing the Lagrangian as a homogeneous function of �rst degree of
the derivatives was already considered in 1933 by Dirac 8 on aesthetical grounds. It is this
homogeneity of �rst degree in terms of the derivatives which will allow us later to transform

8 P.A.M. Dirac, Proc. Cam. Phil. Soc. 29, 389 (1933): �a greater elegance is obtained�, �a symmetrical
treatment suitable for relativity.�
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the variational formalism into a geodesic problem on the kinematical space X, but where the
metric gij(x, ẋ) will be direction dependent, and thus the particle trajectory is a geodesic, not
in a Riemannian manifold but rather in a Finsler space.9

The function L̃ is not an explicit function of the evolution parameter τ and thus we can see
that the variational problem (1.7), is invariant with respect to any arbitrary change of evolution
parameter τ . 10

In fact, if we change the evolution parameter τ = τ(θ), then the derivative ṫ(τ) = (dt/dθ)(dθ/dτ)

and q̇(s)i (τ) = (dq
(s)
i (θ)/dθ)(dθ/dτ) such that the quotients

q̇
(s)
i (τ)

ṫ(τ)
=

(dq
(s)
i (θ)/dθ) θ̇(τ)

(dt(θ)/dθ) θ̇(τ)
≡ q̇

(s)
i (θ)

ṫ(θ)
,

where once again this last dot means derivation with respect to θ. It turns out that (1.7) can be
written as:

A[t, q] =

∫ τ2

τ1

L(t(θ), qi(θ), . . . , q̇
(k−1)
i (θ)/ṫ(θ))

dt(θ)

dθ
dθ

=

∫ θ2

θ1

L̂(x(θ), ẋ(θ))dθ. (1.9)

1.3.5 Recovering the Lagrangian from the Action function

The formalism thus stated has the advantage that it is independent of the evolution param-
eter, and if we want to come back to a time evolution description, we just use the time of the
corresponding inertial observer as the evolution parameter and make the replacement τ = t,
and therefore ṫ = 1. From now on we shall consider those systems for which the evolution can
be described in a parametric form, and we shall use the symbol ˜ over the Lagrangian, which
is understood as written in terms of the kinematical variables and their �rst order derivatives.
In this way we shall distinguish between the Lagrangians L̃, from the Lagrangians L, without
the symbol ˜, when we make the analysis in a time evolution description. To pass from L̃ to L
is just to make t = τ , and thus ṫ = 1.

If what we know is the action function of any system A(x1, x2), as a function of the kinemat-
ical variables at the end points we can proceed conversely and recover the Lagrangian L̃(x, ẋ)
by the limiting process:

L̃(x, ẋ) = lim
y→x

∂A(x, y)

∂yj
ẋj , (1.10)

where the usual addition convention on repeated or dummy index j, extended to the whole set
of kinematical variables, has been assumed.

If in (1.7) we consider two very close points x1 ≡ x and x2 ≡ x+ dx, we have that the action
function A(x, x+ dx) = A(x, x+ ẋdτ) = L̃(x, ẋ)dτ and making a Taylor expansion of the function
A with the condition A(x, x) = 0 we get (1.10).

1.3.6 Symmetry of a dynamical system

A symmetry of a dynamical system is de�ned as that transformation which leaves

invariant the dynamical equations. Since the composition of symmetries produces new
symmetries, and this composition is associative and there exists the trivial or identity trans-
formation, the set of symmetries of any dynamical system form a group. It is the symmetry

group of the system. If we admit as a fundamental principle the Restricted Relativity Prin-
ciple, then the kinematical group of spacetime transformations, which de�ne the relationship
between equivalent observers, is a subgroup of the general symmetry group.

9G.S. Asanov, Finsler geometry, Relativity and Gauge theories, Reidel Pub. Co, Dordrecht (1985).
10 R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, N.Y. (1970); I.M. Gelfand,

S.V. Fomin, Calculus of Variations Prentice Hall, Englewood Cli�s, N.J. (1963).



30 CHAPTER 1. LAGRANGIAN FORMALISM

If a transformation leaves invariant the Lagrangian of a dynamical system, then that trans-
formation represents a symmetry for this mechanical system. The opposite is not true, i.e., there
can be transformations which are symmetries but they do not leave the Lagrangian invariant. If
the Lagrangian, under a transformation, changes into another Lagrangian which di�ers from the
previous one in a function which is a total derivative, with respect to the evolution parameter
τ of some arbitrary function λ(x) of the kinematical variables, then that transformation is a
symmetry.

The symmetry transformations can be continuous or discrete. A transformation is discrete
if it is an element of a discrete or �nite subgroup, like the transformation t′ = −t, which
represents a time reversal. This is a discrete transformation and if it is a symmetry we shall
say that the mechanical system is time reversal invariant. Continuous transformations are
those related to continuous or Lie groups, for instance translations and rotations. In the case
of continuous groups, it is su�cient to make the analysis of the symmetries by considering
only the in�nitesimal transformations, i.e., what is called the Lie algebra of the group. In the
appendix 1.8, we make a short introduction to continuous groups to �x the notation and the
representation of the in�nitesimal transformations and the generators of the group and its Lie
algebra.

1.3.7 Lagrangian gauge functions

In the variational formulation of classical mechanics

A[ q ] =

∫ t2

t1

L(t, q
(s)
i (t))dt ≡

∫ τ2

τ1

L̃(x, ẋ)dτ, (1.11)

A[ q ] is a path functional, i.e., it takes in general di�erent values for the di�erent paths joining
the �xed end points x1 and x2. Then it is necessary that L̃dτ be a non-exact di�erential.
Otherwise, if Ldt = dλ, then A[ q ] = λ2 − λ1 and the functional does not distinguish between
the di�erent paths and the action function of the system from x1 to x2, A(x1, x2) = λ(x2)−λ(x1),
is expressed in terms of the function λ(x), and is thus, path independent.

If λ(x) is a real function de�ned on the kinematical space X of a Lagrangian system with
action function A(x1, x2), then the function A′(x1, x2) = A(x1, x2) + λ(x2) − λ(x1) is another
action function equivalent to A(x1, x2). In fact it gives rise by (1.10) to the Lagrangian L̃′ that
di�ers from L̃ in a total τ -derivative. 11

Using (1.10), we have

L̃′(x, ẋ) = L̃(x, ẋ) +
dλ

dτ
, (1.12)

and therefore L̃ and L̃′ produce the same dynamical equations and A(x1, x2) and A′(x1, x2) are
termed as equivalent action functions.

Let us assume a Lagrangian system of one degree of freedom described by the Lagrangian L(t, q, q̇)
and we modify this Lagrangian in the form L′ = L+ dλ(t, q)/dt. The dynamical equations derived
from L′ are:

L′ = L+
∂λ

∂t
+
∂λ

∂q
q̇,

∂L′

∂q
=
∂L

∂q
+

∂2λ

∂q∂t
+
∂2λ

∂q2
q̇,

∂L′

∂q̇
=
∂L

∂q̇
+
∂λ

∂q
,

d

dt

(
∂L′

∂q̇

)
=

d

dt

(
∂L

∂q̇

)
+

d

dt

(
∂λ

∂q

)
=

d

dt

(
∂L

∂q̇

)
+

∂2λ

∂t∂q
+
∂2λ

∂q2
q̇,

and thus
∂L′

∂q
− d

dt

(
∂L′

∂q̇

)
=
∂L

∂q
− d

dt

(
∂L

∂q̇

)
and therefore L′ and L produce the same dynamical equations. This result is completely general

if L depends on more than one degree of freedom or even if the Lagrangian depends on higher

11 J.M. Levy-Leblond, Comm. Math. Phys. 12, 64 (1969).
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order derivatives. The only condition is that the function λ must be a function of the kinematical

variables.

Let G be a transformation group of the enlarged con�guration space (t, qi), that can be
extended to a transformation group of the kinematical space X. Let g ∈ G be an arbitrary
element of G and x′ = gx, the transformation of x. Consider a mechanical system characterized
by the action function A(x1, x2) that under the transformation g is changed into A(x′1, x

′
2). If

G is a symmetry group of the system, i.e., the dynamical equations in terms of the variables x′

are the same as those in terms of the variables x, this implies that A(x′1, x
′
2) and A(x1, x2) are

necessarily equivalent action functions, and thus they will be related by:

A(gx1, gx2) = A(x1, x2) + α(g;x2)− α(g;x1). (1.13)

The function α will be in general a continuous function of g and x. This real function α(g;x)
de�ned on G × X is called a gauge function of the group G for the kinematical space X.
Because of the continuity of the group it satis�es α(e;x) = 0, e being the neutral element of
G. If the transformation g is in�nitesimal, let us represent it by the coordinates δgσ, then
α(δg;x) = δgσλσ(x) to �rst order in the group parameters. The transformation of the action
function takes the form

A(δgx1, δgx2) = A(x1, x2) + δgσλσ(x2)− δgσλσ(x1),

i.e., in the form required by Noether's theorem to obtain the corresponding conserved quantities,
as we shall show in the next section. In general, λσ functions for gauge-variant Lagrangians are
obtained by

λσ(x) =
∂α(g;x)

∂gσ

∣∣∣∣
g=0

. (1.14)

Because of the associative property of the group law, any gauge function satis�es the identity

α(g′; gx) + α(g;x)− α(g′g;x) = ξ(g′, g), (1.15)

where the function ξ, de�ned on G×G, is independent of x and is an exponent of the group G.

This can be seen by the mentioned associative property of the group law. From (1.13) we get:

A(g′gx1, g
′gx2) = A(x1, x2) + α(g′g;x2)− α(g′g;x1), (1.16)

and also
A(g′gx1, g

′gx2) = A(gx1, gx2) + α(g′; gx2)− α(g′; gx1)

= A(x1, x2) + α(g;x2)− α(g;x1) + α(g′; gx2)− α(g′; gx1),

and therefore by identi�cation of this with the above (1.16), when collecting terms with the same
x argument we get

α(g′; gx2) + α(g;x2)− α(g′g;x2) = α(g′; gx1) + α(g;x1)− α(g′g;x1),

and since x1 and x2 are two arbitrary points of X, this expression is (1.15) and de�nes a function
ξ(g′, g), independent of x.

It is shown by Levy-Leblond in the previous reference that if X is a homogeneous space of
G, i.e., if there exists a subgroup H of G such that X = G/H, then, the exponent ξ is equivalent
to zero on the subgroup H, and the gauge functions for homogeneous spaces become:

α(g;x) = ξ(g, hx), (1.17)

where hx is any group element of the coset space represented by x ∈ G/H.
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For the Poincaré group P all its exponents are equivalent to zero and thus the gauge functions
when X is a homogeneous space of P are identically zero. Lagrangians of relativistic systems
whose kinematical spaces are homogeneous spaces of P can be taken strictly invariant.

However, the Galilei group G has nontrivial exponents, that are characterized by a parameter
m that is interpreted as the total mass of the system, and thus Galilei Lagrangians for massive
systems are not in general invariant under G. In the quantum formalism, the Hilbert space
of states of a massive nonrelativistic system carries a projective unitary representation of the
Galilei group instead of a true unitary representation. 12

1.4 Generalized Noether's theorem

Noether's analysis for generalized Lagrangian systems also states the following

Theorem: To every one-parameter group of continuous transformations that
leaving dynamical equations invariant, transform the action function of the system
in the form

A(δgx1, δgx2) = A(x1, x2) + λ(x2)δg − λ(x1)δg,

and where λ(x) is a function de�ned on the kinematical space, there is associated a
classical observable N , which is a constant of the motion.

This observable is written in terms of the function λ(x), of the derivatives of the
Lagrangian and of the in�nitesimal action of the group on the kinematical variables.

Let us assume the existence of a one-parameter continuous group of transformations G, of
the enlarged con�guration space (t, qi), that can be extended as a transformation group of the
whole kinematical space X. Let δg be an in�nitesimal element of G and its action on these
variables is given by:

t→ t′ = t+ δt = t+M(t, q)δg, (1.18)

qi(t) → q′i(t
′) = qi(t) + δqi(t) = qi(t) +M

(0)
i (t, q)δg, (1.19)

and its extension on the remaining kinematical variables by

q′
(1)
i (t′) = q

(1)
i (t) + δq

(1)
i (t) = q

(1)
i (t) +M

(1)
i (t, q, q(1))δg, (1.20)

and in general

q′
(s)
i (t′) = q

(s)
i (t) + δq

(s)
i (t) = q

(s)
i (t) +M

(s)
i (t, q, . . . , q(s))δg, s = 0, 1, . . . , k − 1, (1.21)

where M and M (0)
i are functions only of qi and t while the functions M

(s)
i with s ≥ 1, obtained

in terms of the derivatives of the previous ones, will be functions of the time t and of the
variables qi and their time derivatives up to order s.

For instance,

q′
(1)
i (t′) ≡ dq′i(t

′)

dt′
=
d(qi(t) +M

(0)
i δg)

dt

dt

dt′
,

but up to �rst order in δg

dt′

dt
= 1 +

dM(t, q)

dt
δg,

dt

dt′
≈ 1− dM(t, q)

dt
δg,

12 see ref.7 and also J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory
and its applications, Acad. Press, NY (1971), vol. 2, p. 221.
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and thus

q′
(1)
i (t′) = q

(1)
i (t) +

(
dM

(0)
i (t, q)

dt
− q

(1)
i

dM(t, q)

dt

)
δg,

and comparing with (1.20) we get

M
(1)
i (t, q, q(1)) =

dM
(0)
i (t, q)

dt
− q

(1)
i

dM(t, q)

dt
,

where the total time derivatives

dM(t, q)

dt
=
∂M

∂t
+
∑
j

∂M (0)

∂qj
q
(1)
j ,

dM
(0)
i (t, q)

dt
=
∂M

(0)
i

∂t
+
∑
j

∂M
(0)
i

∂qj
q
(1)
j .

The remaining M (s)
i for s > 1, are obtained in the same way from the previous M (s−1)

i .

Under δg the change of the action functional of the system is:

δA[ q ] =

∫ t′2

t′1

L(t′, q′
(s)
i (t′))dt′ −

∫ t2

t1

L(t, q
(s)
i (t))dt

=

∫ t′2

t′1

L(t+ δt, q
(s)
i (t) + δq

(s)
i (t))dt′ −

∫ t2

t1

L(t, q
(s)
i (t))dt.

By replacing in the �rst integral the integration range (t′1, t
′
2) by (t1, t2) having in mind the

Jacobian of t′ in terms of t, this implies that the di�erential dt′ = (1 + d(δt)/dt)dt, and thus:

δA[ q ] =

∫ t2

t1

L(t+ δt, q
(s)
i + δq

(s)
i )

(
1 +

d(δt)

dt

)
dt−

∫ t2

t1

L(t, q
(s)
i )dt

=

∫ t2

t1

(
L
d(δt)

dt
+
∂L

∂t
δt+

∂L

∂q
(s)
i

δq
(s)
i (t)

)
dt,

keeping only for the Lagrangian L(t+ δt, q(s) + δq(s)), �rst order terms in its Taylor expansion.
Now, in the total variation of δq(s)i (t) = q′

(s)
i (t′)−q(s)i (t) is contained a variation in the form of

the function q(s)i (t) and a variation in its argument t, that is also a�ected by the transformation
of the group, i.e.,

δq
(s)
i = q′

(s)
i (t+ δt)− q

(s)
i (t) = q′

(s)
i (t)− q

(s)
i (t) + (dq

(s)
i (t)/dt)δt

= δ̄q
(s)
i (t) + q

(s+1)
i (t)δt,

where δ̄q(s)i (t) is the variation in form of the function q(s)i (t) at the instant of time t. Taking
into account that for the variation in form

δ̄q
(s)
i (t) = ds(δ̄qi(t))/dt

s = d(δ̄q
(s−1)
i (t))/dt,

it follows that

δA[ q ] =

∫ t2

t1

(
L
d(δt)

dt
+
∂L

∂t
δt+

∂L

∂q
(s)
i

δ̄q
(s)
i (t) +

∂L

∂q
(s)
i

dq
(s)
i

dt
δt

)
dt

=

∫ t2

t1

(
d(Lδt)

dt
+

∂L

∂q
(s)
i

δ̄q
(s)
i (t)

)
dt. (1.22)



34 CHAPTER 1. LAGRANGIAN FORMALISM

Figure 1.2: Transformation of point A into A′, and the curve q(t) into q′(t′) under an
in�nitesimal transformation. the variation δq = BA′ is the sum of the part BC = q(1)δt and
the part CA′ = δ̄q, which is the variation of the function q at constant t, which we call here
the "form variation" of the function.

Making the replacements

∂L

∂qi
δ̄qi =

∂L

∂qi
δ̄qi,

∂L

∂q
(1)
i

δ̄q
(1)
i =

∂L

∂q
(1)
i

d(δ̄qi)

dt
=

d

dt

(
∂L

∂q
(1)
i

δ̄qi

)
− d

dt

(
∂L

∂q
(1)
i

)
δ̄qi,

∂L

∂q
(2)
i

δ̄q
(2)
i =

d

dt

(
∂L

∂q
(2)
i

δ̄q
(1)
i

)
− d

dt

(
∂L

∂q
(2)
i

)
δ̄q

(1)
i

=
d

dt

(
∂L

∂q
(2)
i

δ̄q
(1)
i

)
− d

dt

(
d

dt

(
∂L

∂q
(2)
i

)
δ̄qi

)
+
d2

dt2

(
∂L

∂q
(2)
i

)
δ̄qi,

∂L

∂q
(k)
i

δ̄q
(k)
i =

d

dt

(
∂L

∂q
(k)
i

δ̄q
(k−1)
i

)
− d

dt

(
d

dt

(
∂L

∂q
(k)
i

)
δ̄q

(k−2)
i

)
+ · · · ,

and collecting terms we get

δA[ q ] =

∫ t2

t1

dt

{
d(Lδt)

dt

+δ̄qi

[
∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k

dk

dtk

(
∂L

∂q
(k)
i

)]
(1.23)

+
d

dt

(
δ̄qi

[
∂L

∂q
(1)
i

− d

dt

(
∂L

∂q
(2)
i

)
+ · · ·+ (−1)k−1 d

k−1

dtk−1

(
∂L

∂q
(k)
i

)])
(1.24)

+
d

dt

(
δ̄q

(1)
i

[
∂L

∂q
(2)
i

− d

dt

(
∂L

∂q
(3)
i

)
+ · · ·+ (−1)k−2 d

k−2

dtk−2

(
∂L

∂q
(k)
i

)])
(1.25)

+ · · ·+ d

dt

(
δ̄q

(k−1)
i

[
∂L

∂q
(k)
i

])}
. (1.26)
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The terms between squared brackets are the conjugate momenta pi(s) of the generalized coordi-
nates, except the �rst one (1.23), which is the left-hand side of (1.4) and vanishes identically if
the functions qi satisfy the dynamical equations.

In ordinary Lagrangian systems that depend only on �rst order derivatives of the independent
degrees of freedom, the canonical approach associates to every generalized coordinate qi a dynamical
variable pi, called its canonical conjugate momentum and de�ned by

pi =
∂L

∂q̇i
.

As a generalization of this, for Lagrangian systems depending on higher order derivatives, the
generalized canonical formalism de�nes as generalized variables the degrees of freedom qi and their
time derivatives q(s)i up to order k − 1, i.e., the generalized variables are the kinematical variables
with the time excluded. Then each generalized variable has a canonical conjugate momentum
de�ned according to the mentioned squared brackets terms: 13

pi(1) =
∂L

∂q
(1)
i

− d

dt

(
∂L

∂q
(2)
i

)
+ · · ·+ (−1)k−1 d

k−1

dtk−1

(
∂L

∂q
(k)
i

)
(1.27)

pi(2) =
∂L

∂q
(2)
i

− d

dt

(
∂L

∂q
(3)
i

)
+ · · ·+ (−1)k−2 d

k−2

dtk−2

(
∂L

∂q
(k)
i

)
(1.28)

. . .

pi(k) =
∂L

∂q
(k)
i

(1.29)

We say that pi(s) is the canonical conjugate momentum of the variable q(s−1)
i and, as a general

rule we see that the �rst term contains the partial derivative of L with respect to q(s)i , i.e., with
respect to the �rst time derivative of the corresponding canonical conjugate generalized variable.

Now if we introduce in the integrand the variables qi that satisfy Euler-Lagrange equations,
the variation of the action functional (1.22) is transformed into the variation of the action
function along the classical trajectory, and therefore, the variation of the action function can
be written as,

δA(x1, x2) =

∫ t2

t1

d

dt

{
Lδt+

(
δ̄qipi(1) + δ̄q

(1)
i pi(2) + · · ·+ δ̄q

(k−1)
i pi(k)

)}
dt, (1.30)

with pi(s) given in (1.27)-(1.29). If we replace in (1.30) the form variation δ̄q(s)i = δq
(s)
i −q(s+1)

i δt,
then

δA(x1, x2) =

∫ t2

t1

d

dt

{
Lδt+ δq

(s)
i pi(s+1) − q

(s)
i pi(s)δt

}
dt (1.31)

with the usual addition convention. By substitution of the variations δt and δq(s)i in terms of
the in�nitesimal element of the group δg, (1.19-1.21), we get:

δA(x1, x2) =

∫ t2

t1

d

dt

{(
L− pi(s)q

(s)
i

)
M + pi(s)M

(s−1)
i

}
δgdt, (1.32)

with the following range for repeated indexes for the addition convention, i = 1, . . . , n, s =
1, . . . , k, u = 0, 1, . . . , k − 1,

In the above integral we are using the solution of the dynamical equations, and therefore
the variation of the action function is

δA(x1, x2) = A(δgx1, δgx2)−A(x1, x2).

13 E.T.Whittaker, Analytical Dynamics, Cambridge University Press, Cambridge (1927), p. 265.
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If it happens to be of �rst order in the group parameters in the form

δA(x1, x2) = λ(x2)δg − λ(x1)δg, (1.33)

then equating to (1.32) we can perform the trivial time integral on the right hand side. By
considering that the group parameters δg are arbitrary, rearranging terms depending on t1 and
t2 on the left- and right-hand side, respectively, we get several observables that take the same
values at the two arbitrary times t1 and t2. They are thus constants of the motion and represent
the time conserved physical quantities,

N = λ(x)−
(
L− pi(s)q

(s)
i

)
M − pi(s+1)M

(s)
i , (1.34)

where the term within brackets H = pi(s)q
(s)
i − L is the generalized Hamiltonian. It is writen

as the product of each generalized momentum times the time derivative of the corresponding
conjugate generalized variable minus the Lagrangian, and �nally

N = λ(x) +HM(t, q)− pi(s)M
(s−1)
i (t, q, . . . , q(s)). (1.35)

If the symmetry group has r parameters, there exist r constants of the motion related to the cor-
responding in�nitesimal transformations (1.33) of the action function under the corresponding
r-parameter Lie group.

The di�erent momenta are expressed in terms of the functions Fi(x, ẋ) of the expansion of
the Lagrangian (1.8) in terms of the derivatives of the kinematical variables.

For example, if we have a Lagrangian which depends up to the second derivative of a degree
of freedom r, L(t, r, dr/dt, d2r/dt2) ≡ L(t, r, u, a), and L̃(t, r, u, ṫ, ṙ, u̇). The Lagrangian L̃ can be
written as

L̃ =
∂L̃

∂ẋi
ẋi = Fi(x, ẋ)ẋi = T ṫ+Rṙ + Uu̇,

where the functions T , R and U are those partial derivatives Fi(x, ẋ) of L̃, which are homogeneous
functions of zero-th degree of the derivatives ẋi, and therefore they are functions of (t, r, u, a). The
kinematical variables are, x ≡ {t, r, u} and the generalized variables are q ≡ {r, u} so that we have
a momentum conjugate of r, pr and another pu, the canonical conjugate of u and thus we have:

∂L

∂u
=
∂(L̃/ṫ)

∂ṙ

∂ṙ

∂u
=

1

ṫ

∂L̃

∂ṙ
ṫ =

∂L̃

∂ṙ
= R

since ṙ = uṫ. Similarly
∂L

∂a
=
∂(L̃/ṫ)

∂u̇

∂u̇

∂a
=

1

ṫ

∂L̃

∂u̇
ṫ =

∂L̃

∂u̇
= U

since u̇ = aṫ.
The momentum pr is de�ned according to (1.27-1.29)

pr =
∂L

∂u
− d

dt

(
∂L

∂a

)
=
∂L̃

∂ṙ
− d

dt

(
∂L̃

∂u̇

)
= R− dU

dt
,

and the momentum pu

pu =
∂L

∂a
= U,

which are �nally expressed in terms of the functions Fi(x, ẋ) and their time derivatives.

We see that the Noether constant of the motion N is �nally expressed in terms of the
functions Fi and their time derivatives (or in terms of the Hamiltonian H and the momenta
pi(s)), of the functionsM

(s)
i which represent the way the di�erent kinematical variables transform

under in�nitesimal transformations, δt = δgM , δq(s)i = δgM
(s)
i , and of the functions λ(x) which,

are related to the exponents of the group G. Functions Fi(x, ẋ) and their time derivatives are
homogeneous functions of zero degree in terms of the derivatives of the kinematical variables ẋi.
Functions λ(x) and M (s)

i (x) depend only on the kinematical variables. Consequently, Noether
constants of the motion are also homogeneous functions of zero degree in terms of the derivatives
of kinematical variables and thus invariant under arbitrary changes of evolution parameter.
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1.5 Elementary systems

In Newtonian mechanics the simplest geometrical object is a point of mass m. Starting
from massive points we can construct arbitrary systems of any mass and shape, and thus
any distribution of matter. The massive point can be considered as the elementary particle
of Newtonian mechanics. In the modern view of particle physics it corresponds to a spinless
particle. We know that there exist spinning objects like electrons, muons, photons, neutrinos,
quarks and perhaps many others, that can be considered as elementary particles in the sense that
they cannot be considered as compound systems of other objects. Even more, we do not �nd
in Nature any spinless elementary particle. It is clear that the Newtonian point does not give
account of the spin structure of elementary particles and the existence of spin is a fundamental
intrinsic attribute, which is lacking in Newtonian mechanics, but it has to be accounted for.

In quantum mechanics, Wigner's work 14 on the representations of the inhomogeneous
Lorentz group provides a very precise mathematical de�nition of the concept of elementary
particle. An elementary particle is a quantum mechanical system whose Hilbert space of
pure states is the representation space of a projective unitary irreducible representation of the
Poincaré group. Irreducible representations of the Poincaré group are characterized by two
invariant parameters m and S, the mass and the spin of the system, respectively. By �nding
the di�erent irreducible representations, we can obtain the quantum description of massless and
massive elementary particles of any spin.

The very important expression of the above mathematical de�nition, with physical conse-
quences, lies in the term irreducible. Mathematically it means that the Hilbert space is an
invariant vector space under the group action and that it has no other invariant subspaces. But
it also means that there are no other states for a single elementary particle than those that
can be obtained by just taking any arbitrary vector state, form all its possible images in the
di�erent inertial frames and �nally produce the closure of all �nite linear combinations of these
vectors.

We see that starting from a single state and by a simple change of inertial observer, we
obtain the state of the particle described in this new frame. Take the orthogonal part of this
vector to the previous one and normalize it. Repeat this operation with another kinematical
transformation acting on the same �rst state, followed by the corresponding orthonormalization
procedure, as many times as necessary to �nally obtain a complete orthonormal basis of the
whole Hilbert space of states. We see here the idea of the atomic principle. There are no more
states than the possible kinematical modi�cations of any one of them. If the elementary particle
changes its state, it is possible to �nd another inertial observer who describes the particle in
the same state as before the modi�cation.

In the Lagrangian formulation if we prepare the particle in the initial state x1 to evolve to
the �nal state x2, this �nal state and any intermediate state can always be obtained by means
of a change of inertial observer, i.e., x2 = gx1, for some element g of the kinematical group
G. This is not possible for any arbitrary system. This is what distinguishes an elementary
system from another one which is not elementary. The manifold X, the kinematical space must
ful�ll this restriction, that given any two points on it it is always possible to �nd a kinematical
transformation that links them. We thus arrive to the

De�nition: A classical elementary particle is a Lagrangian system whose
kinematical space X is a homogeneous space of the kinematical group G.

The Galilei and Poincaré groups are ten-parameter Lie groups and therefore the largest
homogeneous space we can �nd for these groups is a ten-dimensional manifold. The variables

14 see ref.1.
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that de�ne the di�erent homogeneous spaces will share the same domains and dimensions as the
corresponding variables we use to parameterize the group. Both groups, as we shall see later,
are parameterized in terms of the following variables (b,a,v,α) with domains and dimensions
respectively like b ∈ R that represents the time parameter of the time translation and a ∈ R3, the
three spatial coordinates for the space translation. Parameter v ∈ R3 are the three components
of the relative velocity between the inertial observers, restricted to v < c in the Poincaré case.
Finally α ∈ SO(3) are three dimensionless variables which characterize the relative orientation
of the corresponding Cartesian frames and whose compact domain is expressed in terms of a
suitable parameterization of the rotation group.

In this way the maximum number of kinematical variables, for a classical elementary particle,
is also ten. We represent them by x ≡ (t, r,u,α) with the same domains and dimensions as
above and interpret them respectively as the time t,position r, velocity u and orientation
α of the particle.

Because the Lagrangian must also depend on the next order time derivatives of the kine-
matical variables, we arrive at the conclusion that L must also depend on the acceleration and
angular velocity of the particle. The particle is a system of six degrees of freedom, three r,
represent the position of a point and other three α, its orientation in space. We can visualize
this by assuming a system of three orthogonal unit vectors linked to point r as a body frame.
But the Lagrangian will depend up to the second time derivative of r, or acceleration of that
point, and on the �rst derivative of α, i.e., on the angular velocity. The Galilei and Poincaré
groups lead to generalized Lagrangians depending up to second order derivatives of the position.

By this de�nition it is the kinematical group G that implements the Restricted Relativity
Principle which completely determines the structure of the kinematical space where the La-
grangians that represent classical elementary particles have to be de�ned. Point particles are
particular cases of the above de�nition and their kinematical space is described by the variables
(t, r), time and position. Given any two points (t1, r1) and (t2, r2), con t2 > t1, a spacetime
translation transform one into the other, so that this kinematical space is a homogeneous space
of both Galilei and Poincaré group. In this way, the proposed formalism can be accommodated
to any symmetry group. It is the proper de�nition of this group which contains the physical
information of the elementary particles, but this group is still unveiled.

Example: Galilei point particle. It is a mechanical system of three degrees of freedom r,
the position of the point. It has four kinematical variables, x ≡ {t, r}. If we de�ne the initial
state by x1 ≡ {t1, r1} and the �nal state of the evolution x2 ≡ {t2, r2}, we see that a spacetime
translation transform one into the other, and therefore the kinematical space is a homogeneous
space of the Galilei group. It is an elementary particle according to the above de�nition. Of
course, the spacetime translation subgroup is also a subgroup of the Poincaré group, and thus this
point particle is also an elementary particle from the relativistic point of view. We shall obtain in
the next chapter that, if the evolution is free, the Lagrangian is

L0 =
1

2
m

(
dr

dt

)2

, L̃0 =
1

2
m

ṙ2

ṫ

in terms of the independent degrees of freedom and also a homogeneous function of �rst degree in
terms of the derivatives of the kinematical variables. We see that L̃0 depends on the derivatives of
all kinematical variables. Euler-Lagrange dynamical equations obtained from L0 are d2r/dt2 = 0,
and we have to use as boundary conditions that the solution goes through the initial and �nal
states x1 y x2, respectively,

r(t) = r1 +
r2 − r1

t2 − t1
(t− t1), t ∈ [t1, t2].

In terms of some arbitrary evolution parameter τ , the solution is:

t(τ) = t1 + (t2 − t1)(τ − τ1), r(τ) = r1 + (r2 − r1)(τ − τ1), τ ∈ [τ1, τ2].

If we rede�ne the evolution parameter as θ = (τ − τ1)/(τ2 − τ1), we can have a dimensionless
evolution parameter such that the initial and �nal instants correspond to θ1 = 0 and θ2 = 1, and



1.6. METRIC STRUCTURE OF THE KINEMATICAL SPACE 39

therefore
t(θ) = t1 + (t2 − t1)θ, r(θ) = r1 + (r2 − r1)θ, θ ∈ [0, 1].

The action function, i.e., the integral of the Lagrangian along the classical path is

A(x1, x2) =
m

2

∫ t2

t1

(
r2 − r1

t2 − t1

)2

dt =
m

2

(r2 − r1)
2

t2 − t1
,

which is �nally expressed in terms of the end points variables and of the intrinsic characteristic
parameter of this spinless object, the mass m.
Noether's theorem leads us to �nd that the energy and linear momentum are expressed in terms
of the partial derivatives of L̃0, in the form:

H = −∂L̃0

∂ṫ
=

1

2
m

ṙ2

ṫ2
=
m

2

(
dr

dt

)2

, p =
∂L̃0

∂ṙ
= m

ṙ

ṫ
= m

dr

dt
.

They are homogeneous functions of zero degree in terms of the derivatives of the kinematical

variables, and therefore functions of the time derivatives of the degrees of freedom. These conserved

magnitudes are independent of the evolution parameter τ .

1.5.1 Aplication to the simplest kinematical groups

Let us consider that physical laws are invariant only under spacetime translations. It is
equivalent to assume that the kinematical group os spacetime transformations associated to
the Restricted Relativity Principle is just the group G ≡ {R4,+} the four-parameter group of
spacetime translations:

t′ = t+ b, r′ = r + a.

In this case the largest homogenous space of this group is the group itself, and therefore the
kinematical variables are (t, r). We are describing the point particle localized at point r. Be-
cause the only symmetries are translations, Noether's theorem only produces four conserved
quantities, the observables H and P , energy and linear momentum, respectively, and there-
fore angular momentum conservation is not described in this restricted symmetry group. The
Lagrangian for this system will be a function of (t, r,u), being u the velocity of point r.

Let us go further and assume that physical laws are also invariant under spatial rotations.
Then the group G is given by

t′ = t+ b, r′ = R(α)r + a,

which depends on seven parameters. The largest homogeneous space is the whole group and
we have as kinematical variables (t, r,α) and we say that the elementary particle is localized at
point r, and has an orientation described by the variables α. The Lagrangian for this particle
will be a function of (t, r,u,α,ω), and will depend, in addition to the velocity of point r,
u = dr/dt, of the velocity of the change of orientation or angular velocity ω. For this particle
Noether's theorem gives us an angular momentum observable. This particle has spin. We are
describing something formally equivalent to a rotating rigid body.

The next step is to consider that the kinematical group also contains pure inertial transfor-
mations of constant velocity (boosts). We have three new parameters which can enlarge our
kinematical space with three new kinematical variables with physical dimensions of velocity.
The Lagrangian will also depend on the acceleration. We shall analyze in the next chapters this
possibility by assuming that the kinematical group is either the Galilei group G or the Poincaré
group P.

1.6 Metric structure of the kinematical space

The manifold X, the kinematical space of any Lagrangian mechanical system, has always a
metric structure. It is a Finsler space in which the metric is a function not only of the point x,
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but also of the derivatives ẋ. In fact, since L̃(x, ẋ) is a homogeneous function of �rst degree in
terms of the variables ẋi, it implies that L̃2 is a homogeneous function of degree 2 of the variables
ẋi. Then if we replace in L̃2(x, ẋ) each ẋi by λẋi ≡ yi, L̃2(x, λẋ) = L̃2(x, y) = λ2L̃2(x, ẋ). If we
derivate twice with respect to λ and we make afterwards λ = 1,

2λL̃2(x, ẋ) =
∂L̃2(x, y)

∂yi
ẋi, 2L̃2(x, ẋ) =

∂2L̃2(x, y)

∂yi∂yj
ẋiẋj

∣∣∣∣∣
λ=1

we get

L̃2(x, ẋ) = gij(x, ẋ)ẋ
iẋj , gij(x, ẋ) =

1

2

∂2L̃2

∂ẋi∂ẋj
= gji

where the functions gij(x, ẋ) are homogeneous functions of zeroth degree of the ẋi and therefore
they only involve time derivatives. But in addition of being functions of the point x, they are,
in general, functions of the ẋ. A metric space whose metric is also a function of the derivatives
of the variables of the manifold is called a Finsler space15 16.

Since ±L̃ = ±
√
L̃2, the variational problem in the kinematical space X can be rewritten as∫ τ2

τ1

L̃(x, ẋ)dτ =

∫ τ2

τ1

√
L̃2(x, ẋ)dτ =

∫ τ2

τ1

√
gij(x, ẋ)ẋiẋjdτ =

=

∫ x2

x1

√
gij(x, ẋ)dxidxj =

∫ x2

x1

ds,

where we can interpret ds as the arc length of the curve joining two close points in the kine-
matical space, and the above integral as the length between the end points of the path followed
by the system in the kinematical space X.

The variational problem of making extremal the action of the mechanical system is equiva-
lent to consider that the distance, in the kinematical space X between x1 and x2, has to be a
minimum, and our variational formalism is equivalent to a geodesic problem in a metric space.
The evolution of any dynamical system between the initial x1 and �nal x2, follows a geodesic
in the space X. This is independent of whether the system is a free particle or any interacting
arbitrary system. What happens is that the di�erence between a free particle and an interact-
ing particle, is that the corresponding Lagrangians, and thus the metrics, are di�erent. Any
interaction modi�es the metric of the kinematical space of any free particle.

Under transformations of the kinematical space which leave the Lagrangian invariant, the
magnitudes gij transform like the covariant components of a second rank symmetric tensor.

Given the Euler-Lagrange dynamical equations of a mechanical system, the variational for-
malism implies that we have to search for solutions of these equations passing through the
extremal points x1 and x2. Given two arbitrary points it may happen that no solution exists
joining them. If we prepare the system at the initial point x1, we shall say that the point x2 is
caussally connected with x1, if Euler-Lagrange dynamical equations have a solution between
them. Otherwise we shall say that they are caussally disconnected and therefore it is impossible
to bring, by dynamical evolution, the system from state x1 to the state x2. Since L̃2 > 0,
the metric of the space is de�nite positive between the states caussally connected, and if it
happens that this form between two close points does not satisfy L̃2 > 0, they will be caussally
disconnected and the evolution between them is physically impossible.

15G.S. Asanov, Finsler geometry, Relativity and Gauge theories, (Reidel Pub. Co, Dordrecht 1985); H. Rund,
The Hamilton-Jacobi theory in the calculus of variations, (Krieger Pub. Co., N.Y 1973). H. Rund, The di�erential
geometry of Finsler spaces, (Springer, Berlin, 1959).

16 Paul Finsler Born in Heilbronn, Neckar, Germany, the 11th of April of 1894 and died in
Zurich, Switzerland, the 29th April of 1970. He devoted mainly to di�erential geometry and set
theory. It was Elie Cartan in 1934 who published a book entitled Les espaces de Finsler, where he
named Finsler spaces to the metric spaces we are going to consider.
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For the free relativistic point particle of mass m, the Lagrangian is written as

L̃0 = ±mc
√
ẋ20 − ṙ2, x0 = ct.

If we divide L̃0 by the constant mc, the Lagrangian has now dimensions of length and the metric

is clearly g(0)µν = ηµν , with ηµν = diag(1,−1,−1,−1). Since L̃2 > 0 this implies that at any τ it

must hold that any point joining with x1 must satisfy ηµν ẋµẋν > 0. Then the points caussally

connected with it are those of the interior of the forward light cone. The remaining points of

the kinematical space (which for the point particle is the spacetime) are caussally disconnected.

These are the points of the past and those on the light cone and outside it. In these cases L̃2 ≤ 0,

Euler-Lagrange equations do not ful�ll physical solutions.

Given the general structure of any Lagrangian L̃ = Fi(x, ẋ)ẋ
i, with Fi = ∂L̃/∂ẋi, is easy to

see that the metric coe�cients are written as

gij =
1

2

∂2L̃2

∂ẋi∂ẋj
=

∂

∂ẋi

(
L̃
∂L̃

∂ẋj

)
= FiFj + L̃

∂2L̃

∂ẋi∂ẋj
= FiFj + L̃

∂Fi

∂ẋj
. (1.36)

In general, the kinematical space will have a metric which depends on x if the Lagrangian is a
function of x, but in any case it will always be a function of ẋi.

In the case of the free relativistic particle, the metric does not depend on x nor ẋ as it
corresponds to a free system on spacetime where all points and all velocities are equivalent.
But if we introduce an interaction and the intensity of this interaction depends on the velocity,
as is the case when we have a magnetic �eld, the homogeneity of spacetime is destroyed, the
metric is no longer uniform, and it will be, in general, a function of the velocity of the point.

For example, the point particle of massm and electric charge e in an external electromagnetic
�eld, is described by the Lagrangian L̃ = L̃0+ L̃I , where the free Lagrangian L̃0 = −pµ(x)ẋµ =

−Hṫ+p·ṙ, and the interaction Lagrangian L̃I = −eAµ(x)ẋ
µ, such that the variational problem,

according to (1.36), is equivalent to a geodesic problem on spacetime with a metric,

gµν(x, ẋ) = m2c2ηµν + e2AµAν + e(pµAν + pνAµ) + eAσẋ
σ ∂pµ
∂ẋν

. (1.37)

The modi�cation of the metric vanishes when e → 0. Since pµ does not depend explicitely on
the variables x, the dependence of the metric on the point x, is through the dependence of the
external potentials Aµ(x). But the metric depends on the variables ẋ through the dependence
on pµ and its derivatives. In the low velocity limit, when u/c → 0, p0 = mc and pi = 0, we
get a Riemannian metric, such that if we divide L̃ by a global factor mc and calling k = e/mc,
L̃I = −kAµ(x)ẋ

µ, and thus

g00(x) = 1 + k2A2
0 + 2kA0 = (1 + kA0(x))

2 , gii(x) = −1− kA0(x) + k2A2
i (x), i = 1, 2, 3,

g0i(x) = kAi(x) + k2A0(x)Ai(x), gij(x) = k2Ai(x)Aj(x), i ̸= j = 1, 2, 3.

In a uniform electric �eld, A0 = E · r/c, A = 0, and the nonvanishing coe�cients of the
Riemannian approach are g00 = (1 + eE · r/mc2)2, gii = −(1 + eE · r/mc2). If what we have
is a uniform magnetic �elf, A0 = 0, A = (r × B)/2, g00 = 1, gii = −1 + (e(r × B)/2mc)2i ,
g0i = e(r ×B)i/2mc and �nally gij = (e(r ×B)/2mc)i(e(r ×B)/2mc)j , with i ̸= j. In some
interaction with only scalar potential, like in the usual gravitational �eld, mA0 = mV (x)/c,
and g00 = (1 + V (x)/c2)2, gii = −(1 + V (x)/c2), as we shall see in the examples we are going
to analyze in the coming section.

We have two ways of determining the dynamical equations of any mechanical system. One
is by the usual Euler-Lagrange equations obtained from the Lagrangian L̃. For the charged
point particle of this example, they are

ṗµ = eFµν(x)ẋ
ν , Fµν = ∂µAν(x)− ∂νAµ(x).
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Another alternative is as the geodesic equations constructed from the metric gij , given in (1.37),
which is obtained from L̃2 by taking the second order derivatives with respect to ẋµ. The
geodesic equations are

d2xµ

dτ2
+ Γµ

νσẋ
ν ẋσ = 0,

where the Finslerian Christo�el symbols Γµ
νσ are expressed in terms of the derivatives of the

metric in the same way as in the Riemannian case,

Γµ
νσ =

1

2
gµρ

(
∂gρν
∂xσ

+
∂gρσ
∂xν

− ∂gνσ
∂xρ

)
= Γµ

σν .

The contravariant components of the metric tensor are de�ned as usual gµρgρν = δµν .
The spacetime X is, in general, a Finsler space with torsion. The Cartan torsion tensor, is

a symmetric tensor de�ned by

Cµνλ =
∂gµν
∂ẋλ

= eAµ
∂pν
∂ẋλ

+ eAν
∂pµ
∂ẋλ

+ eAλ
∂pµ
∂ẋν

+ eAσẋ
σ ∂2pµ
∂ẋν∂ẋλ

.

Riemann spaces are Cartan torsion free spaces, because the metric is independent of the deriva-
tives ẋ.

Therefore, to postulate, as is usually done by General Relativity, that what gravity produces
is a modi�cation of the metric of the kinematical space of the spinless point particle, i.e., of
spacetime, such that the modi�ed metric coe�cients gµν(x) are only functions of the point x, is
a very strong mathematical restriction about the possible modi�cations of the metric, because
the metric coe�cients can be, in general, functions of the ẋ. That is why we consider that
General Relativity, in its actual status, is a kind of low velocity limit of a more general theory
of gravitation, in which the metric will be also velocity dependent. The second restriction is that
there are no spinless elementary particles in nature, so that what one expects is that gravity
would modify the metric of the kinematical space of the spinning particle. But this space is
larger than spacetime as we shall see in this lecture course. Our conclusion is that General
Relativity is a low velocity theory of gravitation of spinless matter.

1.6.1 Examples of Finsler spaces

In the �gure 1.3 we show possible motions of a charged point particle in its kinematical
space, which in this case is spacetime, under four di�erent dynamical situations. 17

The four trajectories are geodesics of spacetime but with respect to four di�erent Finslerian
metrics. In (a) the motion is free, the trajectory is a straight line; in (b) the particle is under
a uniform magnetic �eld, and the trajectory has curvature and torsion. In this case the Finsler
metric of spacetime is di�erent than Minkowski metric. The presence of a magnetic �eld has
modi�ed the metric. In (c) it is the same free trajectory but as seen by an accelerated observer.
According to the equivalence principle, it is equivalent to the description in the presence of
a uniform gravitational �eld. Also in this case the metric has been modi�ed. Finally, in (d)
we analyze the motion a point particle under the Newtonian potential produced by a mass M
located at the origin of the inertial reference frame in which the analysis is done.

In these examples, relative to the motion of a point particle of massm, we are going to change
the scale of the Lagrangian by dividing by the factor mc, and thus L̃ will have now dimensions
of length. We like to mention that if the evolution is expressed in terms of some dimensionless

17This subject corresponds to a talk lectured by the author at IAC in November 2014,
in Spanish. (http://iactalks.iac.es/talks/view/703) and a videoconference, in English, at VIA,
(http://viavca.in2p3.fr/site.html) in January 2015.
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Figure 1.3: Four possible motions of the point particle in its kinematical space between the
points x1 and x2, (a) free case, (b) under a uniform magnetic �eld B, (c) free motion as seen
by an accelerated observer or motion under a uniform gravitational �eld g. The example
(d) is the particle under the Newtonian gravitational �eld of a point mass M located at the
origin of a reference frame. In the four cases the kinematical space is the same, spacetime,
but with four di�erent Finslerian metrics, which produce di�erent geodesics and which in
three-dimensional space are, respectively, (a) a straight line with no curvature and torsion,
(b) a line with curvature and torsion, and in (c) and (d) a �at trajectory with curvarture.

parameter τ , the metric coe�cients gµν are dimensionless, since spacetime coordinates have
dimension of length.

In the case (a) the Lagrangian of the free particle is:

L̃0 = ±
√
ẋ20 − ṙ2 = Fµẋ

µ, L̃2
0 = gµν ẋ

µẋν = c2ṫ2 − ṙ2 > 0,

the metric is gµν = ηµν with ηµν = diag(1,−1,−1,−1). It is constant and corresponds to the
Minkowski metric.

In the case (b), let us assume a uniform magnetic �eld of intensity B along the direction of
OZ axis. We can take as the potential vector A = (0, Bx, 0) and scalar potencial A0 = 0. The
Lagrangian for the point particle under this �eld is

L̃B = −
√
ẋ20 − ṙ2+

eB

mc
xẏ = Fµẋ

µ, F0 = −p0, F1 = −p1, F2 = −p2+(eB/mc)x, F3 = −p3.

which leads to the dynamical equation under the external Lorentz force in a magnetic �eld:

dp

dt
= eu×B.

p0 =
ẋ0√
ẋ20 − ṙ2

=
c√

c2 − u2
, pi =

−ẋi√
ẋ20 − ṙ2

=
−ui√
c2 − u2

According to (1.37) with A0 = A1 = A3 = 0, A2 = Bx, if we call k = eB/mc, the variational
formulation implies that spacetime has a Finsler metric:

g00 = 1 +
kxu2uy

(c2 − u2)3/2
, g11 = −1 +

kxuy

(c2 − u2)3/2
(
c2 − u2y − u2z

)
,
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g22 = −1 + k2x2 +
kxuy

(c2 − u2)3/2
(
3c2 − 3u2x − 2u2y − 3u2z

)
,

g33 = −1 +
kxuy

(c2 − u2)3/2
(
c2 − u2x − u2y

)
,

g01 = − kxcuxuy

(c2 − u2)3/2
, g02 = − kxc

(c2 − u2)3/2
(c2 − u2x − u2z), g03 = − kxcuyuz

(c2 − u2)3/2

g12 =
kxux

(c2 − u2)3/2
(
c2 − u2x − u2z

)
, g13 =

kx

(c2 − u2)3/2
uxuyuz, g23 =

kxuz

(c2 − u2)3/2
(
c2 − u2x − u2z

)
,

We see that the metric coe�cients are functions of the point, i.e, of the variable x, but they
are also functions of the velocity of the particle ux, uy, uz, i.e., gµν(x, ẋ). If the velocity of the
point is negligible with respect to the speed of light c, the coe�cientes of the metric become:

g00 = 1, g02 = −kx, g11 = −1, g22 = −1 + k2x2, g33 = −1,

vanishing the remaining ones. The dependence on the velocity of the metric coe�cients has dis-
sapeared and the metric is now a Riemannian metric. With this restricted metric the variational
problem is related to the restricted Lagrangian L̃R

L̃2
R = c2ṫ2 − ṙ2 + k2x2ẏ2 − 2kxcṫẏ,

which, when compared with the original, it lacks an extra term:

L̃2
B = L̃2

R − 2kxẏ
(√

c2ṫ2 − ṙ2 − cṫ
)
,

and therefore the force acting on the particle is no longer the Lorentz force. This metric is not a
vacuum solution of Einstein's equations in General relativity, but it leads to a curvature scalar
and Einstein's tensor

R =
−k2

2
, Gtt =

3k2

4
, Gty = −3k3x

4
, Gxx =

k2

4
, Gyy =

1

4
(k2 + 3k4x2), Gzz =

−k2

4
,

and the nonvanishing Christo�el symbols are

Γt
tx = k2x/2, Γt

xy = −1

2
k(1+k2x2), Γx

ty = −k/2, Γx
yy = k2x, Γy

tx = k/2, Γy
xy = −k2x/2.

With the Lorentz force, dynamical equations are

dux
dt

=
eB

mγ(u)
uy =

1

γ(u)
kcuy,

duy
dt

= − eB

mγ(u)
ux = − 1

γ(u)
kcux,

duz
dt

= 0,

which lead to uxdux/dt + uyduy/dt + uzduz/dt = u · du/dt = 0, and thus the motion is at a
velocity of constant modulus, the factor γ(u) is constant and the particle goes along OZ axis
with a constant velocity and also rotates on the plane XOY , with constant angular velocity
ω = eB/γ(u)m. However the geodesic equations obtained from the restricted metric associated
to L̃R are

dux
dt

= kcuy(1− kxuy/c),
duy
dt

= −kcux(1− kxuy/c),
duz
dt

= 0,

which also lead to a motion of velocity of constant modulus u. Because we are taking the low
velocity limit we have to replace in these equations u/c → 0, and γ(u) → 1, and in this case
they approximate to the previous ones . For the restricted Lagrangian L̃R, the force acting on
the particle becomes the Lorentz force in the low velocity limit.
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In the example (c) in a uniform gravitational �eld, the dynamics is described by the La-
grangian

L̃g = L̃0 +
g · r
c2

cṫ,

which leads to the dynamical equations dp/dt = g, with p = γ(u)u, independent of the mass
of the particle. This Lagrangian, from the geodesic point of view corresponds to an evolution
on spacetime with a Finsler metric given by:

g00 = 1 +
(g · r
c2

)2
− c(2c2 − 3u2)

c(c2 − u2)3/2
(g · r)
c2

,

gii = −1 +
(c2 + u2i − u2)

c(c2 − u2)3/2
(g · r)
c2

, i = 1, 2, 3

g0i = − u2ui

(c2 − u2)3/2
(g · r)
c2

, i = 1, 2, 3

gij =
cuiuj

c(c2 − u2)3/2
(g · r)
c2

, i ̸= j = 1, 2, 3

The term g ·r has dimensions of velocity squared. If the velocity of the point is negligible when
compared with c, the nonvanishing coe�cients are

g00 = 1 +
(g · r
c2

)2
− 2(g · r)/c2, gii = −1 + (g · r)/c2, i = 1, 2, 3

i.e.,

g00 =
(
1− g · r

c2

)2
, gii = −

(
1− g · r

c2

)
, i = 1, 2, 3,

where the component g00 is the same as that of the Rindler metric, corresponding to an uniformly
accelerated observer, or to the presence of a uniform gravitational �eld.

The last example (d) represents the point particle under the gravitational Newtonian po-
tential of a point mass M located at the origin of the reference frame. The Lagrangian is

L̃N = L̃0 +
GM

c2r
cṫ.

As usual, taking into account (1.36) we get the metric of a point particle under a central
potential. This metric is

g00 = 1 +

(
GM

c2r

)2

− c(2c2 − 3u2)

(c2 − u2)3/2
GM

c2r
,

gii = −1 +
c(c2 − u2 + u2i )

(c2 − u2)3/2
GM

c2r
, i = 1, 2, 3

g0i = − u2ui

(c2 − u2)3/2
GM

c2r
, i = 1, 2, 3,

gij =
cuiuj

(c2 − u2)3/2
GM

c2r
, i ̸= j = 1, 2, 3.

It is a Finsler metric, which in the case of a low velocity with respect to c, the only coe�cients
which survive are the diagonal components.

g00 =

(
1− 2GM

c2r
+
G2M2

c4r2

)
=

(
1− GM

c2r

)2

,
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the last term goes as G2/c4 and if is considered negligible, this metric coe�cient is that of the
Schwarzschild's metric. The remaining terms are

gii = −
(
1− GM

c2r

)
,

while in the metric of Schwarzschild they will be (1−2GM/c2r)−1. We see that the modi�cation
of the metric coe�cients, in the low velocity limit, di�er from the Minkowski metric in a term
which is the gravitational potential of the central mass M , divided by c2.

This low velocity limit of the Finsler metric in a Newtonian potential looks

ds2 =

(
1− GM

c2r

)2

c2dt2 −
(
1− GM

c2r

)
(dr2 + r2(dθ2 + sin2 θdϕ2))

which is a rotation invariant, static Riemannian metric. If we call Rs = 2GM/c2 to the
Schwarzschild radius, the curvature scalar and Einstein tensor become:

R =
R2

s

r(2r −Rs)3
,

Gtt =
3R2

s

8r3(2r −Rs)
, Grr =

(24r − 7Rs)Rs

4r2(2r −Rs)2
, Gθθ =

(Rs − 3r)Rs

(2r −Rs)2
, Gϕϕ =

(Rs − 3r)Rs sin
2 θ

(2r −Rs)2
,

and therefore it is not a vacuum solution of Einstein's equations of General Relativity.
In the two gravitational examples, the Riemanian approach of the metric has produced

that the Minkowski coe�cient g00 of the free particle has been transformed into g′00 = g00(1 +
V (r)/c2)2 and the gii in the form g′ii = gii(1 + V (r)/c2), where in both cases V (r) is the
gravitational potential.

1.6.2 Causality Principle

Among the fundamental principles analyzed, the Causality Principle has not been in-
cluded. Basically, the contents of this principle is the idea that things do not happen by them-
selves, but rather that any physical e�ect is the result of a previous cause which determines
it. We shall see that, in a certain sense, this principle is already contained in the Variational
Principle.

We can consider that the Causality Principle is the restriction on the kinematical space X
that the Finsler metric should be de�nite positive. This condition de�nes in the kinematical
space X, once a point is �xed, two submanifolds, one causally connected with that point and
another disconnected. If we select an initial point for the variational description, one cannot
arbitrarily select another point as the �nal state. Only those points belonging to the submanifold
causally connected. First of all we have the arrow of time, so that ṫ(τ) > 0, or that t2 > t1, and
another that gijdxidxj = L̃2dτ2 > 0. If the Atomic Principle determines that the kinematical
space X, for an elementary particle is necessarily a homogeneous space of the kinematical group,
the Causality Principle restricts this space, once the initial state is �xed, to a submanifold. For
instance, for the point particle, once the state x1 is �xed, the evolution takes place inside the
future light cone of point x1. Given two points x1 and x2 of the kinematical space X, there
exists a group element g ∈ G, such that x2 = gx1, but this does not imply that they are causally
connected. The two points x1 ≡ (t1, r1) and x2 ≡ (t1, r2) with the same time, are linked by a
space translation, but we cannot arrive dynamically to x2 coming from x1, because the velocity
should be in�nite. Between these two points the Minkowski distance

∫
ηµνdx

µdxν < 0. Their
separation is space-like.
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This con�rms that only between those points where gijdxidxj > 0 is de�nite positive, the
evolution is possible, while the remaining points will be causally disconected. For a massless
point particle, the connected manifold is the future light cone, where the metric vanishes.

The homogenenity of X means that all points represent physically equivalent states. When
one is �xed, the remaining states represent the description of the particle for all other inertial
observers. Is the de�nite positive character of the action squared between two points what
justi�es that the evolution between those points is allowed.

1.7 Summary of the formalism

1. For a system of n degrees of freedom qi whose Lagrangian depends up to the time
derivatives of order k, q(k)i = dkqi/dt

k, L(t, qi, q
(1)
i , . . . , q

(k)
i ), the kinematical variables

are xj ≡ {t, qi, q(1)i , . . . , q
(k−1)
i }, i.e., the time, the degrees of freedom and their time

derivatives up to order k − 1. The generalized variables are {qi, q(1)i , . . . , q
(k−1)
i }, i.e., the

kinematical variables with the time excluded.

2. Each generalized variable has associated a canonical conjugate momentum, de�ned by

pi(s) =
∂L

∂q
(s)
i

− d

dt

(
∂L

∂q
(s+1)
i

)
+ · · ·+ (−1)k−s d

k−s

dtk−s

(
∂L

∂q
(k)
i

)
, s = 1, . . . , k

pi(1) is the conjugate momentum of qi, pi(2) is the conjugate momentum of q(1)i and �nally

pi(k) is the conjugate momentum of the q(k−1)
i .

3. In a parametric description of the evolution, t(τ), qi(τ), the Lagrangian L̃ = Lṫ, where ˙
represents the derivative with respect to the parameter τ , is a function of the kinematical
variables x and their �rst order τ -derivative, ẋ, L̃(x, ẋ).

4. The action function is the value of the action functional along the path that satis�es
Euler-Lagrange equations.

5. The action function is an explicit function of all kinematical variables x1 and x2 at the
boundary points of the trajectory on the kinematical space X, A(x1, x2).

6. The evolution parameter τ can be taken dimensionless, and therefore L̃ has dimensions
of action.

7. The Lagrangian L̃ can be obtained from the action function through the limit

L̃(x, ẋ) = lim
y→x

∂A(x, y)

∂yi
ẋi.

8. The Lagrangian L̃ is not an explicit function of τ , but it is a homogeneous function of
degree 1 of the derivatives ẋi of all kinematical variables. This allows us to write the
Lagrangian as a sum of as many terms as kinematical variables

L̃(x, ẋ) =
∂L̃(x, ẋ)

∂ẋi
ẋi = Fi(x, ẋ)ẋi.

9. The functions Fi(x, ẋ) are homogeneous functions of zero degree of the ẋi, and thus they
are functions of the time derivatives of the generalized variables. Since each term Fiẋi
has dimensions of action, each Fi has the complementary dimension of the corresponding
variable xi.



48 CHAPTER 1. LAGRANGIAN FORMALISM

10. The de�nite positive function L̃2, can always be written as

L̃2 = gij(x, ẋ)ẋiẋj , gij(x, ẋ) =
1

2

∂2L̃2

∂ẋi∂ẋj
= gji,

where the coe�cients gij = gji, are homogeneous functions of degree 0 of the derivatives
ẋi.

11. The kinematical space is always a Finsler metric space. Since∫ τ2

τ1

L̃dτ = ±
∫ τ2

τ1

√
L̃2 dτ = ±

∫ τ2

τ1

√
gij(x, ẋ)ẋiẋj dτ = ±

∫ τ2

τ1

√
gijdxidxj = ±

∫
ds

the variational problem is equivalent to a geodesic problem on the kinematical space X,
with a metric gij(x, ẋ) which is a function of the point x and of the derivatives ẋi.

12. If the mechanical system is an elementary particle, then it is necessary that the kinematical
space X be a homogeneous space of the kinematical group G associated to the Restricted
Relativity Principle.

13. The kinematical space of the point particle is spacetime. This manifold is always a metric
space with a metric more general than a Riemannian metric. To admit, as is done in Gen-
eral Relativity, that the spacetime manifold of the test particle is a Riemannian manifold,
is a restriction about a more general situation. The kinematical space of the free point
particle is Minkowski spacetime.

14. The invariance of dynamical equations under a symmetry group of transformations does
not imply that the Lagrangian and the action function are invariant. Noether's theorem
gives the relationship between the transformation of the action function A(x1, x2), under
a group which leaves invariant the dynamical equations, and the explicit construction of
the constants of the motion. These constants of the motion are written in terms of the
Lagrangian, its partial derivatives Fi(x, ẋ), and of the functions M(x) of how the kine-
matical variables transform, δt = M0(x)δg, δq

(s)
i = M

(s)
i (x)δg, under some in�nitesimal

transformation of the group of parameter δg.

N = λ(x)− (L− pi(s)q
(s)
i )M0 − pi(s)M

(s−1)
i = λ(x) +HM0 − pi(s)M

(s−1)
i ,

where pi(s) is the canonical conjugate momentum of the generalized variable q(s−1)
i and

λ(x) the function associated to the non-invariance of the Lagrangian under the group.
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1.8 Appendix: Lie groups of transformations

Let us introduce the notation and general features of the action of Lie groups on continuous
manifolds to analyze the transformation properties of the di�erent magnitudes we can work
with in either classical or quantum mechanics. We shall use these features all throughout this
book.

Let us consider the transformation of an n-dimensional manifold X, x′ = gx given by n
continuous and di�erentiable functions depending on a set g ∈ G of r continuous parameters of
the form

x′i = f i(xj ; gσ), ∀x ∈ X, ∀g ∈ G, i, j = 1, . . . , n, σ = 1, . . . , r.

This transformation is said to be the action of a Lie group of transformations if it ful�ls the
two conditions:
(i) G is a Lie group, i.e., there exists a group composition law c = ϕ(a, b) ∈ G, ∀a, b ∈ G, in
terms of r continuous and di�erentiable functions ϕσ.
(ii) The transformation equations satisfy

x′′ = f(x′; b) = f(f(x; a); b) = f(x; c) = f(x;ϕ(a, b)).

The group parametrization can be chosen such that the coordinates that characterize the
neutral element e of the group are e ≡ (0, . . . , 0), so that an in�nitesimal element of the group
is the one with in�nitesimal coordinates δgσ, σ = 1, . . . , r.

Under the action of an in�nitesimal element δg of the group G, the change in the coordinates
xi of a point x ∈ X is given by

xi + dxi = f i(x; δg) = xi +
∂f i(x; g)

∂gσ

∣∣∣∣
g=e

δgσ,

after a Taylor expansion up to �rst order in the group parameters and with xi = f i(x; 0). There
are nr auxiliary functions of the group that are de�ned as

uiσ(x) =
∂f i(x; g)

∂gσ

∣∣∣∣
g=e

, (1.38)

and therefore to �rst order in the group parameters, dxi = uiσ(x)δg
σ.

The group action on the manifold X can be extended to the action on the set F(X) of
continuous and di�erentiable functions de�ned on X by means of:

g : h(x) → h′(x) ≡ h(gx). (1.39)

If the group element is in�nitesimal, then

h′(x) = h(xi + dxi) = h(xi + uiσ(x)δg
σ) = h(x) +

∂h(x)

∂xi
uiσ(x)δg

σ,

after a Taylor expansion to �rst order in the in�nitesimal group parameters. The in�nitesimal
transformation on F(X) can be represented by the action of a di�erential operator in the form

h′(x) =

(
I+ δgσ uiσ(x)

∂

∂xi

)
h(x) = (I+ δgσXσ)h(x) = U(δg)h(x),

where I is the identity operator and the linear di�erential operators

Xσ = uiσ(x)
∂

∂xi
. (1.40)
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In particular, when acting with the operator U(δg) ≡ (I+ δgσXσ) on the coordinate xj we get
xj + dxj = xj + ujσ(x)δgσ.

The operators Xσ are called the generators of the in�nitesimal transformations. They
are r linearly independent operators that span an r-dimensional real vector space such that its
commutator [Xσ, Xλ] also belongs to the same vector space, i.e.,

[Xσ, Xλ] = cασλ Xα, α, σ, λ = 1, . . . , r. (1.41)

The coe�cients cασλ are a set of real constant numbers, called the structure constants of
the group, and the vector space spanned by the generators is named the Lie algebra L(G),
associated to the Lie group G. The structure constants are antisymmetric in their lower indexes
cασλ = −cαλσ, and satisfy Jacobi's indentitites:

cασλc
β
µα + cαλµc

β
σα + cαµσc

β
λα = 0, ∀σ, λ, µ, β = 1, . . . , r.

Equations (1.41) are the commutation relations that characterize the structure of the Lie algebra
of the group.

If a �nite group transformation of parameters gσ can be done in n smaller steps of parameters
gσ/n, with n su�ciently large, then a �nite transformation U(g)h(x) can be obtained as

U(g)h(x) ≡ lim
n→∞

(
I+

gσ

n
Xσ

)n

h(x) = exp(gσXσ)h(x).

This de�nes the exponential mapping and in this case the group parameters gσ are called
normal or canonical parameters. In the normal parameterization the composition law of one-
parameter subgroups reduces to the addition of the corresponding parameters of the involved
group elements.

Let us consider that F(X) is a Hilbert space of states of a quantum system; (1.39) can be
interpreted as the transformed wave function under the group element g. Then if the operator
U(g) is unitary it is usually written in the explicit form

U(g) = exp

(
i

~
gσX̃σ

)
,

in terms of the imaginary unit i and Planck's constant ~, such that in this case the new X̃σ above
are self-adjoint operators and therefore represent certain observables of the system. The physical
dimensions of these observables depend on the dimensions of the group parameters gσ, since
the argument of the exponential function is dimensionless and because of the introduction of
Planck's constant ~, this implies that gσX̃σ has dimensions of action. These observables, taking
into account (1.40), are represented in a unitary representation by the di�erential operators

X̃σ =
~
i
uiσ(x)

∂

∂xi
. (1.42)

However, (1.39) is not the most general form of transformation of the wave function of a quantum
system, as we shall see in Chapter 3, but once we know the way it transforms we shall be able
to obtain the explicit expression of the group generators by a similar procedure as the one
developed so far. In general the wave function transforms under continuous groups with what is
called a projective unitary representation of the group, which involves in general some additional
phase factors.
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1.8.1 Casimir operators

When we have a representation of a Lie group either by linear operators or by matrices
acting on a linear space, we can de�ne there what are called the Casimir operators. They are
operators C that can be expressed as functions of the generators Xσ of the Lie algebra with the
property that they commute with all of them, i.e., they satisfy [C,Xσ] = 0, ∀σ = 1, . . . , r. In
general they are not expressed as real linear combinations of the Xσ and therefore they do not
belong to the Lie algebra of the group. They belong to what is called the group algebra, i.e.,
the associative, but in general non-commutative algebra, spanned by the real or complex linear
combinations of products of the Xσ, in the corresponding group representation.

In those representations where the Xσ are represented by self-adjoint operators as in a
quantum formalism, the Casimir operators may be also self-adjoint and will represent those
observables that remain invariant under the group transformations. In particular, when we
consider later the kinematical groups that relate the space-time measurements between inertial
observers, the Casimir operators of these groups will represent the intrinsic properties of the
system. They are those properties of the physical system whose measured values are independent
of the inertial observers.

For semisimple groups, i.e., for groups that do not have Abelian invariant subgroups like the
rotation group SO(3), the unitary groups SU(n) and many others, it is shown that the Casimir
operators are real homogeneous polynomials of the generators Xσ, but this is no longer the
case for general Lie groups. Nevertheless, for most of the interesting Lie groups in physics, like
Galilei, Poincaré, De Sitter, SL(4,R), the inhomogeneous ISL(4,R) and Conformal SU(2, 2)
groups, the Casimir operators can be taken as real polynomial functions of the generators.

1.8.2 Homogeneous space of a group

A manifold X is called a homogeneous space of a group G, if ∀x1, x2 ∈ X there exists at
least one element g ∈ G such that x2 = gx1. In that case it is said that G acts on X in a
transitive way. The term homogeneous reminds us that the local properties of the manifold at
a point x are translated to any other point of the manifold by means of the group action, and
therefore all points of X share the same local properties.

The orbit of a point x is the set of points of the form gx, ∀g ∈ G, such that if X is a
homogeneous space of G, then the whole X is the orbit of any of its points.

Given a point x0 ∈ X, the stabilizer group (little group) of x0 is the subgroup Hx0 of G,
that leaves invariant the point x0, i.e., ∀h ∈ Hx0 , hx0 = x0.

If H is a subgroup of G, then every element g ∈ G can be written as g = g′h, where h ∈ H,
and g′ is an element of G/H, the set of left cosets generated by the subgroup H. If X is a
homogeneous space of G, it can be generated by the action of G on an arbitrary point x0 ∈ X.
Then ∀x ∈ X, x = gx0 = g′hx0 = g′x0, and thus the homogeneous space X is isomorphic to
the manifold G/Hx0 .

The homogeneous spaces of a group can be constructed as quotient manifolds of the group by
all its possible continuous subgroups. Conversely, it can also be shown that if X a homogeneous
space of a group G, then there exists a subgroup H of G such that X is isomorphic to G/H.
Therefore, the largest homogeneous space of a group is the group itself.

1.8.3 Exemples of continuous grups

1. Let us consider the group of translations of the straight line:

x′ = x+ a.
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With a = 0 we have the neutral element and −a represents the inverse element. The transfor-
mation is in�nitesimal if a is in�nitesimal and we write as x′ = x+ δa. If f(x) is a function of
x, the in�nitesimal action of the group on f is de�ned as

f ′(x) = f(x+ δa) = f(x) + δa
∂f(x)

∂x
= (I+ δaP )f(x).

The operator P = ∂/∂x is called the generator of the in�nitesimal transformation and the
in�nitesimal element of the group becomes the di�erential operator δg ≡ I+ δaP when acting
on the variables and also on functions of these variables. If f(x) is an invariant function under
this group, then Pf = ∂f/∂x = 0, and f is independent of x.
2. Let us consider the rotations of the plane

x′ = x cosα− y sinα, y′ = x sinα+ y cosα.

with α = 0 we have the neutral element and −α is the inverse. If α is in�nitesimal, of value δα,
to �rst order in this parameter, the transformation equations are:

x′ = x− yδα, y′ = y + xδα.

If f(x, y) is a function of these variables, it transforms under the group

f ′(x, y) ≡ f(x′, y′) = f(x−yδα, y+xδα) = f(x, y)+δα

(
−y ∂

∂x
+ x

∂

∂y

)
f(x, y) = (I+δαJ)f(x, y)

where the di�erential operator

J = −y ∂
∂x

+ x
∂

∂y
,

is the generator of the in�nitesimal rotations. If f(x, y) is invariant under rotations, then
Jf = 0, and f is a solution of the di�erential equation

−y∂f
∂x

+ x
∂f

∂y
= 0, ⇒ dx

−y
=
dy

x
, xdx+ ydy = 0

since the arc element of components (dx, dy) is orthogonal to the gradient of f and therefore f
must be an arbitrary function of the curves x2 + y2 =cte, i.e., f(x2 + y2).
3. Let us consider a Galilei boost along axis OX,

t′ = t, x′ = x+ vt.

With v = 0 we have the neutral element and−v represents the inverse element. The in�nitesimal
transformation is with δv in�nitesimal and it looks:

t′ = t, x′ = x+ δvt.

The action of the in�nitesimal element on the function f(t, x) is given by

f ′(t, x) = f(t′, x′) = f(t, x) + δvt
∂f(t, x)

∂x
= (I+ δvK) f(t, x),

where K = t∂/∂x is the generator of the boosts along the axis OX.



Chapter 2

Soluble examples of spinning particles

NONRELATIVISTIC PARTICLES

2.1 Nonrelativistic point particle

See the Appendix about the Galilei group G at the end of this chapter for the notation used
through this section.

Let us consider a mechanical system whose kinematical space is the four-dimensional man-
ifold spanned by the variables (t, r) ≡ x, with domains t ∈ R, r ∈ R3, similar to the group
parameters b and a respectively. We assume that they are functions of some evolution parameter
τ and at any instant τ of the evolution two di�erent inertial observers relate their measurements
by:

t′(τ) = t(τ) + b, (2.1)

r′(τ) = R(µ)r(τ) + vt(τ) + a. (2.2)

Because of the way they transform, we can interpret them respectively as the time and position
of the particle. If we assume that the evolution parameter τ is group invariant, by taking the
τ−derivative of both sides of the above expressions, it turns out that the derivatives of the
kinematical variables at any instant τ transform as:

ṫ′(τ) = ṫ(τ), (2.3)

ṙ′(τ) = R(µ)ṙ(τ) + vṫ(τ). (2.4)

If we de�ne the velocity of the point as u = dr/dt = ṙ/ṫ, the velocity of the particle transforms
in the way

u′(τ) = R(µ)u̇(τ) + v.

We can obtain simmilarly the transformation equations of other derivatives. The Lagrangian
for describing this particle will be a function L(t, r,u), and in the parametric τ -description
L̃(t, r, ṫ, ṙ) ≡ L̃(x, ẋ), and homogeneous of degree 1 in terms of the ẋi. This homogeneity leads
to the general form:

L̃ = T ṫ+R · ṙ, (2.5)

where T = ∂L̃/∂ṫ and Ri = ∂L̃/∂ṙi are still some unknown functions of the kinematical
variables and their derivatives, which are homogeneous functions of zero degree in terms of the
derivatives. This homogeneity is independent whether the particle is free or not.

If the particle is free, dynamical equations must be invariant for the set of equivalent inertial
observers, since a change of reference frame cannot modify its dynamical laws. If it is under
some interaction, the dynamical equations will not be invariant under the kinematical group

53
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because the group transformations a�ect the kinematical variables and their derivatives, but
not to the mechanisms which produce the interaction, like �elds, magnets, etc.

From the point of view of in�nitesimal trasnformations, since L̃0(t, r, ṫ, ṙ) depends on these
variables, they transform according to (2.1-2.4), and the di�erent generators when acting on these
variables are

H =
∂

∂t
, P = ∇, J = r ×∇+ ṙ ×∇ṙ, K = t∇+ ṫ∇ṙ.

If the Lagrangian is invariant under translations, then HL̃0 = 0 and P L̃0 = 0, which imply that
L̃0 is not a function of t and r, respectively. Under rotations JL̃0 = 0, and this implies that it is a
function of ṙ2 and of ṫ and must be homogeneous of �rst degree in these derivatives. Finally, if it is
invariant under Galilei boosts KL̃0 = 0, and thus ∂L̃0/∂ṙ = 0, and will be independent of ṙ. Since
this is not possible because the Lagrangian always has to be a function of all derivatives of the
kinematical variables, implies that KL̃0 = d(f(t, r))/dτ , i.e., a total τ -derivative, with dimensions
of mass×distance, and thus dynamical equations are invariant. According to the structure of the
gauge function (2.6), we have

KL̃0 = mṙ =
d

dτ
(mr). ṫ∇ṙL̃0 = mṙ, ⇒ L̃0 =

1

2
m

ṙ2

ṫ
+ F (ṫ),

where F (ṫ) is an arbitrary function of ṫ which has to be homogeneous of degree 1. It has the form

F = −H0ṫ, with H0 a constant, which can be interpreted as the internal energy.

Associated to this manifold X, the gauge function for this system is

α(g;x) = ξ(g, x) = m
(
v2t/2 + v ·R(µ)r

)
, (2.6)

where the parameter m is interpreted as the mass of the system and ξ(g, g′) is the exponent of
G.

If instead of making that in�nitesimal analysis we make the analysis under �nite Galilei
transformations the transformation of the free Lagrangian under a general �nite transformation
of the Galilei group is

L̃(x′, ẋ′) = L̃(x, ẋ) +m
(
v2ṫ/2 + v ·R(µ)ṙ

)
. (2.7)

Then

T ′ =
∂L̃′

∂ṫ′
=

(
∂L̃

∂ṫ
+

1

2
mv2

)
∂ṫ

∂ṫ′
+

(
∂L̃

∂ṙi
+mvjR(µ)ji

)
∂ṙi

∂ṫ′
, (2.8)

but from (2.3) and (2.4) we get ∂ṫ/∂ṫ′ = 1 and ∂ṙi/∂ṫ′ = −R−1(µ)ikvk, respectively, and thus

T ′ = T − 1

2
mv2 − v ·R(µ)R. (2.9)

Similarly
R′ = R(µ)R+mv. (2.10)

The conjugate momenta of the independent degrees of freedom qi = ri, are pi = ∂L̃/∂ṙi, and
consequently Noether's theorem leads to the following constants of the motion:
a) Under time translations the gauge function (2.6) vanishes, δt = δb, M = 1, while δri = 0
and the constant reduces to the following expression R · dr/dt− L/ṫ = −T .
b) Under space translations also α(g;x) ≡ 0, δt = 0, M = 0, while δri = δai, Mij = δij and
the conserved observable is R.
c) Under pure Galilei transformations δt = δb and M = 0, while δri = tδvi and Mij = tδij , but
now the gauge function to �rst order in the velocity parameters is α(δv;x) = mr · δv, and we
get mr − P t.
d) Under rotations α(g;x) ≡ 0, δt = 0 and M = 0, while δri = −εijkrjnkδα andMik = −εijkrj
the conserved quantity is r ×R.
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Collecting all terms we can give them the following names:

temporal momentum H = −T, (2.11)

linear momentum P = R = p, (2.12)

kinematical momentum K = mr − P t, (2.13)

angular momentum J = r × P . (2.14)

We reserve for these observables the same symbols in majuscules as the corresponding group
generators which produce the space-time transformations that leave dynamical equations invari-
ant. Even their names make reference to the corresponding group transformation parameter.

In general, what we have de�ned as the temporal momentum, usually takes the name of en-
ergy or Hamiltonian of the system. However, all observables associated to the uniparametric
symmetry groups are never de�nite positive. All of them can take both signs, but by energy we
understand an observable which is de�nite positive. Actually, the energy should be de�ned as
E = |H|. This is important in order to classify the di�erent particles we are going to �nd, in
particular in the relativistic formulation, where the sign of H, is another intrinsic property, inde-
pendent of the inertial observer. In the relativistic formulation we call particle a mechanical system
for which H > 0 and antiparticle when H < 0. In both cases, if particle and antiparticle have mass
m and they are at rest, Hp = mc2 and Ha = −mc2, but its energy is E = mc2 = |H|. By abuse of
language and because historically this observable has been denoted by energy, it is possible that
along these notes we shall use the name of energy for this observable H.
For the kinematical momentum we can �nd in the literature alternative names. Levy-Leblond calls
it Galilei momentum and sometimes it is called static momentum because it has dimensions of
mass×distance. Being consistent with this notation, we should call it `Poincaré or Lorentz momen-
tum' in a relativistic approach. Nevertheless we shall use the name of kinematical momentum for
this observable K in either the relativistic or non-relativistic formalism.

If we take the τ -derivative in (2.13) of the kinematical momentum K̇ = 0, because it is a
constant of the motion, it implies that P = mṙ/ṫ = mu = R, where u is the velocity of the
particle.

The six conditions P = 0 and K = 0, imply u = 0 and r = 0, such that the particle is at
rest and located at the origin of the observer's frame. To uniquely de�ne an observer we need
also to �x an arbitrary rotation and time translation. Nevertheless, we shall call to the class of
observers to whom P = 0 y K = 0, the center of mass observer. These six conditions will also
be used to de�ne the center of mass observer in the relativistic case.

From (2.9) and (2.10) we see that the energy and linear momentum transform as:

H ′ = H + v ·R(µ)P +
1

2
mv2, (2.15)

P ′ = R(µ)P +mv. (2.16)

Then, if H0 and P = 0 are the energy and linear momentum measured by the center of mass
observer, for any arbitrary observer who sees the particle moving with velocity u, it follows
from (2.15) and (2.16) that

H = H0 +
1

2
mu2 = H0 + P 2/2m, P = mu.

The Lagrangian for the point particle is thus

L = T ṫ+R · ṙ = −Hṫ+ P · ṙ = −H0ṫ+
m

2

ṙ2

ṫ
, (2.17)

with H0 an arbitrary constant which plays no role in the dynamics and can be taken H0 = 0.
It will be related to the mc2 term of the relativistic point particle.
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If we de�ne the spin of the system, as the angular momentum with respect to the point r,
which represents the location of the center of mass of the particle, then

S ≡ J − 1

m
K × P = J − r × P = 0. (2.18)

It vanishes, so that the point particle is a spinless system.

2.1.1 Interaction with some external source

The most general Lagrangian of the point particle is of the form L̃ = T ṫ+R · ṙ, where the
functions T and R are functions of t, ṫ, r, ṙ and homogeneous of zero degree of the derivatives ṫ
and ṙ, and therefore they are functions of u = ṙ/ṫ. In the free case, the Lagrangian is invariant
under translations and thus independent of t and r, and take the form in the Galilei case, as

T0 = −1

2
mu2 = −Hm, R0 = mu = Pm

while in the Poincaré case, as we shall see in section 2.3, they are

T0 =
−mc2√
1− u2/c2

= −Hm, R0 =
mu√

1− u2/c2
= Pm.

The free Lagrangian either relativistic or nonrelativistic, can be written as L̃0 = T0ṫ+R0 · ṙ =
−Hmṫ + Pm · ṙ. We have denoted all these magnitudes related to the free Lagrangian, which
depend on the mass of the particle, with a subindex m, to indicate that they are mechanical
properties.

In the general case, if the particle is interacting with some external source, the dynamical
equations are not invariant under translations, because if we translate the particle but not the
external source the dynamics will be di�erent. The general Lagrangian will be a function of t
and r, but the homogeneity of L̃ in terms of ṫ and ṙ will still hold, and also its di�erence with L̃0.
We can de�ne this di�erence of these two homogeneous functions as the interacting Lagrangian
L̃I = L̃− L̃0. This homogeneous structure of this function implies that L̃I = A0ṫ+A · ṙ, where
A0 = ∂L̃I/∂ṫ, and A = ∂L̃I/∂ṙ.

The functions A0 and A, which depend on the external source, will be in general, functions
of the variables of the particle t, r,u. It is clear that these terms modify the above de�nitions
of H and P of the free particle, and now H = −∂L̃/∂ṫ = Hm−A0 and P = ∂L̃/∂ṙ = Pm+A.
The function −A0 is the modi�cation of the mechanical temporal momentum Hm, and A is the
modi�cation of the mechanical linear momentum Pm, due to the external interaction. Also the
other observables K and J are modi�ed by the external source.

We are going to see that the dependence on u, of the functions A0 and A, is unnecessary.
Those �elds, in general, will be functions of the spacetime variables and independent of the
velocity. Let us consider the Galilei case. The dynamical equations from the Lagrangian

L =
m

2

(
dr

dt

)2

+A0(t, r) +A(t, r) · u,

are
∂A0

∂ri
+ uj

∂Aj

∂ri
− d

dt
(mui +Ai) = 0, i = 1, 2, 3

i.e.,

m
d2ri
dt2

=
∂A0

∂ri
− ∂Ai

∂t
+ uj

(
∂Aj

∂ri
− ∂Ai

∂rj

)
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where the last term in brackets, is an antisymmetric function in i and j, and thus it can be
written as ϵijkBkuj , and therefore the time variation of the mechanical linear momentum of the
point particle is

dPm

dt
= m

d2r

dt2
= E + u×B, (2.19)

with

E = ∇A0 −
∂A

∂t
, B = ∇×A,

is the Lorentz force associated to the �elds E y B which are functions only of t and r. In the
relativistic case we shall also obtain dPm/dt = E+u×B, but the expression of Pm = γ(u)mu,
is di�erent, as we shall see.

In the case that A0 and A are functions of u, the dynamical equations are:

∂A0

∂ri
+ uj

∂Aj

∂ri
− d

dt

(
mui +

∂A0

∂ui
+Ai + uj

∂Aj

∂ui

)
= 0.

But because of the homogeneity of L̃I = A0ṫ + Aj ṙj , if we derivate both sides with respect to
ṙj , we get:

Aj = ṫ
∂A0

∂uj

1

ṫ
+ ṙi

∂Ai

∂uj

1

ṫ
+Aj ,

so that the additional term of the dynamical equations

∂A0

∂ui
+ uj

∂Aj

∂ui
= 0,

vanishes and does not take part in the dynamics, simmilarly as if A0 andA, were independent of
u, as we assumed before. The same argument can be used in the relativistic case, and therefore
the most general force, de�ned as the time derivative of the linear momentum, is a Lorentz force
with only spacetime �elds.

For the time variation of the mechanical energy, only the force related to the �eldE produces
work. In fact, in the nonrelativistic case,

Hm =
m

2

(
dr

dt

)2

,
dHm

dt
= m

dr

dt
· d

2r

dt2
= u ·E.

In the relativistic case, Hm = γ(u)mc2, Pm = γ(u)mu, but because it is an elementary
particle, the atomic principle requires that the invariant expression which de�nes the mass by
H2

m/c
2 − P 2

m = m2c2, does not change under the interaction. If we take the time derivative of
this expression, we have:

2

c2
Hm

dHm

dt
− 2Pm · dPm

dt
= 0,

dHm

dt
= u · dPm

dt
= u ·E.

In both cases, the time variation of the mechanical energy of the particle is the work done by
the force E along the trajectory of the center of mass of the particle. Because the external
�elds are de�ned at the position r, this point is also the location of the center of charge of the
particle.

Since B = ∇×A, satis�es ∇ ·B = 0, we have a pseudovector �eld with no sources and of
null divergence. If we take the curl of E, because the curl of ∇× (∇A0), vanishes, these �elds
satisfy the following equations:

∇×E = −∂B
∂t

, ∇ ·B = 0, (2.20)
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evaluated at least in the region where the particle is located, and they are part of Maxwell's
equations of the electromagnetic �eld. They are vector �elds and therefore we need to know, to
completely de�ne them, ∇ ·E and ∇×B and the corresponding boundary conditions. These
extra equations relate the �elds with the external sources. In the case of Maxwell's equations
they are:

∇ ·E =
1

ϵ0
ρ, ∇×B =

1

ϵ0c2
j +

1

c2
∂E

∂t
(2.21)

and they do not appear until we establish that part of the total Lagrangian which describes the
sources which generate the interaction, i.e., the free Lagrangian of the external �elds and how
they interact with the particle.

In the case of the electromagnetic �eld ρ represents the electric charge density and j the
vector current density. If we take the divergence of the second equation and using the �rst we
arrive to:

∇ · j +
∂ρ

∂t
= 0,

which is the fundamental conservation law of the electric charge.
For a point particle of charge e, localized at point r at time t these densities are ρ =

eδ(3)(r−x)δ(t−T ) and j = eδ(3)(r−x)δ(t−T )u, where x is another point of space and T any
other instant of time and δ(x− a) the usual Dirac's delta-function. Maxwell's equations (2.20)
do not depend on the particle, while those of (2.21) show how the presence of the particle, and
therefore the charge and current associated to it modi�es locally the �elds in the surrounding
area. We have to remark that what appear here are spacetime derivatives of the �elds with
respect to the kinematical variables of the particle, and thus they refer to how these �elds,
generated by some external sources, are changed in the neibourhood of the particle. The
conservation law of the electric charge shows the existence of a scalar property linked to the
particle, which is carried by the particle along its trajectory, This enhances the interpretation
that the point r is the support or localization of the charge e.

This formalism does not guarantee that the �elds A0 and A, or their derived vector �elds
E and B, satisfy all Maxwell's equations, but that the interaction is invariant under the trans-
formation (2.22), as we shall see in a minute. It seems to indicate that the possible interaction
of a point particle can undergone is through a Lorentz type force, in terms of the vector �elds
E and B without any restriction on its scope and range.

Gravity, as a possible interaction, is left aside by the de�nition of the Restricted Relativity
Principle. In this way, without further restrictions, it is not possible to determine classically
the other short range interactions like the weak and strong interactions, which are con�ned to
regions of order of 10−15 to 10−18 m, around the particles where the quantum phenomena are
relevant. These other interactions are described usually in a quantum context, through a local
gauge invariance hypothesis and they are not predicted in a classical formalism.

The �elds A0 and A, are not uniquelly determined, because what appears in the dynamical
equations are their spacetime derivatives. If we modify them in the form

A0 → A0 +
∂Λ(t, r)

∂t
, Ai → Ai +

∂Λ(t, r)

∂ri
, (2.22)

where Λ(t, r) is an arbitrary function of the kinematical variables, the Lagrangian L̃I is modi�ed
in the form

∂Λ(t, r)

∂t
ṫ+

∂Λ(t, r)

∂ri
ṙi =

dΛ

dτ
,

which is a total derivative and can be deleted because do not modify the dynamical equations.
The transformation (2.22), which leaves invariant the dynamical equations, while modifying the
external �elds at any point of spacetime, is called a local gauge transformation.
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It seems that if we have a transformation that leaves invariant the dynamical equations
we can obtain some conservation law by using Noether's theorem. But this transformation is
not related to any one-parameter group of transformations but it is a general transformation
generated by an arbitrary function Λ, which transforms the Lagrangian with the addition of a
total derivative.

2.2 Galilei free spinning particle

The most general nonrelativistic particle 1 is the system whose kinematical space X is the
largest homogeneous space of the Galilei group G, i.e., the Galilei group itself. We shall describe
the state of the elementary particle at any instant τ , by the knowledge of the time t(τ), the
position of a point r(τ), the velocity of this point u(τ) = dr/dt and the orientation of a
Cartesian frame of unit vectors ei(τ), i = 1, 2, 3, linked to that point. These nine components
(ei)j can be expressed in terms of three essential parameters ρ(τ), as we can see in the appendix
2.7 about a parameterization of rotations, which are given by:

(ei)j = R(ρ)ji =
1

1 + ρ2
[(1− ρ2) δji + 2ρjρi + 2εikjρk] (2.23)

This selection of the orientation variables in any inertial reference frame is completely arbitrary,
because these unit vectors have no physical reality. This means that the Lagrangian cannot be an
explicit function of them, since any other arbitary selection would produce the same value of the
action. But the important feature is that in the dynamical evolution the orientation changes, the
particle rotates, and therefore the Lagrangian is going to be an explicit function of the angular
velocity of the particle, and this angular velocity is independent of the initial selection of the unit
vectors. This means that any observer who changes at any time the orientation unit vectors, does
not modify the value of the angular velocity in that frame, as we shall see below.

In addition to the kinematical group as a symmetry group we shall have another symmetry group,
the group of rotations of the local frame associated to the particle. We shall call it the local
rotation group and we shall denote by SO(3)L. It commutes with the whole Galilei group and
therefore the spacetime symmetry group is at least G ⊗SO(3)L. The result is that the Lagrangian
L̃ has to be a function of the orientation variables ρ and ρ̇ through its dependence of the angular
velocity ω.

Then the kinematical variables are the ten real variables x(τ) ≡ (t(τ), r(τ),u(τ),ρ(τ)) with
domains t ∈ R, r ∈ R3, u ∈ R3 and ρ ∈ R3

c similarly as the corresponding group parameters.
The relationship between the values x′(τ) and x(τ) they take at any instant τ for two arbitrary
inertial observers, and in the pasive representation of rotations, is given by:

t′(τ) = t(τ) + b, (2.24)

r′(τ) = R(µ)r(τ) + vt(τ) + a, (2.25)

u′(τ) = R(µ)u(τ) + v, (2.26)

ρ′(τ) =
µ+ ρ(τ)− µ× ρ(τ)

1− µ · ρ(τ)
. (2.27)

Among these kinematical variables there exist the di�erential constraints u(τ) = ṙ(τ)/ṫ(τ),
that together with the homogeneity condition of the Lagrangian L̃ in terms of the derivatives
of the kinematical variables:

L̃(x, ẋ) = (∂L̃/∂ẋi)ẋi, (2.28)

reduce from ten to six the essential degrees of freedom of the system.
1 M. Rivas, J. Phys. A 18, 1971 (1985).
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These degrees of freedom are the position r(t) and the orientation ρ(t). The Lagrangian
depends on the second derivative of r(t) and the �rst derivative of ρ(t). Expression (2.28) is
explicitly given by:

L̃ = T ṫ+R · ṙ +U · u̇+ V · ρ̇, (2.29)

where the functions T = ∂L̃/∂ṫ, Ri = ∂L̃/∂ṙi, Ui = ∂L̃/∂u̇i, Vi = ∂L̃/∂ρ̇i, will be in general
functions of the ten kinematical variables (t, r,u,ρ) and homogeneous functions of zero degree
in terms of the derivatives (ṫ, ṙ, u̇, ρ̇).

The generalized variables are r, u and ρ, and their canonical cojugate momenta are:

pr =
∂L

∂(dr/dt)
− d

dt

(
∂L

∂(d2r/dt2)

)
=
∂L̃

∂ṙ
− d

dt

(
∂L̃

∂u̇

)
= R− dU

dt
,

pu =
∂L

∂(du/dt)
=
∂L̃

∂u̇
= U ,

pρ =
∂L

∂(dρ/dt)
=
∂L̃

∂ρ̇
= V .

As canonical conjugate variables, pr is the conjugate momentum of r, pu is that of u anf pρ is
the conjugate momentum of the orientation variables ρ.

By assuming that the evolution parameter τ is group invariant, the derivatives of the kine-
matical variables transform under G:

ṫ′(τ) = ṫ(τ), (2.30)

ṙ′(τ) = R(µ)ṙ(τ) + vṫ(τ), (2.31)

u̇′(τ) = R(µ)u̇(τ), (2.32)

ρ̇′(τ) =
(ρ̇(τ) + µ× ρ̇(τ))(1− µ · ρ(τ))

(1− µ · ρ(τ))2
+

µ · ρ̇(τ)(µ+ ρ(τ) + µ× ρ(τ))

(1− µ · ρ(τ))2
. (2.33)

Instead of the derivative ρ̇(τ), which transforms in a complicated way, we can de�ne the
angular velocity of the particle ω as a linear function of it in the pasive representation, in the
form

ω =
2

1 + ρ2
(−ρ̇+ ρ× ρ̇). (2.34)

It is a linear function of ρ̇, and transforms as:

ω′(τ) = R(µ)ω(τ). (2.35)

We interpret the rotation matrix R(ρ) as the rotation that carries the initial frame linked to
the body at instant τ = 0 to the frame at instant τ , as in a rigid body. Then, the three columns
of matrix R(ρ) represent the Cartesian components of the three unit vectors linked to the body
when chosen parallel to the laboratory frame at instant τ = 0.

If at instant τ = 0 we have the orientation axes ei(0), which de�ne by columns the rotation matrix
R(ρ(0)), at any instant τ they will be

((e1(τ))(e2(τ))(e3(τ))) = R(ρ(τ))R(ρ(0))

where R(ρ(τ)) is the global rotation experienced by the particle, and the change per unit time τ

((ė1(τ))(ė2(τ))(ė3(τ))) = Ṙ(ρ(τ))R(ρ(0)) = Ṙ(ρ(τ))R−1(ρ(τ))((e1(τ))(e2(τ))(e3(τ)))
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and thus the velocity of any axis, considered as a vector column, is the action on the vector, at the
instant τ , of the matrix

dei

dτ
= Ṙ(ρ(τ))R−1(ρ(τ))ei(τ) = Ωei(τ),

where Ω = ṘR−1 = ṘRT is an antisymmetric matrix. In fact, at any instant τ any rotation matrix
satis�es, R(ρ(τ))RT (ρ(τ)) = I, where the superindex T means the transpose matrix, and I is the
3× 3 unit matrix. If we take the τ -derivative of this expression, ṘRT + RṘT = Ω+ ΩT = 0, and
thus the three essential components of the antisymmetric matrix Ω de�ne a three-vector ω

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,

such that we can write the dynamics of any unit vector as

dei

dτ
= ω × ei.

and ω is interpreted as the angular velocity of rotation of the local frame associated to the particle.
the components of ω, expressed as functions of the variables ρ and ρ̇ are given in (2.34).

If any inertial observer changes the matrix of orientation R(τ), made of the three unit vectors,
at the instant τ , by any other matrix R′(τ) = R(τ)M , where M is any orthogonal matrix, then
R′T (τ) = MTRT (τ), and for this observer Ω′ = Ṙ′R′T = ṘMMTRT = ṘRT = Ω, and thus any
selection of the orientation produces the same expression of the angular velocity in the correspond-
ing reference frame. This justi�es that the Lagrangian does not depend explicitely on the variables
ρ, and depends only on them through its dependence of the angular velocity.

Expression (2.27) corresponds to R(ρ′(τ)) = R(µ)R(ρ(τ)). Therefore

Ω′ = Ṙ(ρ′(τ))RT (ρ′(τ)) = R(µ)Ṙ(ρ(τ))RT (ρ(τ))RT (µ)

= R(µ)ΩR−1(µ),

and this leads to the equation (2.35) in terms of the essential components ω of the antisymmetric
matrix Ω.

In this way the last part of the Lagrangian (∂L̃/∂ρ̇i)ρ̇i can be writen as

V · ρ̇ ≡ ∂L̃

∂ρ̇i
ρ̇i =

∂L̃

∂ωj

∂ωj

∂ρ̇i
ρ̇i = W · ω, (2.36)

due to the linearity of ω in terms of ρ̇ and where Wi = ∂L̃/∂ωi. Thus the most general form
of the Lagrangian of a nonrelativistic particle can also be written instead of (2.29) as:

L̃ = T ṫ+R · ṙ +U · u̇+W · ω. (2.37)

Since X is the whole Galilei group G the most general gauge function is just the group
exponent:

α(g;x) = ξ(g, hx) = m(v2t(τ)/2 + v ·R(µ)r(τ)), (2.38)

similar to (2.6), and this allows us to interpret the parameter m as the mass of the system.
Under the action of an arbitrary element of the Galilei group, the Lagrangian L̃ transforms
according to:

L̃(gx(τ), d(gx(τ))/dτ) = L̃(x(τ), ẋ(τ)) + dα(g;x(τ))/dτ. (2.39)

This leads through some straightforward calculations, similar to the ones performed in (2.8)-
(2.10), to the following form of transformation of the functions:

T ′(τ) = T (τ)− v ·R(µ)R(τ)−mv2/2, (2.40)

R′(τ) = R(µ)R(τ) +mv, (2.41)

U ′(τ) = R(µ)U(τ), (2.42)

W ′(τ) = R(µ)W (τ). (2.43)
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2.2.1 Noether constants of the motion

Using the action of the Galilei group on the kinematical space given by (2.24)-(2.27),
Noether's theorem de�nes the following constants of the motion for the free particle:

a) Under time translation the action function is invariant, λ(x) = 0, and as usual we call the
corresponding conserved quantity, the total temporal momentum of the particle H. Since
δt = δb and δq(s)i = 0, M = 1 and M (s)

i = 0, by applying (1.35) we have:

H = −(L− pi(s)q
(s)
i )M = −(L̃/ṫ− pi(s)q

(s)
i ) = −T −R · u−U · u̇/ṫ−W · ω/ṫ

+(R− dU/dt) · u+U · u̇/ṫ+ V · ρ̇/ṫ,

and since W · ω = V · ρ̇, it turns out that

H = −T − dU

dt
· u. (2.44)

b) Under spatial translations, A(x1, x2) is invariant, λi(x) = 0, and this de�nes the total linear
momentum of the system. We have now:

δt = 0, M = 0, δri = δai, M
(0)
ij = δij , δui = 0, M

(1)
ij = 0,

δρi = 0, M
(ρ)
ij = 0,

and then

P = R− dU

dt
= pr. (2.45)

c) Under a pure Galilei transformation of velocity δv, A(x1, x2) is no longer invariant but taking
into account (1.13) and the gauge function (2.38), it transforms as δA = mr2 ·δv−mr1 ·δv and
thus, λi(x) = mri, and this de�nes the total kinematical momentum K, in the following
way:

δt = 0, M = 0, δri = δvit, M
(0)
ij = δijt, δui = δvi, M

(1)
ij = δij ,

δρi = 0, M
(ρ)
ij = 0,

and thus
K = mr − P t−U . (2.46)

From K̇ = 0, this leads to P = mu−dU/dt, and thus by identi�cation with (2.45), the function
R = mu irrespective of the particular Lagrangian. The total linear momentum does not lie
along the velocity of the point r.
d) Finally, under rotations A(x1, x2) remains invariant, Bi(x) = 0, and the corresponding
constant of the motion, the total angular momentum of the system, with respect to the
origin of observer's frame, comes from the in�nitesimal transformation of value δµi = δαi/2,
i.e., half of the rotated in�nitesimal angle, and then

δt = 0, Mi = 0, δri = ϵikjδαjrk, M
(0)
ij = ϵikjrk,

δui = ϵikjδαjuk, M
(1)
ij = ϵikjuk,

δρi = δαj(δij + ϵikjρ
k + ρiρj)/2, M

(ρ)
ij = (δij + ϵikjρ

k + ρiρj)/2,
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which leads to

ViM
(ρ)
ij =

∂L

∂ωk

∂ωk

∂ρ̇i
M

(ρ)
ij =Wj ,

and therefore
J = r × P + u×U +W = r × P + S. (2.47)

Since J represents the angular momentum of the particle with respect to the origin of the ref-
erence frame, S represents the angular momentum of the particle with respect to the point r.
Because dJ/dt = 0, the function S satis�es dS/dt = P × u and it is not a constant of the
motion, even for a free particle. It is the classical angular momentum which satis�es the same
dynamical equation as Dirac's spin operator in the quantum case.

e) We have mentioned at the beginning of this section, that in addition to the invariance of
dynamical equations under the Galilei group, we also have the invariance of the Lagrangian
under the local rotation group SO(3)L. This group only transforms the kinematical orientation
variables leaving the rest untouched. The kinematical variables transform under this group:

t′ = t, r′ = r, u′ = u, R(ρ′) = R(ρ)M(α), ∀M(α) ∈ SO(3)L,

The transformation of ρ variables, in the in�nitesimal case is

ρ′ =
ρ+ δα/2− ρ× δα/2

(1− ρ · δα/2)
, δρi = δαj

1

2
(δij + ρiρj − ϵiljρl) =M

(L)
ij δαj .

The conserved magnitudes come from the momenta pρ = V , and they are:

Tj = −ViM (L)
ij = − ∂L̃

∂ωk

∂ωk

∂ρ̇i
M

(L)
ij ,

but
∂ωk

∂ρ̇i
M

(L)
ij =

−1

1 + ρ2
(
(1− ρ2)δkj + 2ρkρj + 2ϵkjsρs

)
and this term is in fact the k-component, of opposite sign, of the unit vector ej ,i.e., (ej)k, given
in (2.23), and thus these constants of the motion are

Tj = −Wk(−ej)k = W · ej , (2.48)

the projection, on the particle unit vectors, of the angular momentum W associated

to the rotation.
From a di�erent point of view, the conservation of the linear momentum P comes from the

invariance of L under translations and thus because it is independent of the position variables
r. Then from the dynamical equations with respect to these degrees of freedom, we can obtain:

∂L

∂ri
− d

dt

(
∂L

∂(dri/dt)

)
+
d2

dt2

(
∂L

∂(d2ri/dt2)

)
= 0,

d

dt

[
∂L

∂(dri/dt)
− d

dt

(
∂L

∂(d2ri/dt2)

)]
= 0,

since ∂L/∂ri = 0, and we get again (2.45).
The conservation of the projections Ti can be obtained from the dynamical equationes related

to the orientation degrees of freedom. Since L̃ depends on ρ and ρ̇ through its dependence on
the angular velocity ω, these dynamical equations can be rewritten as

∂L̃

∂ρi
− d

dτ

(
∂L̃

∂ρ̇i

)
= 0,

∂L̃

∂ωj

∂ωj

∂ρi
− d

dτ

(
∂L̃

∂ωj

∂ωj

∂ρ̇i

)
= 0,

∂L̃

∂ωj
=Wj ,
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and they lead to
dW

dτ
= ω ×W .

For the dynamics of the unit vector ei, we have seen that

dei
dτ

= ω × ei,

and therefore for Ti = W · ei, taking the derivative with respect to τ ,

dTi
dτ

= (ω ×W ) · ei +W · (ω × ei) = 0.

We shall see the importance of these conserved components of the spin in the quantum case,
to classify the states of the electron.

Exercise: Show that if a Lagrangian depends on the orientation variables ρ and ρ̇ in terms of the
angular velocity ω(ρ, ρ̇), through (2.34), then the dynamical equations related to the orientation
degrees of freedom,

∂L̃

∂ρi
− d

dτ

(
∂L̃

∂ρ̇i

)
= 0,

can be transformed into

dW /dτ = ω ×W , where Wi =
∂L̃

∂ωi
.

2.2.2 Spin with respect to the center of mass

We can also consider the spin for a free particle with respect to its center of mass, once we
accurately identify the center of mass of the particle.

The center of mass observer is de�ned as that inertial observer for whom P = 0 and K = 0.
These six conditions do not de�ne uniquely an inertial observer but rather a class of them up
to a rotation and an arbitrary time translation. In fact, the condition P = 0 establishes the
class of observers for which the center of mass is at rest, and K = 0 is the additional condition
to locate it at the origin of coordinates, at least for the point particle. We are going to see that
the same happens for the general spinning particle.

This comes from the analysis of (2.46), where k = U/m is an observable with dimensions
of length, and taking the derivative with respect to τ of both sides, taking into account that
Ṗ = 0, we have:

K̇ = 0 = mṙ − P ṫ−mk̇, i.e., P = m
d(r − k)

dt
. (2.49)

Then the point q = r−k is moving at constant speed and we say that it represents the position
of the center of mass of the system. Thus, the observable k = r−q is just the relative position of
point r with respect to the center of mass. Therefore P = 0 and K = 0 give rise to dq/dt = 0,
and r = k, i.e., q = 0, as we pointed out. With this de�nition, the kinematical momentum
can be written as K = mq −P t, in terms of the center of mass position q and the total linear
momentum P .

The spin of the system, with respect to the center of mass, is de�ned as the di�erence
between the total angular momentum J and the orbital angular momentum of the center of
mass motion q × P , and thus

SCM = J − q × P = J − 1

m
K × P = S + k × P = −mk × dk

dt
+W . (2.50)
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The spin SCM , expressed in terms of the constants of the motion J , K and P , is also a constant
of the motion. Alternatively we can describe the spin with respect to the center of mass SCM ,
according to the last expression in terms of the rotational part W and the term −k×mdk/dt
which suggests a contribution of (anti)orbital type coming from the motion of point r around
the center of mass. It is related to the zitterbewegung or more precisely to the function U = mk
which re�ects the dependence of the Lagrangian on the acceleration. The other term W comes
from the dependence on the other three degrees of freedom ρi, and thus on the angular velocity.
This zitterbewegung is the motion of the center of charge around the center of mass. Point r,
as representing the position of the center of charge, has been also suggested in previous works
for the relativistic electron. 2

It is this angular momentum with respect to the center of mass, which is a constant of the
motion and its absolute value an invariant property.

Because J̇ = 0, and that dW /dτ = ω × W and the expression of P , (2.45), this implies
the general relation for a free particle

ṙ ×R+ u̇×U + ω ×W = 0, (2.51)

which is also valid in the relativistic case and which re�ects the fact that velocity, acceleration
and angular velocity are not independent magnitudes. In a certain sense, we can take as the local
frame linked to point r, the Frenet-Serret triad. From the derivatives ṙ y r̈, we can determine
the tangent and normal vector, and their cross product de�nes the binormal, and therefore the
derivative of this triad will also produce the angular velocity which will be a function of the
other derivatives.

In the nonrelativistic case R and ṙ have the same direction, the above relation reduces to

u̇×U + ω ×W = 0. (2.52)

2.2.3 Spin dynamics

Since the angular momentum is an observable de�ned with respect to a de�nite point, and
the elementary particle has two characteristic points r and the center of mass q, we can analyze
the dynamics of the angular momenta with respect to these points, S and SCM , respectively.
In any case, if we know the angular momentum with respect to a point, we can compute the
angular momentum with respect to another point. For the free particle, the angular momentum
with respect to the origin of the inertial reference frame, is written alternatively as:

J = q × P + SCM = r × P + S

By taking the time derivative we get,

dS

dt
= P × u,

dSCM

dt
= 0.

However, as we mentioned in the Preamble , if an external force F applied at point r is acting
on the particle, the torque of this force with respect to the origin will produce the variation of
the total angular momentum J ,

dJ

dt
= r × F = u× P + r × dP

dt
+
dS

dt

but dP /dt = F , and therefore the spin S satis�es exactly the same dynamical equation than
in the free case,

dS

dt
= P × u,

2 A.O. Barut and A.J. Bracken, Phys. Rev. D 23, 2454 (1981).
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but now P is not a constant of the motion. For the other

dJ

dt
= r × F = v × P + q × dP

dt
+
dSCM

dt

and thus
dSCM

dt
= (r − q)× F ,

If the spin with respect to the center of mass is not conserved, this means that for an elementary
particle q ̸= r, and thus the center of mass and center of charge will be two di�erent points.

2.2.4 Transformation of several observables

The di�erent functions of the expansion of the Lagrangian L̃, transform under the Galilei
group according to (2.40)-(2.43). If we derivate the third equation with respect to τ and divide
by ṫ′ = ṫ, it gives

dU ′

dt′
= R(µ)

dU

dt
, u′ · dU

′

dt′
= u · dU

dt
+ v ·R(µ)dU

dt

This implies that the linear momentum P and temporal momentum H, transform between
Galilei observers in the same form (2.15-2.16) as in the case of the free point particle.

H ′ = H + v ·R(µ)P +
1

2
mv2, (2.53)

P ′ = R(µ)P +mv. (2.54)

In this way, if H0 and P 0 = 0, are the values they take for the center of mass observer, then
for any other observer who sees the center of mass moving at the speed v

H = H0 +
1

2
mv2 = H0 +

P 2

2m
, P = mv.

Therefore, the magnitude H −P 2/2m = H0 is a constant and invariant property, independent
of the inertial observer. It de�nes an intrinsic property of the particle. The spacetime part of
L̃, which is related to the gauge variant part which de�nes the mass, takes the general form

T ṫ+R · ṙ = −Hṫ+ P · ṙ.

In fact
−H ′ṫ′ + P ′ · ṙ′ = −Hṫ+ P · ṙ +

1

2
mv2ṫ+mv ·R(µ)ṙ.

In this way, the second part of the expansion of the Lagrangian U · u̇ +W · ω, is necessarily
invariant under the Galilei group. The other intrinsic parameter of the elementary particle, the
spin or internal rotation, will be related to that part. If we express the Hamiltonian in terms
of the invariants H0 and m, the �rst part remain

−Hṫ+ P · ṙ = −H0ṫ+
mṙ2

2ṫ
− 1

2m

(
dU

dt

)2

ṫ.

The �rst term is a total derivative and can be deleted, the second term gives the gauge variation
of the Lagrangian, and the third is necessarily Galilei invariant.

The transformation os the spin with respect to the center of mass SCM de�ned in (2.50),
comes from the transformation of k = U/m and W ,

k′ = R(µ)k,
dk′

dt′
= R(µ)

dk

dt
, W ′ = R(µ)W
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and this leads to
S′

CM = R(µ)SCM .

Therefore S′2
CM = S2

CM , is a constant and invariant property between inertial observers. It is
another intrinsic property of the elementary particle. The Lagrangian of an spinning elementary
particle will depend explicitely of these two invariants mass m and center of mass spin SCM .

We cannot say the same about the spin with respect to the point r, S. S = u × U +W
transforms in the way:

S′ = u′ ×U ′ +W ′ = (R(µ)u+ v)×R(µ)U +R(µ)W = R(µ)S + v ×R(µ)U ,

and its absolute value depends on the relative velocity v among observers and, therefore, it is
not an intrinsic property.

The center of mass q transforms like the point r:

q′(τ) = R(µ)q(τ) + vt(τ) + a.

This feature does not hold in the relativistic case and the center of mass does not transform like
the position of the point r. This is because q and r are considered simultaneously in a reference
frame and therefore their transformed points q′ and r′ are not considered simultaneous in the
other relativistic reference frame. In the relativistic case the de�niton of the center of mass q
depends also on the acceleration of the point r.

2.2.5 Galilei spinning particle of (anti)orbital spin

To analyze the spin structure of the particle, and therefore the di�erent contributions to the
spin coming from these functions U and W , let us consider the following simpler example.

Consider a Galilei particle whose kinematical space isX = G/SO(3), so that any point x ∈ X
can be characterized by the seven variables x ≡ (t, r,u), u = dr/dt, which are interpreted as
time, position and velocity of the particle respectively. In this example we have no orientation
variables. The Lagrangian will also depend on the next order derivatives, i.e., on the velocity
which is already considered as a kinematical variable and on the acceleration of the particle.
Rotation and translation invariance implies that L will be a function of only u2, (du/dt)2 and
u ·du/dt = d(u2/2)/dt, but this last term is a total time derivative and it will not be considered
here.

Since from condition (2.52) U ∼ u̇, let us assume that our elementary system is represented
by the following Lagrangian, which when written in terms of the three degrees of freedom and
their derivatives is expressed as

L =
m

2

(
dr

dt

)2

− m

2ω2

(
d2r

dt2

)2

. (2.55)

Parameter m is the mass of the particle because the �rst term is gauge variant in terms of the
gauge function (2.38) de�ned by this constant m, while parameter ω of dimensions of time−1

represents an internal frequency. It is the frequency of the internal zitterbewegung.
In terms of the kinematical variables and their derivatives, and in terms of some group

invariant evolution parameter τ , the Lagrangian can also be written as

L̃ =
m

2

ṙ2

ṫ
− m

2ω2

u̇2

ṫ
, (2.56)

where the dot means τ -derivative. If we consider that the evolution parameter is dimensionless,
all terms in the Lagrangian have dimensions of action. Because the Lagrangian is a homogeneous
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function of �rst degree in terms of the derivatives of the kinematical variables, L̃ can also be
written as

L̃ = T ṫ+R · ṙ +U · u̇, (2.57)

where the functions accompanying the derivatives of the kinematical variables are de�ned and
explicitly given by

T =
∂L̃

∂ṫ
= −m

2

(
dr

dt

)2

+
m

2ω2

(
d2r

dt2

)2

,

R =
∂L̃

∂ṙ
= m

dr

dt
, (2.58)

U =
∂L̃

∂u̇
= −m

ω2

d2r

dt2
. (2.59)

Dynamical equations obtained from Lagrangian (2.55) are:

1

ω2

d4r

dt4
+
d2r

dt2
= 0, (2.60)

whose general solution is:

r(t) = A+Bt+C cosωt+D sinωt, (2.61)

in terms of the 12 integration constants A, B, C and D.
When applying Noether's theorem to the invariance of dynamical equations under the Galilei

group, the corresponding constants of the motion can be written in terms of the above functions
in the form:

temporal momentum H = −T − u · dU
dt
, (2.62)

linear momentum P = R− dU

dt
= mu− dU

dt
, (2.63)

kinematical momentum K = mr − P t−U , (2.64)

angular momentum J = r × P + u×U . (2.65)

It is the presence of the U function that distinguishes the features of this system with respect
to the point particle case. We �nd that the total linear momentum is not lying along the
direction of the velocity u, and the spin structure is directly related to the function U , i.e., to
the dependence of the Lagrangian on the acceleration.

If we substitute the general solution (2.61) in (2.62-2.65) we see in fact that the integration
constants are related to the above conserved quantities

H =
m

2
B2 − mω2

2
(C2 +D2), (2.66)

P = mB, (2.67)

K = mA, (2.68)

J = A×mB −mωC ×D. (2.69)

We see that the kinematical momentum K in (2.64) di�ers from the point particle case
(2.13) in the term −U , such that if we de�ne the vector k = U/m, with dimensions of length,
then K̇ = 0 leads from (2.64) to the equation:

P = m
d(r − k)

dt
,
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and q = r−k, de�nes the position of the center of mass of the particle that is a di�erent point
than r and using (2.59) is given by

q = r − 1

m
U = r +

1

ω2

d2r

dt2
. (2.70)

In terms of it, dynamical equations (2.60) can be separated into the form:

d2q

dt2
= 0, (2.71)

d2r

dt2
+ ω2(r − q) = 0, (2.72)

where (2.71) is just eq. (2.60) after twice di�erentiating (2.70), and Equation (2.72) is (2.70)
after collecting all terms on the left hand side.

From (2.71) we see that point q moves in a straight trajectory at constant velocity while
the motion of point r, given in (2.72), is an isotropic harmonic motion of angular frequency ω
around the point q.

The spin of the system with respect to the center of mass, SCM is de�ned as

SCM = J − q × P = J − 1

m
K × P , (2.73)

and since it is written in terms of constants of the motion it is clearly a constant of the motion,
and its magnitude S2

CM is also a Galilei invariant quantity that characterizes the system. In
terms of the integration constants it is expressed as

SCM = −mωC ×D. (2.74)

From its de�nition we get

SCM = u×U + k × P = −m(r − q)× d

dt
(r − q) = −k ×m

dk

dt
, (2.75)

which appears as the (anti)orbital angular momentum of the relative motion of point r around
the center of mass position q at rest, so that the total angular momentum can be written as

J = q × P + SCM = L+ SCM . (2.76)

It is the sum of the orbital angular momentum L associated to the motion of the center of
mass and the spin part SCM . For a free particle both L and SCM are separately constants of
the motion. We use the term (anti)orbital to suggest that if vector k represents the position
of a point of mass m, the angular momentum of this motion is in the opposite direction as the
obtained spin observable. But as we shall see in a moment, vector k does not represent the
position of the mass m but rather the position of the charge e of the particle.

2.2.6 Interaction with an external electromagnetic �eld

But if q represents the center of mass position, then what position does point r represent?
Point r represents the position of the charge of the particle. This can be seen by considering
some interaction with an external �eld. The homogeneity condition of the Lagrangian in terms
of the derivatives of the kinematical variables leads us to consider an interaction term of the
form

L̃I = −eϕ(t, r)ṫ+ eA(t, r) · ṙ, (2.77)
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which is linear in the derivatives of the kinematical variables t and r and where the external
potentials are only functions of t and r. We can also consider more general interaction terms of
the form N(t, r,u) · u̇, and also more general terms in which functions ϕ and A also depend on
u and u̇. If the interaction Lagrangian depends on u̇ this implies that the interaction modi�es
the de�nition of the observable U = mk which de�nes the spin of the free system. But if the
system is elementary the spin de�nition cannot be changed, so that (2.77) is the most general
interaction term. See the discussion in section 2.1.1 about the independence of the potentials
ϕ and Ai of the velocity variables.

Dynamical equations obtained from L+ LI are

1

ω2

d4r

dt4
+
d2r

dt2
=

e

m
(E(t, r) + u×B(t, r)) , (2.78)

where the electric �eld E and magnetic �eld B are expressed in terms of the potentials in
the usual form, E = −∇ϕ − ∂A/∂t, B = ∇ × A. Dynamical equations (2.78) can again be
separated into the form

d2q

dt2
=

e

m
(E(t, r) + u×B(t, r)) , (2.79)

d2r

dt2
+ ω2(r − q) = 0. (2.80)

The center of mass q satis�es Newton's equations under the action of the total external Lorentz
force, while point r still satis�es the isotropic harmonic motion of angular frequency ω around
point q. The external force modi�es the motion of the CM but does not modify its internal
relative motion according to the Atomic Principle. But the external force and the �elds are
de�ned at point r and not at point q. It is the velocity u of point r that appears in the
magnetic term of the Lorentz force. Point r clearly represents the position of the charge. In
fact, this minimal coupling we have considered is the coupling of the electromagnetic potentials
with the particle current, that in the relativistic case can be written as jµAµ, but the current
jµ is associated to the motion of a charge e at point r.

Figure 2.1: Charge motion in the C.M. frame.

This charge has an oscillatory motion of very high frequency ω that, in the case of the
relativistic electron is ω = 2mc2/~ ≃ 1.55× 1021s−1. The average position of the charge is the



2.2. GALILEI FREE SPINNING PARTICLE 71

center of mass, but it is this internal orbital motion, usually known as the zitterbewegung, that
gives rise to the spin structure for this model and also to the magnetic properties of the particle,
as we shall see later.

When analyzed in the center of mass frame (see Fig. 2.1), q = 0, r = k, the system reduces
to a point charge whose motion is in general an ellipse, but if we choose C = D, and C ·D = 0,
it reduces to a circle of radius a = C = D, orthogonal to the spin. Then if the particle has
charge e, it has a magnetic moment that according to the usual classical de�nition is: 3

µ =
1

2

∫
r × j d3r =

e

2
k × dk

dt
= − e

2m
SCM , (2.81)

where j = eδ3(r − k)dk/dt is the current associated to the motion of a charge e located at
point k. The magnetic moment is orthogonal to the zitterbewegung plane and opposite to the
spin if e > 0. It also has a non-vanishing oscillating electric dipole d = ek, orthogonal to µ and
therefore to SCM in the center of mass frame, such that its time average value vanishes for times
larger than the natural period of this internal motion. Although this is a nonrelativistic example
it is interesting to point out and compare with Dirac's relativistic analysis of the electron, 4 in
which both momenta µ and d appear, giving rise to two possible interacting terms in Dirac's
Hamiltonian. We shall come back to this analysis later when we study the elementary relativistic
particles.

2.2.7 Spinning particle in a uniform magnetic �eld

Let us consider in detail the interaction of this model of particle with spin of orbital nature
in an external uniform magnetic �eld B. It is an exercise that can be solved explicitly. The
advantage of a model de�ned in terms of a Lagrangian function is that we do not need to state
any dynamical equation for spin, because the spin is a function of the independent degrees of
freedom and therefore its dynamics can be obtained from them. The result is that we shall
obtain as a �rst order approximation a torque equation of the usual form dSCM/dt = µ ×B,
when the magnetic moment µ is properly interpreted in terms of the charge motion.

In this case, the system of equations (2.79-2.80) reduce to

d2q

dt2
=

e

m
u×B,

d2r

dt2
+ ω2(r − q) = 0.

With the de�nition of the variables v = dq/dt, it is equivalent to a linear system of twelve
di�erential equations of �rst order for the components of r, u, q and v. If we de�ne a new
dimensionless time variable τ = ωt, then the above system depends only on the dimensionless
parameter a = eB/mω which is the quotient between the cyclotron frequency |ωc| = eB/m and
ω, the natural frequency of the internal motion.

By taking the direction of the uniform magnetic �eld along the OZ axis, the external force
is orthogonal to it. Then if we call q3 and r3 the corresponding coordinates along that axis of
the centre of mass and center of charge, they satisfy

d2q3
dt2

= 0,
d2q3
dt2

+ ω2(r3 − q3) = 0 (2.82)

whose general solution in terms of the initial data q3(0), r3(0), v3(0) and u3(0) is

q3(t) = q3(0) + v3(0)t, (2.83)

3 J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, NY (1998), 3rd. ed. p.186.
4 P.A.M. Dirac, The Principles of Quantum mechanics, Oxford Univ. Press, 4th ed. (1967).
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r3(t) = (r3(0)− q3(0)) cosωt+
1

ω
(u3(0)− v3(0)) sinωt+ q3(0) + v3(0)t. (2.84)

Similarly, the other components of the center of mass in terms of the new time variable are

d2q1
dτ2

= a
dr2
dτ

,
d2q2
dτ2

= −a dr1
dτ

,

and once integrated we get

dq1
dτ

= ar2 + b1,
dq2
dτ

= −ar1 + b2, (2.85)

where b1 and b2 are two integration constants with dimensions of length. Thus we are left
with the integration of a �rst order system formed by these two last equations (2.85) and the
equations for the other two components of the center of charge that can be written as

dr1
dτ

= u1,
dr2
dτ

= u2, (2.86)

du1
dτ

= q1 − r1,
du2
dτ

= q2 − r2. (2.87)

The matrix of this linear system in terms of the variables q1, q2, r1, r2, u1 and u2, taken in
this order, is just

M =



0 0 0 a 0 0
0 0 −a 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 0 0
0 1 0 −1 0 0

 ,

whose characteristic equation is λ6 + 2λ4 + λ2 + a2 = 0. It is shown that it has six di�erent
roots, corresponding to the normal modes of the system. If we call λ = iz, these new variables
verify z2(1− z2)2 = a2, and thus by solving the cubic equation z(1− z2) = a, the six solutions
of the form ±iz will be the six eigenvalues of the system. If we de�ne

k =
1

3
arcsin

(
3
√
3a

2

)
, (2.88)

then the six eigevalues are ±iωj , j = 1, 2, 3, where:

ω1 =
2√
3
sin k, ω2 = − cos k − 1√

3
sin k, ω3 = cos k − 1√

3
sin k. (2.89)

If 3
√
3|a|/2 ≤ 1 then the six roots are purely imaginary and the motion is three-periodic with

these three frequencies. Otherwise, if there exist real roots, the corresponding solution will be
exponential. In general, for the electron, as we shall see in the next chapter, the zitterbewegung
frequency is ω = 2mc2/~, and thus

a/B = e/mω = e~/2m2c2 = 1.13× 10−10Tesla−1,

so that even with very strong magnetic �elds the parameter a is very small and the usual
solution will be oscillatory.

The general solution of the complete system will be a linear combination of these three
oscillations and it will depend on twelve integration constants that will be expressed in terms
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of the initial position and velocity of the center of mass and center of charge. The general form
for the evolution of the center of charge is:

r1(τ) = A cosω1τ +B sinω1τ + C cosω2τ +D sinω2τ + E cosω3τ

+ F sinω3τ + b2/a,

r2(τ) = B cosω1τ −A sinω1τ +D cosω2τ − C sinω2τ

+ F cosω3τ − E sinω3τ − b1/a,

r3(t) = (r3(0)− q3(0)) cosωt

+
1

ω
(u3(0)− v3(0)) sinωt+ q3(0) + v3(0)t,

where
b1/a = v1(0)/aω − r2(0), b2/a = v2(0)/aω + r1(0).

For the center of mass coordinates we get

q1(τ) = (1− ω2
1) (A cosω1τ +B sinω1τ)

+ (1− ω2
2) (C cosω2τ +D sinω2τ)

+ (1− ω2
3) (E cosω3τ + F sinω3τ) + b2/a,

q2(τ) = (1− ω2
1) (B cosω1τ −A sinω1τ)

+ (1− ω2
2) (D cosω2τ − C sinω2τ)

+ (1− ω2
3) (F cosω3τ − E sinω3τ)− b1/a,

q3(t) = q3(0) + v3(0)t.

The six unknown constants A,B,C,D,E, and F are of dimensions of length and satisfy the
linear system  1 1 1

ω1 ω2 ω3

ω2
1 ω2

2 ω2
3

A
C
E

 =

 −v2(0)/aω
−u2(0)/ω

r1(0)− q1(0)

 ,

and  1 1 1
ω1 ω2 ω3

ω2
1 ω2

2 ω2
3

B
D
F

 =

 v1(0)/aω
u1(0)/ω

r2(0)− q2(0)

 ,

where q(0), v(0) and r(0), u(0), are respectively the position and velocity of the center of mass
and center of charge at time t = 0.

If we call N the inverse of the matrix containing the frequencies of the above equations, it
is:

N =
1

∆

ω2ω3(ω3 − ω2) ω2
2 − ω2

3 ω3 − ω2

ω1ω3(ω1 − ω3) ω2
3 − ω2

1 ω1 − ω3

ω1ω2(ω2 − ω1) ω2
1 − ω2

2 ω2 − ω1

 ,

where ∆ = (ω1 − ω2)(ω2 − ω3)(ω3 − ω1), in such a way that we can obtain the �nal expression
of the integration constants in terms of the initial conditions.

To lowest order in a, since k ≈
√
3a/2, the normal modes are:

ω1 = a+O(a3), ω2 = −1− a

2
+

3a2

8
+O(a3), ω3 = 1− a

2
− 3a2

8
+O(a3). (2.90)

In terms of the physical parameters and in the time evolution description, these normal fre-
quencies are to lowest order:

ω1 = ωc, ω2 = ω − ωc

2
− 3ω2

c

8ω
, ω2 = ω +

ωc

2
− 3ω2

c

8ω
, (2.91)
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where ωc = eB/m and ω are the cyclotron and zitterbewegung frequency, respectively.
To properly characterize these initial values in terms of physical parameters, like the radius

of the internal motion R0, the cyclotron radius Rc, the center of mass velocity v and the
zitterbewegung frequency ω, let us consider an electron that is sent with a velocity v orthogonal
to the external uniform magnetic �eld B. We take the XOY plane such that the initial position
of the center of mass is on the OX axis at the coordinate Rc = −vm/eB, and the initial velocity
v along the positive direction of the OY axis. With this convention, the center of mass will have
a precession around the OZ axis with cyclotron angular velocity |ωc| in the positive direction
while for a positive charged particle the initial position will be chosen as −|Rc| on the OX axis
and the angular velocity will point in the negative OZ axis.

The initial position of the center of charge is characterized by the three parameters ϕ, θ
and ψ, where θ and ϕ represent the initial orientation of the internal angular velocity ω, and
parameter ψ is the initial phase position of the center of charge as shown in Figure 2.2. If all
these three parameters are zero, ω is pointing along OZ and the initial position of the charge
is at point Rc +R0 on the OX axis.

We thus have as initial conditions for our system, written in column matrix form:

q(0) =

Rc

0
0

 , r(0) =

Rc

0
0

+Roz(ϕ)Roy(θ)Roz(ψ)

R0

0
0

 ,

v(0) =

 0
v
0

 , u(0) =

 0
v
0

+Roz(ϕ)Roy(θ)Roz(ψ)

 0
ωR0

0

 ,

Figure 2.2: Initial phase ψ of the charge and initial orientation (θ, ϕ) of angular velocity ω.

where Roz(α) will represent a rotation in the active sense, of value α around the OZ axis. Since
the spin is opposite to the internal angular velocity, its initial value is

SCM (0) = Roz(ϕ)Roy(θ)

 0
0
−S

 , (2.92)

where S = mωR2
0. Thus the initial conditions to determine the coe�cients of the general

solution are: −v2(0)/aω
−u2(0)/ω

r1(0)− q1(0)

 =

 Rc

aRc − αR0

βR0

 ,

 v1(0)/aω
u1(0)/ω

r2(0)− q2(0)

 =

 0
γR0

δR0

 ,



2.2. GALILEI FREE SPINNING PARTICLE 75

where Rc = −vm/eB, ωc = −eB/m = −aω, as before and the constant parameters:

α = − sinϕ cos θ sinψ + cosϕ cosψ,

β = cosϕ cos θ cosψ − sinϕ sinψ,

γ = − cosϕ cos θ sinψ − sinϕ cosψ,

δ = sinϕ cos θ cosψ + cosϕ sinψ.

To lowest order in a, the frequencies become:

ω1 − ω2 = 1 +
3

2
a, ω2 − ω3 = −2, ω3 − ω1 = 1− 3

2
a,

ω1 + ω2 = −1 +
a

2
, ω2 + ω3 = −a, ω3 + ω1 = 1 +

a

2
,

ω1ω2 = −a
(
1 +

a

2

)
, ω2ω3 = −

(
1− a2

4

)
, ω3ω1 = a

(
1− a

2

)
,

and thus the inverse matrix N to order O(a2) is

N =

 1 + 2a2 −a −1− 9a2/4
a/2− a2 −1/2 + a/2− 3a2/4 1/2− 3a/4 + 9a2/8
−a/2− a2 1/2 + a/2 + 3a2/4 1/2 + 3a/4 + 9a2/8

 .

In this way the coe�cients of the general solution, to �rst order in a, are:

A = Rc − βR0 + aR0α,

B = −R0(aγ + δ),

C =
R0

2
(α+ β)− aR0

4
(2α+ 3β),

D =
R0

2
(δ − γ) +

aR0

4
(2γ − 3δ),

E =
R0

2
(β − α) +

aR0

4
(3β − 2α),

F =
R0

2
(δ + γ) +

aR0

4
(2γ + 3δ),

and the coe�cients
b1/a = −δR0, b2/a = βR0.

This motion depends on the cyclotron radius Rc, only through the parameter A, and the
remaining terms depend on the internal radius R0.

The general solution, neglecting terms of the order aR0, can be written in a vector form as:

r(t) = Roz(ωct)

Rc

0
0

+ (I−Roz(ωct))R(ϕ, θ, ψ)

R0

0
0


+ Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

R0

0
0

+O(aR0),

where I is the 3 × 3 unit matrix and R(ϕ, θ, ψ) ≡ Roz(ϕ)Roy(θ)Roz(ψ). The �rst two terms
represent the center of mass motion to this order of approximation, while the third is precisely
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the relative motion of the center of charge around the center of mass. The neglected contribution
of order aR0 can be written as

O(aR0)

= −Jz
[
Roz(ωct)R(ϕ, θ, ψ)−Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

] 0
aR0

0


−Jz

sin(ωt)
2

Roz

(
−ωct

2

)
R(ϕ, θ, ψ)

 aR0

0
0

 ,
where

Jz =

 0 −1 0
1 0 0
0 0 0

 ,

is the 3 × 3 generator of rotations around the OZ axis. The �rst two terms represent the
correction to this order of the center of mass motion and the third is the correction of the internal
relative motion. The presence of the generator Jz in this term means that this correction does
not make any contribution to the motion along the OZ axis. The solution along OZ is exactly:

q3(t) = 0, r3(t) = −R0 sin θ cos(ωt+ ψ), (2.93)

i.e., a harmonic motion of amplitude R0 sin θ, and frequency ω.
The relative position of the center of charge with respect to the center of mass veri�es:

k(t) = Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

R0

0
0



−Jz

sin(ωt)
2

Roz

(
−ωct

2

)
R(ϕ, θ, ψ)

 aR0

0
0

 , (2.94)

and if we neglect contributions to order aR0, it just reduces to the �rst term

k(t) ≈ Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

R0

0
0

 , (2.95)

that represents an oscillation with the natural frequency ω of the zitterbewegung around the
initial spin axis, with a backwards precession with an angular velocity ωc/2.

The center of charge and center of mass trajectory is depicted in the Figure 2.3, where the
curly trajectory is the motion of the center of charge.

To study the spin dynamics, we just substitute the general solution in its analytical de�nition

SCM (t) = −mk(t)× dk(t)

dt
, (2.96)

where we need to calculate the derivative of (2.95). To calculate this derivative, we have to take
into account that

Roz(ωt) = exp(Jzωt),

and therefore
Ṙoz(ωt) = exp(Jzωt)Jzω = Roz(ωt)Jzω = JzωRoz(ωt).
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Figure 2.3: Motion of the center of charge and center of mass of a negative charged particle
in a uniform magnetic �eld. The velocity of the center of mass is orthogonal to the �eld.

By taking the derivative of (2.95) we get the following terms:

dk

dt
= Roz

(
−ωct

2

)
Jz R(ϕ, θ, ψ + ωt)

−ωcR0/2
0
0


+ Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

 0
ωR0

0

 , (2.97)

where  0
ωR0

0

 = ωJz

R0

0
0

 . (2.98)

Of these terms, the �rst is of order ωcR0 = vR0/Rc = aωR0 = ac, and thus even with very high
magnetic �elds it can be neglected.

The dynamics of the spin with respect to the center of mass is reduced to

SCM (t) = Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

 0
0

−mωR2
0

 = Roz

(
−ωct

2

)
S(0), (2.99)

where SCM (0) is given in (2.92). The spin is precessing backwards with half the angular velocity
of the cyclotron motion while its absolute value remains constant at �rst order. We represent
in Figure 2.4 its evolution during the same time interval as the one depicted in Figure 2.3 with
the initial orientation θ = 30◦ and ϕ = 90◦, where we can observe, in addition to the precession
of constant absolute value, a tiny oscillation of the next order contribution.

The energy of the system is

H = −T − u · dU
dt
, (2.100)

that can be expressed as:

H =
m

2

(
dr

dt

)2

− m

2ω2

(
d2r

dt2

)2

+
m

ω2

dr

dt
· d

3r

dt3
+ eV (r, t),
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Figure 2.4: Precession of spin around the OZ axis.

and, since the function V (r, t) = 0 in the presence of a constant magnetic �eld, it becomes:

H =
m

2

(
dq

dt

)2

− m

2

(
dk

dt

)2

− mω2

2
k2 =

(P − eA)2

2m
+H0. (2.101)

To lowest order the contribution comes from

q(t) = Roz(ωct)

Rc

0
0

+ (I−Roz(ωct))R(ϕ, θ, ψ)

R0

0
0

 .

Thus

dq

dt
= Roz(ωct)

 0
v
0

−Roz(ωct) Jz R(ϕ, θ, ψ)

ωcR0

0
0

 ,

in such a way that taking into account (2.94) and (2.97)

(
dq

dt

)2

= v2 +

Jz R(ϕ, θ, ψ)

ωcR0

0
0

2

− 2

 0
v
0

 ·

Jz R(ϕ, θ, ψ)

ωcR0

0
0

 ,
(
dk

dt

)2

= ω2R2
0 +

Jz R(ϕ, θ, ψ + ωt)

−ωcR0/2
0
0

2

+2

Jz R(ϕ, θ, ψ + ωt)

−ωcR0/2
0
0

 ·

R(ϕ, θ, ψ + ωt)

 0
ωR0

0

 .
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Since

R(ϕ, θ, ψ + ωt) =

 β(t) γ(t) cosϕ sin θ
δ(t) α(t) sinϕ sin θ

− sin θ cos(ωt+ ψ) sin θ sin(ωt+ ψ) cos θ

 ,

Jz R(ϕ, θ, ψ + ωt) =

−δ(t) −α(t) − sinϕ sin θ
β(t) γ(t) cosϕ sin θ
0 0 0

 ,

where

α(t) = − sinϕ cos θ sin(ψ + ωt) + cosϕ cos(ψ + ωt),

β(t) = cosϕ cos θ cos(ψ + ωt)− sinϕ sin(ψ + ωt),

γ(t) = − cosϕ cos θ sin(ψ + ωt)− sinϕ cos(ψ + ωt),

δ(t) = sinϕ cos θ cos(ψ + ωt) + cosϕ sin(ψ + ωt)

then

Jz R(ϕ, θ, ψ + ωt)

ωcR0

0
0

 = ωcR0

−δ(t)
β(t)
0

 .

Consequently (
dq

dt

)2

= v2 + ω2
cR

2
0(δ(0)

2 + β(0)2)− 2vωcR0β(0),(
dk

dt

)2

= ω2R2
0 +

ω2
cR

2
0

4
(δ(t)2 + β(t)2) + ωωcR

2
0(δ(t)γ(t)− β(t)α(t)).

Because
δ(t)γ(t)− β(t)α(t) = − cos θ,

δ(0)2 + β(0)2 = 1− sin2 θ cos2 ψ,

δ(t)2 + β(t)2 = 1− sin2 θ cos2(ψ + ωt),

if we write ωc in terms of the parameter a, ωc = −aω, in the case of the electron ωR0 = c, the
energy of this system to lower order of approximation in a is:

H = H0 − a

(
mc2 cos θ

2
−mvcβ(0)

)
+a2

mc2

2

(
δ(0)2 + β(0)2 − 1

4
(δ(t)2 + β(t)2)

)
.

The lowest order of the interaction energy can be expressed as:

HI = −1

2
amc2 cos θ = − eB

2m

mc2

ω
cos θ = −µ ·B, (2.102)

and since S = mωR2
0 = mc2/ω, Sz = −S cos θ, it implies

µz =
eS cos θ

2m
= −eSz

2m
, (2.103)

or
µ = − e

2m
SCM . (2.104)

The interaction energy can also be written as

HI = − eB

2m
S cos θ =

e

2m
B · SCM =

−ωc

2
· SCM , (2.105)

i.e., as the scalar product of the spin with respect to the center of mass and the angular velocity
of precession of this spin.
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From a simpler method, if assumed that the relation between the spin and mag-
netic moment is given by (2.104), and that the variation of the spin with respect to
the center of mass is governed by the torque equation

dSCM

dt
= µ×B = − e

2m
SCM ×B = Ω× SCM .

The constant angular velocity of precession of the spin with respect to the center of
mass is Larmor's angular frequency

Ω =
eB

2m
= −ωc

2
,

because ωc = −eB/m, i.e., half and opposite to the cyclotron angular velocity as
is shown in �gure 2.4. This produces the �rst order contribution because the spin
conserves its absolute value. However, this simpler assumption does not contain the
additional terms or corrections to the normal modes ωi, which can be relevant in
high energy processes, and can be obtained from the general solution.

2.2.8 Spinning Galilei particle with orientation

Another simple example of a spinning particle is the one in which the spin is related only
to the angular variables which describe orientation.

Let us assume now a dynamical system whose kinematical space is X = G/R3
v, where

R3
v ≡ {R3,+} is the 3-parameter Abelian subgroup of pure Galilei transformations. Then,

the kinematical variables are x ≡ (t, r,ρ), which are interpreted as the time, position and
orientation respectively.

The Lagrangian for this model takes the general form

L̃ = T ṫ+R · ṙ +W · ω.

Because of the structure of the exponent (2.220), the gauge function for this system can be
taken the same as before. The general relationship (2.52) leads to W × ω = 0, because the
Lagrangian is independent of u̇, and therefore W and ω must be collinear. According to the
transformation properties of the Lagrangian, the third term W ·ω is Galilei invariant and since
W and ω are collinear, we can take W ∼ ω and one possible Lagrangian that describes this
model is of the form:

L̃ =
m

2

ṙ2

ṫ
+
I

2

ω2

ṫ
. (2.106)

The di�erent Noether's constants are

H =
m

2

(
dr

dt

)2

+
I

2
Ω2, P = mu,

K = mr − P t, J = r × P +W ,

where u = dr/dt is the velocity of point r, and Ω = ω/ṫ is the time evolution angular velocity.
Point r is moving at a constant speed and it also represents the position of the center of mass.
The spin is just the observable S ≡ W that satis�es the dynamical equation dS/dt = ω×S = 0,
and thus the frame linked to the body rotates with a constant angular velocity Ω.

The spin takes the constant value S = IΩ, whose absolute value is independent of the
inertial observer and also the angular velocity Ω = ω/ṫ is constant. The parameter I plays the
role of a principal moment of inertia, suggesting a linear relationship between the spin and the
angular velocity, which corresponds to a particle with spherical symmetry. The particle can
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also be considered as an extended object of gyration radius R0, related to the other particle
parameters by I = mR2

0.
This system corresponds classically to a rigid body with spherical symmetry where the

orientation variables ρ can describe for instance, the orientation of its principal axes of inertia
in a suitable parameterization of the rotation group. This is a system of six degrees of freedom.
Three represent the position of the center of charge r and the other three ρ, represent the
orientation of a Cartesian frame linked to that point r. Since for this system there is no
dependence on the acceleration, the center of mass and the center of charge will be represented
by the same point.

In the center of mass frame there is no current associated to this particle and therefore it
has neither magnetic nor electric dipole structure. As seen in previous examples, all magnetic
properties seem therefore to be related to the zitterbewegung part of the spin and are absent
in this rigid body-like model.

RELATIVISTIC PARTICLES

2.3 Relativistic point particle

See the Appendix about the Poincaré group at the end of this chapter for the group notation
used throughout this section.

The kinematical space is the quotient structure X = P/L, where P is the Poincaré group
and the subgroup L is the Lorentz group. Then every point x ∈ X is characterized by the
variables x ≡ (t(τ), r(τ)), with domains t ∈ R, r ∈ R3 as the corresponding group parameters,
b and a, respectively, in such a way that under the action of a group element g ≡ (b,a,v,µ) of
P they transform as:

t′(τ) = γt(τ) + γ(v ·R(µ)r(τ))/c2 + b, (2.107)

r′(τ) = R(µ)r(τ) + γvt(τ) +
γ2

(1 + γ)c2
(v ·R(µ)r(τ))v + a, (2.108)

and are interpreted as the time and position of the system. If, as usual, we assume that the
evolution parameter τ is invariant under the group, taking the τ -derivative of (2.107) and (2.108)
we get

ṫ′(τ) = γṫ(τ) + γ(v ·R(µ)ṙ(τ))/c2, (2.109)

ṙ′(τ) = R(µ)ṙ(τ) + γvṫ(τ) +
γ2

(1 + γ)c2
(v ·R(µ)ṙ(τ))v. (2.110)

The homogeneity condition of the Lagrangian, in terms of the derivatives of the kinematical
variables, reduces to three the number of degrees of freedom of the system. This leads to the
general expression

L̃ = T ṫ+R · ṙ, (2.111)

where T = ∂L̃/∂ṫ and Ri = ∂L̃/∂ṙi, will be functions of t and r and homogeneous functions of
zero degree of ṫ(τ) and ṙ(τ).

If the particle is free, the dynamical equations will be invariant under P, and the Lagrangian
will also be invariant because the Poincaré group has no non trivial exponents and the possible
gauge functions associated to this group can be reduced to zero.

From the in�nitesimal point of view, since L̃0(t, r, ṫ, ṙ) depends on these variables which trans-
form according to (2.107-2.110), the di�erent generators of the Poincaré group, when acting on
functions of these variables, are:

H =
∂

∂t
, P = ∇, J = r ×∇+ ṙ ×∇ṙ, K =

r

c2
∂

∂t
+ t∇+

ṙ

c2
∂

∂ṫ
+ ṫ∇ṙ,
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like the Galilei case, except the generator of the Lorentz boosts K, which has a di�erent structure
because the in�nitesimal transformation of velocity δv a�ects, not only to the space variables r
and ṙ like the Galilei case, but also to the time variables t and ṫ.

If HL̃0 = 0 and P L̃0 = 0, implies that L̃0 is not a function of t and r. If JL̃0 = 0 implies
that it is a function ṙ2 and also of ṫ and has to be homogeneous of degree 1 in these derivatives.
Finally, if it is invariant under the Lorentz boosts KL̃0 = 0, and therefore(

ṙ

c2
∂

∂ṫ
+ ṫ∇ṙ

)
L̃0 = 0,

which implies that L̃0 is an arbitrary function of c2ṫ2− ṙ2. The condition of homogeneity of degree

1 in these derivatives and that it has dimension of action implies that a possibility is s
√
c2ṫ2 − ṙ2,

with s a parameter of dimensions of mass×velocity, for instance mc.

Because the Lagrangian is invariant under P, the functions T and R transform under the
group P in the form:

T ′ = γT − γ(v ·R(µ)R), (2.112)

R′ = R(µ)R− γvT/c2 +
γ2

1 + γ
(v ·R(µ)R)v/c2. (2.113)

We thus see that T and R are invariant under translations and therefore they must be functions
independent of t and r.

The conjugate momenta of the generalized variables qi = ri are pi = ∂L̃/∂ṙi, and conse-
quently Noether's theorem leads to the following constants of the motion, that are calculated
similarly as in the Galilei case except for the invariance under pure Lorentz transformations.
We have now no gauge function and the variations are δt = r · δv/c2, Mi = ri/c

2 and δr = tδv,
Mij = tδij and thus we get:

temporal momentum H = −T, (2.114)

linear momentum P = R = p, (2.115)

kinematical momentum K = Hr/c2 − P t, (2.116)

angular momentum J = r × P . (2.117)

The energy (temporal momentum) and the linear momentum transform as:

H ′(τ) = γH(τ) + γ(v ·R(µ)P (τ)), (2.118)

P ′(τ) = R(µ)P (τ) +
γv

c2
H(τ) +

γ2

(1 + γ)c2
(v ·R(µ)P (τ))v. (2.119)

They transform like the contravariant components of a four-vector Pµ ≡ (H/c,P ). The
observables cK and J are the essential components of the antisymmetric tensor Jµν = −Jνµ =
xµP ν − xνPµ, cKi = J i0 and Jk = ϵkilJ

il/2.
Taking the τ derivative of the kinematical momentum, K̇ = 0, we get P = H ṙ/c2ṫ = Hu/c2,

where u = ṙ/ṫ is the velocity of the particle and the point r represents both the center of mass
and center of charge position of the particle.

The six conditions P = 0 and K = 0, imply u = 0 and r = 0, so that the system is at
rest and placed at the origin of the reference frame, similarly as in the nonrelativistic case. We
again call this class of observers the center of mass observer.

From (2.118) and (2.119) we see that the magnitude (H/c)2 − P 2 = (H ′/c)2 − P
′2 is a

Poincaré invariant and a constant of the motion of dimensions (mass×velocity)2. Since P 2 =
(H/c)2u2/c2 < (H/c)2, if u < c, and it is de�nite positive. We write this magnitude as m2c2

in terms of a positive number m, the rest mass of the particle. By using the expression of
P = Hu/c2, we get

H = ±mc2(1− u2/c2)−1/2 = ±γ(u)mc2.
We are going to see that the sign of H, is another Poincaré invariant property of the particle
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For the center of mass observer, P = 0, and thus H = ±mc2. If H > 0 for the center of mass
observer, then from (2.118) we get that for any other observer, H ′ = γH ≥ H > 0, since γ ≥ 1. If
H < 0, also in this case H ′ = γH ≤ H < 0. The sign of H is another invariant between observers
and therefore an intrinsic property of the particle. If H > 0 the system is called a particle, and
antiparticle if H < 0.

The velocity u < c, otherwise H will be imaginary. If u > c the invariant (H/c)2 − P 2 < 0
and it is not possible to de�ne the rest mass of the system. By substitution of the found
expressions for T and R in (2.111), there are two possible Lagrangians for a point particle of
mass m, characterized by the sign of H

L̃ = ∓mc
√
c2ṫ2 − ṙ2. (2.120)

The system described by the Lagrangian (2.120) with the sign +, has a temporal momentum
H < 0, and represents an antiparticle, while that of sign −, H > 0. Particles and antiparticles
appear more symmetrically in the relativistic formulation.

Expansion of this Lagrangian to lowest order in u/c, in the case of positive H, we get

L̃ = −mc2ṫ+ m

2

ṙ2

ṫ
,

where the �rst term −mc2ṫ that can be withdrawn is just the equivalent to the Galilei internal
energy term−H0ṫ of (2.17). The Lagrangian withH < 0 has as nonrelativistic limit−(m/2)ṙ2/ṫ
which is not obtained in the Galilei case.

The spin of this system, de�ned as the angular momentum with respect to the point r, is

S ≡ J − q × P = J − c2

H
K × P = 0, (2.121)

vanishes, so that the relativistic point particle is also a spinless system.

2.4 Relativistic spinning particles

There are three maximal homogeneous spaces of P, all of them at �rst parameterized by
the variables (t, r,u,ρ), where the velocity variable u can be either u < c, u = c or u > c. We
shall call these kinds of particles by the following names: The �rst one, since the motion of the
position of the charge r satis�es u < c, we call a Bradyon, from the Greek term βραδυς ≡ slow.
Bradyons are thus particles for which point r never reaches the speed of light. The second class
of particles (u = c) will be called Luxons because point r is always moving at the speed of light
for every observer, and �nally those of the third group, because u > c, are called Tachyons,
from the Greek ταχυς ≡ fast.

For the second class we use the Latin denomination Luxons in spite of the Greek one of
photons, because this class of particles will supply the description not only of classical photons
but also a classical model of the electron. This class of models is very important and it has
no nonrelativistic limit. Therefore the models this manifold produce have no nonrelativistic
equivalent.

The �rst class corresponds to a kinematical space that is the Poincaré group itself and
produces models equivalent to the ones analyzed in the non-relativistic case. Readers interested
on these models should go through the book by the author. To describe the classical electron
and the photon we shall consider next the case of luxons.
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2.5 Luxons

Let us consider those elementary particles whose kinematical space is the manifold X gen-
erated by the variables (t, r,u,ρ) with domains t ∈ R, r ∈ R3, ρ ∈ R3

c as in the previous case,
and u ∈ R3 but now with u = c. Since u = c we shall call this kind of particles Luxons. This
manifold is in fact a homogeneous space of the Poincaré group P, and therefore, according to
our de�nition of elementary particle has to be considered as a possible candidate for describing
the kinematical space of an elementary system. In fact, if we consider the point in this manifold
x ≡ (0, 0,u, 0), the little group that leaves x invariant is the one-parameter subgroup Vu of pure
Lorentz transformations in the direction of the vector u. Then X ∼ P/Vu, is a nine-dimensional
homogeneous space.

For this kind of systems the variables t, r transform according to (2.107) and (2.108),
respectively and the derivatives as in (2.109) and (2.110). For the velocity u the transformation
is obtained from the quotient of (2.110) by (2.109) and is

u′(τ) =

R(µ)u(τ) + γv +
γ2

(1 + γ)c2
(v ·R(µ)u(τ))v

γ(1 + v ·R(µ)u(τ)/c2)
. (2.122)

From here we obtain that

u
′2 =

u2 − c2

γ2 (1 + v ·Ru/c2)2
+ c2,

and thus if u = c for some observer, this implies u′ = c, for any other one, so that the manifold
is a homogeneous space of P.

The general transformation of the orientation variables ρ are obtained from (2.232) but now
the functions F and G, which involve some γ(u) factors, become in�nite and in the limit u→ c
they take the form

ρ′(τ) =
µ+ ρ(τ) + µ× ρ(τ) + F c(v,µ;u(τ),ρ(τ))

1− µ · ρ(τ) +Gc(v,µ;u(τ),ρ(τ))
, (2.123)

where the functions F c and Gc are given now by:

F c(v,µ;u,ρ) =
γ(v)

(1 + γ(v))c2
[u× v + u(v · µ) + v(u · ρ)

+ u× (v × µ) + (u× ρ)× v + (u · ρ)(v × µ)

+ (u× ρ)(v · µ) + (u× ρ)× (v × µ)] , (2.124)

Gc(v,µ;u,ρ) =
γ(v)

(1 + γ(v))c2
[u · v + u · (v × µ) + v · (u× ρ)

− (u · ρ)(v · µ) + (u× ρ) · (v × µ)] . (2.125)

Since u′ = u = c, the absolute value of the velocity vector is conserved and it means that u′

can be obtained from u by an orthogonal transformation, so that the transformation equations
of the velocity under P, (2.122) can be expressed as:

u′ = R(ϕ)u, (2.126)

where the kinematical rotation of parameter ϕ is

ϕ =
µ+ F c(v,µ;u(τ), 0)

1 +Gc(v,µ;u(τ), 0)
. (2.127)
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In this case there also exist among the kinematical variables the constraints u = ṙ/ṫ.
Equation (2.123) also corresponds to

R(ρ′) = R(ϕ)R(ρ), (2.128)

with the same ϕ in both cases, as in (2.127), so that the three unit vectors ei which de�ne by
columns the rotation matrix, transform with th e same rotation as the velocity u.

Since the variable u(τ) = c, during the whole evolution, we can distinguish two di�erent
kinds of systems, because, by taking the derivative with respect to τ of this expression we get
u̇(τ) · u(τ) = 0, i.e., systems for which u̇ = 0 or massless systems as we shall see, and systems
where u̇ ̸= 0 but always orthogonal to u. These systems will correspond to massive particles
whose charge internal motion occurs at the constant velocity c, although their center of mass
moves with velocity below c.

2.5.1 Massless particles. (The photon)

If u̇ = 0, u is constant and the system follows a straight trajectory with constant velocity,
and therefore the kinematical variables reduce simply to (t, r,ρ) with domains and physical
meaning as usual as, time, position and orientation, respectively. The derivatives ṫ and ṙ
transform like (2.109) and (2.110) and instead of the variable ρ̇ we shall consider the linear
function ω de�ned in (2.34) that transforms under P:

ω′(τ) = R(ϕ)ω(τ), (2.129)

where, again, ϕ is given by (2.127).

In fact, from (2.128), since u̇ = 0, taking the τ -derivative,

Ṙ(ρ′) = R(ϕ)Ṙ(ρ),

the antisymmetric matrix Ω = Ṙ(ρ)RT (ρ) has as essential components the angular velocity ω,

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2.130)

It transforms as

Ω′ = Ṙ(ρ′)RT (ρ′) = R(ϕ)Ṙ(ρ)RT (ρ)RT (ϕ) = R(ϕ)ΩRT (ϕ),

and this matrix transformation leads for its essential components to (2.129).

For this system there are no constraints among the kinematical variables, and, since u̇ = 0,
the general form of its Lagrangian is

L̃ = T ṫ+R · ṙ +W · ω. (2.131)

Funtions T = ∂L̃/∂ṫ, Ri = ∂L̃/∂ṙi, Wi = ∂L̃/∂ωi, will depend on the variables (t, r,ρ) and are
homogeneous functions of zero degree in terms of the derivatives of the kinematical variables
(ṫ, ṙ,ω). Since ṫ ̸= 0 they will be expressed in terms of u = ṙ/ṫ and Ω = ω/ṫ, which are the
true velocity and angular velocity of the particle respectively.

Invariance of the Lagrangian under P leads to the following transformation form of these
functions under the group P:

T ′ = γT − γ(v ·R(µ)R), (2.132)

R′ = R(µ)R− γvT/c2 +
γ2

(1 + γ)c2
(v ·R(µ)R)v, (2.133)
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W ′ = R(ϕ)W . (2.134)

They are translation invariant and therefore independent of t and r. They will be functions
of only (ρ,u,Ω), with the constraint u = c. Invariance under rotations forbids the explicit
dependence on ρ, so that the dependence of these functions on ρ and ρ̇ variables is only
through the angular velocity ω.

Noether's theorem gives rise, as before, to the following constants of the motion:

temporal momentum H = −T, (2.135)

linear momentum P = R, (2.136)

kinematical momentum K = Hr/c2 − P t−W × u/c2, (2.137)

angular momentum J = r × P +W . (2.138)

In this case the system has no zitterbewegung because the Lagrangian does not depend on u̇
which vanishes. The particle, located at point r, is moving in a straight trajectory at the speed
of light and therefore it is not possible to �nd an inertial rest frame observer. Although we have
no center of mass observer, we de�ne the spin as the angular momentum with respect to the
point r by S = J − r × P = W .

If we take in (2.138) the τ -derivative we get dS/dt = P × u. Since P and u are two
non-vanishing constant vectors, then the spin has a constant time derivative. It represents a
particle with a continuously increasing angular momentum. This is not what we understand by
an elementary particle except if this constant dS/dt = 0. Therefore for this system the spin is
a constant of the motion and P and u must be collinear vectors.

Energy (temporal momentum) and linear momentum are in fact the components of a four-
vector and with the spin they transform as

H ′ = γH + γ(v ·R(µ)P ), (2.139)

P ′ = R(µ)P + γvH/c2 +
γ2

(1 + γ)c2
(v ·R(µ)P )v, (2.140)

S′ = R(ϕ)S. (2.141)

The relation between P and u can be obtained from (2.137), taking the τ -derivative and the
condition that the spin W is constant, K̇ = 0 = −H ṙ/c2 + P ṫ, i.e., P = Hu/c2. If we take
the scalar product of this expression with u we also get H = P · u.

Then, from (2.139) and (2.140), an invariant and constant of the motion, which vanishes, is
(H/c)2 − P 2. The mass of this system is zero. It turns out that for this particle both H and
P are non-vanishing for every inertial observer. Otherwise, if one of them vanishes for a single
observer they vanish for all of them. By (2.141), S2 is another Poincaré invariant property of
the system that is also a constant of the motion.

The �rst part of the Lagrangian T ṫ + R · ṙ = −Hṫ + P · ṙ, which can be written as
−(H − P · u)ṫ = 0, also vanishes. Then the Lagrangian is reduced to the third term S · ω.

We see from (2.126) and (2.141) that the dimensionless magnitude ϵ = S · u/Sc is another
invariant and constant of the motion, and we thus expect that the Lagrangian will be explicitly
dependent on both constant parameters S and ϵ. Taking into account the transformation
properties under P of u, ω and S, given in (2.126), (2.129) and (2.141) respectively, it turns
out that the spin must necessarily be a vector function of u and ω.

If the spin is not transversal, as it happens for real photons, then S = ϵ Su/c where ϵ = ±1,
and thus the Lagrangian �nally becomes:

L̃ =

(
ϵ S

c

)
ṙ · ω
ṫ

. (2.142)
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From this Lagrangian the temporal momentum is H = −∂L̃/∂ṫ = S · Ω, where Ω = ω/ṫ
is the angular velocity of the particle. The linear momentum is P = ∂L̃/∂ṙ = ϵ SΩ/c, and,
since P and u are parallel vectors, Ω and u must also be parallel, and if the energy is de�nite
positive, then Ω = ϵΩu/c.

This means that the energy H = SΩ. For photons we know that S = ~, and thus H = ~Ω =
hν. In this way the frequency of a photon is the frequency of its rotational motion around the
direction of its trajectory. We thus see that the spin and angular velocity for H > 0 particles
have the same direction, although they are not analytically related, because S is invariant under
P while Ω is not. When we change of inertial observer the spin remains the same while the
frequency experiences the Doppler e�ect.

We say that the Lagrangian (2.142) represents a photon of spin S and polarization ϵ. A
set of photons of this kind, all with the same polarization, corresponds to circularly polarized
light, as has been shown by direct measurement of the angular momentum carried by these
photons. 5 Left and right polarized photons correspond to ϵ = 1 and ϵ = −1, respectively.
Energy is related to the angular frequency H = ~Ω, and linear momentum to the wave number
P = ~k, that therefore is related to the angular velocity vector by k = ϵΩ/c. If it is possible
to talk about the `wave-length' of a single photon this will be the distance run by the particle
during a complete turn.

The antiphotons, i.e., those particles for which H < 0, they satisfy H = S ·Ω = p·u < 0 and
therfore the spin and and the angular velocity have opposite direction and the same happens
for the velocity and linear momentum. In any case they have the same energy than the photons
with H > 0. To determine whether a material system absorbs a photon or an antiphoton we
have to measure separately the velocity of the photon and the linear momentum, which have
to be opposite to each other. It seems that the radiation of normal matter produces photons,
because the radiation preasure has the direction of the motion, and thus linear momentum and
velicity are parallel. In the electron-positron interaction, in order to the particles approach to
each other by means of an interchange of a photonic particle, this has to be an antiphoton.
However in the electron-electron interaction the particles separate from each other and they
interchange a photon.

The relationship between the di�erent observables for the photon (H > 0) and the antipho-
ton (H < 0) is represented in the �gure 2.5

If the possible states of a photon are represented in vector form like | sign(H), ϵ >, the states
represented on the left of the �gure are |+,+ > and |+,− >, and those of the right by |−,+ >
and |−,− >, respectively. They are independent and orthogonal states. If the radiation �eld
is only composed of photons (H > 0), then the classical description of the vector states of the
monochromatic light is given by complex vectors of the two-dimensional complex space C2 and
the di�erent polarized states by the Poincaré sphere, as a convex linear combination of pure
states.

2.5.2 Massive particles. (The electron)

If we consider now the other possibility, u̇ ̸= 0 but orthogonal to u, then variables ṫ and ṙ
transform as in the previous case (2.109) and (2.110), but for u̇ and ω we have:

u̇′ = R(ϕ)u̇+ Ṙ(ϕ)u, (2.143)

ω′ = R(ϕ)ω + ωϕ, (2.144)

where the rotation of parameter ϕ is again given by (2.127) and vector ωϕ is:

ωϕ =
γRu× v − (γ − 1)R(u× u̇) + 2γ2(v ·R(u× u̇))v/(1 + γ)c2

γ(c2 + v ·Ru)
. (2.145)

5 R. A. Beth, Phys. Rev. 50, 115 (1936).
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Figure 2.5: Relative orientation between the di�erent observables u, S, Ω y p, for the
photon H > 0 on the left hand side column and for the antiphoton H < 0 on the right hand
side, for the two possible helicities ϵ = ±1. S = ϵSu/c, p = Hu/c2 = ϵSΩ/c.

Expression (2.143) is the τ -derivative of (2.126) and can also be written in the form:

u̇′ =
R(ϕ)u̇

γ(1 + v ·R(µ)u/c2)
. (2.146)

Expression (2.144) comes from R(ρ′) = R(ϕ)R(ρ) and taking the τ -derivative of this expression
Ṙ(ρ′) = Ṙ(ϕ)R(ρ) +R(ϕ)Ṙ(ρ), because parameter ϕ depends on τ through the velocity u(τ),
and therefore

Ω′ = Ṙ(ρ′)RT (ρ′) = R(ϕ)ΩRT (ϕ) + Ṙ(ϕ)RT (ϕ).

R(ϕ)ΩRT (ϕ) corresponds to R(ϕ)ω and the antisymmetric matrix Ωϕ = Ṙ(ϕ)RT (ϕ) has as
essential components the ωϕ vector, i.e., equation (2.145).

The homogeneity condition of the Lagrangian leads to the general form

L̃ = T ṫ+R · ṙ +U · u̇+W · ω, (2.147)

where T = ∂L̃/∂ṫ, Ri = ∂L̃/∂ṙi, Ui = ∂L̃/∂u̇i and Wi = ∂L̃/∂ωi, and Noether's theorem
provides the following constants of the motion:

temporal momentum H = −T − (dU/dt) · u, (2.148)

linear momentum P = R− (dU/dt), (2.149)

kinematical momentum K = Hr/c2 − P t− S × u/c2, (2.150)

angular momentum J = r × P + S. (2.151)

In this case the spin S, i.e. the angular momentum with respecto to the point r, is de�ned as
in the Galilei case, by

S = u×U +W = Z +W . (2.152)

Expressions (2.148, 2.149) imply that H/c and P transform like the components of a four-
vector, similarly as in (2.118-2.119), thus de�ning the invariant and constant of the motion
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(H/c)2 −P 2 = m2c2, in terms of the positive parameter m which is interpreted as the mass of
the particle.

Observable S transforms as:

S′(τ) = γR(µ)S(τ)− γ2

(1 + γ)c2
(v ·R(µ)S(τ))v +

γ

c2
(v ×R(µ)(S(τ)× u)), (2.153)

an expression that corresponds to the transformation of an antisymmetric tensor Sµν with strict
components S0i = (S × u)i/c, and Sij = ϵijkSk.

By de�ning the relative position vector k = S × u/H, the kinematical momentum (2.150)
can be cast into the form

K = Hq/c2 − P t,

where q = r − k, represents the position of the center of mass of the particle.
The spin with respect to the center of mass, is de�ned as usual by

SCM = J − q × P = J − c2

H
K × P , (2.154)

and is a constant of the motion. It takes the form

SCM = S + k × P = S +
1

H
(S × u)× P . (2.155)

The helicity SCM · P = S · P = J · P , is also a constant of the motion. We can construct
the constant Pauli-Lubanski four-vector

wµ ≡ (P · SCM ,HSCM/c), (2.156)

with −wµwµ = m2c2S2, in terms of the invariant properties m and S of the particle, where S
is the modulus of the SCM , or the spin in the center of mass frame.

If we take in (2.150) the τ -derivative and the scalar product with the velocity u we get the
Poincaré invariant relation:

H = P · u+
1

c2
S ·
(
du

dt
× u

)
. (2.157)

In this way, the temporal momentum or Dirac's Hamiltonian, is the sum of two terms,
one translational, related to P , which vanishes for the center of mass observer, and another
rotational and related to S, which never vanishes. In the quantum case it will be related to
H = cP · α + βmc2, in terms of the α and β Dirac matrices. Since cα is usually interpreted
as the local velocity operator u of the electron, 6 we have H = P · u+ βmc2 and this relation
suggests the identi�cation

β =
1

mc4
S ·
(
du

dt
× u

)
.

Here all magnitudes on the right-hand side are measured in the center of mass frame. We shall
come back to this relation after quantization of this system.

The center of mass observer is de�ned by the conditions P = K = 0. For this observer
S = SCM is constant, H = ±mc2 and thus from (2.150) we get

r = ± 1

mc2
S × u, (2.158)

and the internal motion takes place in a plane orthogonal to the constant spin S. The scalar
product with u leads to r ·dr/dt = 0, and thus the zitterbewegung radius is a constant. Taking

6 J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley Reading, MA (1967).
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the time derivative of both sides of (2.158), we obtain mc2u = ±(S × du/dt), because the
spin is constant in this frame, we get that u and S are orthogonal. If we introduce in (2.158)
the expression of u and taking into account the orthogonality between the spin, velocity and
acceleration we get

d2r

dt2
+ ω2r = 0, ω =

mc2

S
. (2.159)

which is exactly the equation of the Preamble (2) and of the nonrelativistic particle (2.70)
when the center of mass is at rest. Making in (2.158) the cross product with u and using the
orthogonality between the spin and velocity we arrive, in the center of mass frame, to

S = ±mu× r. (2.160)

Since S and u = c are constant, the motion is a circle of radius R0 = S/mc. For the electron
we take in the quantum case S = ~/2, and the radius is ~/2mec = 1.93 × 10−13 m., half
the Compton wave length of the electron. The frequency of this motion in the C.M. frame
is ν = 2mec

2/h = 2.47 × 1020 s−1, and ω = 2πν = 1.55 × 1021 rad s−1. The ratio of this
radius to the so-called classical radius Rcl = e2/8πε0mec

2 = 1.409 × 10−15 m, is precisely
Rcl/R0 = e2/2ε0hc = 1/136.97 = α, the �ne structure constant.

There are two di�erent types of particles, as far as the sign of H is concerned. In both the
energy is mc2. It is called particle the object with H > 0 and antiparticle with H < 0. The
kinetics of this is opposite to the other once the spin direction is �xed. Particle and antiparticle
have the time reversed motion of each other. Motions of this sort, in which the particle is
moving at the speed of light, can be found in early literature, but the distinction between the
motion of center of charge and center of mass is not su�ciently clari�ed. 7, 8

Nevertheless, in the model we are analyzing, the idea that the electron has a size of the
order of the zitterbewegung radius is a plausible macroscopic vision but it is not necessary to
maintain any longer, because the only important point from the dynamical point of view is the
center of charge position, whose motion completely determines the dynamics of the particle. In
this form, elementary particles, the kind of objects we are describing, look like extended objects.
Nevertheless, although some kind of related length can be de�ned, they are dealt with as point
particles with orientation because the physical attributes are all located at the single point r.
The dynamics of equation (2.158) for the particle, can be represented in �gure 2.6, and for
the antiparticle in �gure 2.7, where we have separated the two contributions to the total spin
S = Z +W , related respectively to the orbital and rotational motion.

The transformation equation for the function S, (2.153) can also be written as

S′ = γ(1 + v ·R(µ)u/c2)R(ϕ)S, (2.161)

and therefore, from this expresion and (2.146), S · u̇ = S′ · u̇′ which vanish in any reference
frame, and also from (2.126), S′ · u′ = γ(1 + v · R(µ)u/c2)S · u, which also vanishes. Since
the center of charge spin is orthogonal to u and u̇, for the center of mass observer, it is also
orthogonal to u and u̇ for any other inertial observer.

An alternative method of verifying this is to take the time derivative in (2.150) and (2.151),
and thus

Hu− c2P − dS

dt
× u− S × du

dt
= 0,

dS

dt
= P × u,

7 M. Mathisson, Acta Phys. Pol. 6, 163 (1937); 6, 218 (1937)
8 M.H.L. Weyssenhof, Acta Phys. Pol. 9, 46 (1947). M.H.L. Weyssenhof and A. Raabe, Acta Phys. Pol. 9,

7 (1947); 9, 19 (1947).
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Figure 2.6: Motion of the center of charge of the electron in the center of mass frame.

i.e.,

S × du

dt
= (H − u · P )u.

and a �nal scalar product with S, leads to (H − u · P )u · S = 0. The �rst factor does not vanish
since the invariant H2/c2 −P 2 = m2c2 is positive de�nite and if H = u ·P , then (u ·P )2/c2 −P 2

with u ≤ c is always negative, then S ·u = 0. If we take the time derivative of this last expression,
with the condition that dS/dt is orthogonal to u, we obtain S · u̇ = 0. The observable S has
always the direction of the non-vanishing vector u̇× u for positive temporal momentum particles
and the opposite direction for antiparticles of negative temporal momentum.

If we take the time derivative of the kinematical momentum (2.150) for the free particle, we
get

Hu− c2P +
dS

dt
× u+ S × du

dt
= 0.

Taking into account that dS/dt = P × u and making a cross product with du/dt we get

S =

(
H − u · P
(du/dt)2

)
du

dt
× u, (2.162)

and q = r − S × u/H leads for the center of mass position to

q = r +
c2

H

(
H − u · P
(du/dt)2

)
du

dt
. (2.163)

The center of mass, with respect to the center of charge, is in the direction of the acceleration
for the particle and antiparticle. The point r makes a central motion around the center of mass.
The spin with respect to the point r can also be written as

S = −H
c2
(r − q)× u,

which enhances its antiorbital character for the particle H > 0 and of orbital orientation for
the antiparticle. Because the total spin has two parts S = Z + W , this means that for the
antiparticle the part Z has the direction of S while the rotational part W has the opposite
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Figure 2.7: Motion of the center of charge of the positron in the center of mass frame. The
part W of the spin of the positron is oriented opposite to the angular velocity.

orientation, and therefore this part W is opposite to the angular velocity as depicted in the
�gure 2.7. This feature is the same than for photons and antiphotons. For photons the spin
is of rotational nature like W , and has the same direction than the angular velocity while for
antiphotons has the opposite orientation.

We see that the particle has mass and spin, and the center of charge moves in circles at
the speed of light in a plane orthogonal to the spin, for the center of mass observer. All these
features are independent of the particular Lagrangian of the type (2.147) we can consider.

2.5.3 Dirac analisis

To end this section and with the above model of the electron in mind, it is convenient to
remember some of the features that Dirac 9 obtained for the motion of a free electron. Let
point r be the position vector on which Dirac's spinor ψ(t, r) is de�ned. When computing the
velocity of point r, Dirac arrives at:

a) The velocity u = i/~[H, r] = cα, is expressed in terms of α matrices and writes, `. . . a
measurement of a component of the velocity of a free electron is certain to lead to the result
±c'.

b) The linear momentum does not have the direction of this velocity u, but must be related
to some average value of it: . . . `the x1 component of the velocity, cα1, consists of two parts,
a constant part c2p1H−1, connected with the momentum by the classical relativistic formula,
and an oscillatory part, whose frequency is at least 2mc2/h, . . .'.

c) About the position r: `The oscillatory part of x1 is small, . . . , which is of order of
magnitude ~/mc, . . .'.

And when analyzing, in his original 1928 paper, 10 the interaction of the electron with an
external electromagnetic �eld, after performing the square of Dirac's operator, he obtains two
new interaction terms:

e~
2mc

Σ ·B +
ie~
2mc

α ·E, (2.164)

9 P.A.M. Dirac, The Principles of Quantum mechanics, Oxford Univ. Press, 4th ed. Oxford (1967).
10 P.A.M. Dirac, Proc. Roy. Soc. Lon. A117, 610 (1928).
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where the electron spin is written as S = ~Σ/2 and

Σ =

(
σ 0
0 σ

)
,

in terms of σ-Pauli matrices and E and B are the external electric and magnetic �elds, re-
spectively. He says, `The electron will therefore behave as though it has a magnetic moment
(e~/2mc)Σ and an electric moment (ie~/2mc)α. The magnetic moment is just that assumed
in the spinning electron model' (Pauli model). `The electric moment, being a pure imaginary,
we should not expect to appear in the model.'

However, if we look at our classical model, we see that for the center of mass observer, there
is a non-vanishing electric and magnetic dipole moment

d = ek =
e

mc2
S × u, µ =

e

2
k × dk

dt
= − e

2m
Z, (2.165)

where S is the total spin and Z = −mk × dk/dt is the zitterbewegung part of spin. The time
average value of d is zero, and the average value of µ is the constant vector µ.

This classical model gives rise to the same kinematical prediction as the nonrelativistic model
described in Sec.2.2.6. If the charge of the particle is negative, the current of Fig.2.6 produces
a magnetic moment that necessarily has the same direction as the spin. If the electron spin and
magnetic moments are antiparallel, then we need another contribution to the total spin, di�erent
from the zitterbewegung. All real experiments to determine very accurately the gyromagnetic
ratio are based on the determination of precession frequencies, but these precession frequencies
are independent of the spin orientation. However, the di�culty to separate electrons in a Stern-
Gerlach type experiment, suggests to perform polarization experiments in order to determine
in a direct way whether spin and magnetic moment for elementary particles are either parallel
or antiparallel. We have suggested a couple of plausible experiments to determine the relative
orientation between the spin and magnetic moment of free electrons and also for electrons in
the outer shell of atoms11, which are considered in section 4.2.5.

Another consequence of the classical model is that it enhances the role of the so-called
minimal coupling interaction jµAµ. The magnetic properties of the electron are produced by
the current of its internal motion and not by some possible distribution of magnetic dipoles, so
that the only possible interaction of a point charge at r with the external electromagnetic �eld
is that of the current jµ, associated to the motion of point r, with the external potentials.

2.6 The dynamical equation of the spinning electron

We have seen that for relativistic particles with u = c and u and u̇ orthogonal vectors, the
position vector r moves in circles according to the dynamical equation (2.158) in the center
of mass frame, as depicted in �gure 2.6. But this solution is independent of the particular
Lagrangian we choose as an invariant function of the kinematical variables and their derivatives,
which accomplish with this orthogonality u · u̇ = 0, requirement. We are going to analyze this
dynamical equation for any arbitrary inertial observer.

As mentioned in the Preamble, let us consider the trajectory r(t), t ∈ [t1, t2] followed by
a point for an arbitrary inertial observer O. Any other inertial observer O′ is related to the
previous one by a transformation of a kinematical group such that their relative space-time
measurements of any space-time event are given by

t′ = T (t, r; g1, . . . , gr), r′ = R(t, r; g1, . . . , gr),

11M. Rivas, Are the electron spin parallel or antiparallel vectors?, ArXiv:physics/0112057.
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where the functions T and R de�ne the action of the kinematical group G, of parameters
(g1, . . . , gr), on space-time. Then the description of the trajectory of that point for observer O′

is obtained from

t′(t) = T (t, r(t); g1, . . . , gr), r′(t) = R(t, r(t); g1, . . . , gr), ∀t ∈ [t1, t2].

If we eliminate t as a function of t′ from the �rst equation and substitute into the second we
shall get

r′(t′) = r′(t′; g1, . . . , gr). (2.166)

Since observer O′ is arbitrary, equation (2.166) represents the complete family of trajectories of
the point for all inertial observers. Elimination of the r group parameters among the function
r′(t′) and their time derivatives will give us the di�erential equation satis�ed by the trajectory
of the point. This di�erential equation is invariant by construction because it is independent of
the group parameters and therefore independent of the inertial observer. If G is the Poincaré
group, it is a ten-parameter group so that we have to work out in general up to the fourth
derivative to obtain su�cient equations to eliminate the ten group parameters. Therefore the
order of the di�erential equation is dictated by the number of parameters and the structure of
the kinematical group.

2.6.1 The relativistic spinning electron

Let us assume the above electron model. For the center of mass observer O∗, the trajectory
of the center of charge of the electron is contained on the XOY plane and if we write in vector
form, and with units R0 = ~/2mc, ω0 = 2mc2/~

r∗(t∗) = R0

 cosω0t
∗

sinω0t
∗

0

 ,
dr∗

dt∗
= c

− sinω0t
∗

cosω0t
∗

0

 ,

For the center of mass observer O∗ this point satis�es the di�erential equation

d2r∗(t∗)

dt∗2
= −ω2

0r
∗(t∗). (2.167)

Since the center of charge is moving at the speed of light for the center of mass observer O∗ it
is moving at this speed for every other inertial observer O. Now, the relationship of space-time
measurements between the center of mass observer O∗ and any arbitrary inertial observer O, is
given by:

t(t∗; g) = γ (t∗ + v ·R(α)r∗(t∗)) + b,

r(t∗; g) = R(α)r∗(t∗) + γvt∗ +
γ2

1 + γ
(v ·R(α)r∗(t∗))v + a.

The velocity of the point for the observer O

r(1) =
dr

dt
=
dr/dt∗

dt/dt∗
,

and the same method for the remaining derivatives.
With the shorthand notation for the following expressions:

K(t∗) = R(α)r∗(t∗), V (t∗) = R(α)
dr∗(t∗)

dt∗
=
dK

dt∗
,

dV

dt∗
= −ω2

0K,
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B(t∗) = v ·K/c2, A(t∗) = v · V /c2 = dB

dt∗
,

dA

dt∗
= −ω2

0B,

where A is dimensionless and B of dimension of time. K has dimension of length and V of
velocity. In particular

dt

dt∗
= γ(1 + v · V /c2) = γ(1 +A),

and
K2 = R2

0, V 2 = c2, K · V = 0, K · v = c2B, V · v = c2A.

By making use of the relation (2.167) and its derivatives, we get the following expressions for
the subsequent time derivatives of the point r in the arbitrary reference frame O:

r(1) =
1

γ(1 +A)

(
V +

γ

1 + γ
(1 + γ + γA)v

)
(2.168)

r(2) =
ω2
0

γ2(1 +A)3

(
−(1 +A)K +BV +

γ

1 + γ
Bv

)
, (2.169)

r(3) =
ω2
0

γ3(1 +A)5
(
−3ω2

0B(1 +A)K − (1 +A− 3ω2
0B

2)V +

γ

1 + γ
(A(1 +A) + 3ω2

0B
2)v

)
(2.170)

r(4) =
ω4
0

γ4(1 +A)7
(
(1 +A)(1− 2A− 3A2 − 15ω2

0B
2)K−

(7 + 4A− 3A2 − 15ω2
0B

2)BV −

γ

1 + γ
(1− 8A− 9A2 − 15ω2

0B
2)Bv

)
. (2.171)

From these derivatives we obtain(
r(1) · r(1)

)
= c2,

(
r(1) · r(2)

)
= 0, (2.172)(

r(2) · r(2)
)

= −
(
r(1) · r(3)

)
=

ω2
0c

2

γ4(1 +A)4
, (2.173)(

r(2) · r(3)
)

= −1

3

(
r(1) · r(4)

)
=

2ω4
0c

2B

γ5(1 +A)6
, (2.174)(

r(3) · r(3)
)

=
ω4
0c

2

γ6(1 +A)8
(
1−A2 + 3ω2

0B
2
)
, (2.175)(

r(2) · r(4)
)

=
ω4
0c

2

γ6(1 +A)8
(
−1 + 2A+ 3A2 + 9ω2

0B
2
)
, (2.176)(

r(3) · r(4)
)

=
4ω4

0c
2

γ7(1 +A)10
(
1 +A+ 3ω2

0B
2
)
ω2
0B. (2.177)

From equations (2.173)-(2.175) we can express the magnitudes A, B and γ in terms of these
scalar products between the di�erent time derivatives (r(i) · r(j)), i, j = 2, 3. The constraint
that the velocity is c implies that all these and further scalar products for higher derivatives
can be expressed in terms of only three of them.

From inspection of equations (2.168-2.171) we see that the four time derivatives of the center
of charge position are expressed in terms of the three vectors V , K and v, where the �rst two
are orthogonal and the third is a constant vector which, in general is not a linear combination
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of the other two. It is clear that the three derivatives r(i), i = 2, 3, 4 can be expressed as a
linear combination. If we de�ne

d1 = γ(1 +A)r(1), d2 =
γ2(1 +A)3

ω2
0

r(2), d3 =
γ3(1 +A)5

ω2
0

r(3), d4 =
γ4(1 +A)7

ω4
0

r(4),

we get:
(1− 2A− 3A2 + 3ω2

0B
2)d2 − 6Bd3 + d4 = 0

which represents the invariant di�erential equation which satis�es the center of charge position
in any inertial reference frame. We only have to replace the three magnitudes A, B and γ,
from (2.173)-(2.175) in terms of the di�erent scalar products of these time derivatives. We thus
arrive to:

r(4) − 3(r(2) · r(3))
(r(2) · r(2))

r(3) +

(
2(r(3) · r(3))
(r(2) · r(2))

− 3(r(2) · r(3))2

4(r(2) · r(2))2
− (r(2) · r(2))1/2

)
r(2) = 0. (2.178)

It is a fourth order ordinary di�erential equation which contains as solutions motions at the
speed of light. In fact, if (r(1) · r(1)) = c2, then by derivation we have (r(1) · r(2)) = 0 and the
next derivative leads to (r(2) · r(2)) + (r(1) · r(3)) = 0. If we take this into account and make
the scalar product of (2.178) with r(1), we get (r(1) · r(4)) + 3(r(2) · r(3)) = 0, which is another
relationship between the derivatives as a consequence of |r(1)| = c. It corresponds to a helical
motion since the term in the �rst derivative r(1) is lacking, according to the discussion in the
preamble like in the equation (6), which implies a constant relationship between curvature and
torsion.

In fact if the term in r(1) is zero, this implies in (6) that κ̇/κ = τ̇ /τ , and thus the coe�cient
of r(3) has to be −3κ̇/κ. Since curvature is κ = (r(2) ·r(2))1/2 by taking the derivative it reduces
to

κ̇ =
(r(2) · r(3))

(r(2) · r(2))1/2
,

3κ̇

κ
=

3(r(2) · r(3))
(r(2) · r(2))

,

which is the coe�cient of r(3) in (2.178). The coe�cient of r(2), taking into account the
relationship between curvature and torsion, is

κ2 + τ2 + 3

(
κ̇

κ

)2

− κ̈

κ

and since

κ̈ =
(r(3) · r(3)) + (r(2) · r(4))

(r(2) · r(2))1/2
− (r(2) · r(3))2

(r(2) · r(2))3/2
,

where the term (r(2) · r(4)) can be expressed in terms of the other three.
If we select as a boundary condition a velocity |r(1)(0)| ̸= c, this di�erential equation contains

solutions in which the point is not moving at the constant velocity c. But if |r(1)(0)| = c, Then
the solution satis�es |r(1)(t)| = c, for any time t.

Some intermediate results are:

v = r(1) − 3Bγ(1 +A)r(2) +
γ2(1 +A)3

ω2
0

r(3), (2.179)

V =
γA

1 + γ
r(1) +

3γ2B

1 + γ
(1 + γ + γA)(1 +A)r(2) − γ3(1 +A)3

(1 + γ)ω2
0

(1 + γ + γA) r(3)(2.180)

K =
γB

1 + γ
r(1) +

γ2(1 +A)

(1 + γ)ω2
0

[3ω2
0B

2γ − (1 + γ)(1 +A)]r(2) − γ4B(1 +A)3

(1 + γ)ω2
0

r(3).(2.181)
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and

1 +A =
8(r(2) · r(2))5/2/R0

4(r(2) · r(2))5/2/R0 + 4(r(2) · r(2))(r(3) · r(3))− 3(r(2) · r(3))2
, (2.182)

ω0B =
4(r(2) · r(2))5/4(r(2) · r(3))/R1/2

0

4(r(2) · r(2))5/2/R0 + 4(r(2) · r(2))(r(3) · r(3))− 3(r(2) · r(3))2
, (2.183)

γ =
4(r(2) · r(2))5/2/R0 + 4(r(2) · r(2))(r(3) · r(3))− 3(r(2) · r(3))2

8(r(2) · r(2))11/4/(cR1/2
0 )

. (2.184)

with R0 = c/ω0 and therefore all terms in the numerator and denominator have the same
spacetime dimensions.

2.6.2 The center of mass

The center of mass position is de�ned by

q = r +
1

ω2
0

γ2(1 +A)3r(2) = r +
2(r(2) · r(2)) r(2)

(r(2) · r(2))3/2/R0 + (r(3) · r(3))− 3(r(2) · r(3))2

4(r(2) · r(2))

. (2.185)

in such a way that its time derivative represents the velocity v of the origin of the observer
frame O∗ with respect to O. In fact, its time derivative is

q(1) = r(1) +
1

ω2
0

γ2(1 +A)3r(3) +
1

ω2
0

3γ2(1 +A)2(−ω2
0B)

γ(1 +A)
r(2) = v,

i.e., expression (2.179) because dA/dt∗ = −ω2
0B and we have to divide by dt/dt∗ = γ(1 + A).

We can check that q and q(1) vanish for the center of mass observer.
Because

(q − r)2 =
1

ω4
0

γ4(1 +A)6(r(2) · r(2)),

q(1) · r(1) = c2 +
1

ω2
0

γ2(1 +A)3(r(3) · r(1)) = c2 − 1

ω2
0

γ2(1 +A)3(r(2) · r(2))

by (2.173) and thus
c2 − q(1) · r(1)

(q − r)2
=

ω2
0

γ2(1 +A)3
.

Then, the fourth order dynamical equation for the position of the charge can also be rewritten
here as a system of two second order di�erential equations for the positions q and r

d2q

dt2
= 0,

d2r

dt2
=
c2 − v · u
(q − r)2

(q − r) , (2.186)

with v = q(1) and u = r(1), i.e., a free motion for the center of mass and a kind of central
motion for the charge around the center of mass.

If we consider the general expression for the center of mass obtained in (2.163), because
P = Hv/c2, it can also be written as

q = r +

(
c2 − v · u
(du/dt)2

)
du

dt
, ⇒ du

dt
=
d2r

dt2
=

(du/dt)2

c2 − v · u
(q − r)

which when compared with (2.186) we obtain the relation

c2 − v · u =

∣∣∣∣dudt
∣∣∣∣ |q − r|, or

∣∣∣∣dudt
∣∣∣∣ = c2 − v · u

|q − r|
=
c2

R
,
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because the acceleration is always normal, and where R is the curvature radius of the trajectory
of the center of charge. Thus, the separation between the center of mass and center of charge
satis�es

|q − r| = R
(
1− v · u

c2

)
.

This separation is not constant. If we start with the electron at rest and boost it in the direction
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Figure 2.8: Projection on the plane XOY of the motion of the center of charge (blue)
and center of mass (red) of a free electron with v/c = 0.2. The trajectory on the left,
the electron is boosted on the zitterbewegung plane and the spin is orthogonal to this
trajectory and the separation between CC and CM is not constant. The trajectory of the
right corresponds to an electron polarized with the spin pointing in the forward direction.
Here the separation between both points is constant.

orthogonal to the zitterbewegung plane, then v · u = v2 and in this case the trajectory is a
helix of constant curvature and torsion and the separation is constant, R0, which is related to
the constant curvature radius by

R = R0γ(v)
2.

In any other situation this v · u is not constant and the separation oscillates. For instance, if
we boost the electron with a velocity v contained on the zitterbewegung plane, the trajectory
of the center of charge is �at and in units R0 = 1, and v/c = 0.2, we get the picture on
the left of the �gure 2.8. We see that the separation oscillates between |q − r| = 0.8R0 and
|q − r| = 1.2R0. In fact, in these units the internal period is T0 = 2πR0/c = 2π, for the center
of mass observer. For the laboratory observer this period is T = γ(v)T0, during this time the
center of mass moves a distance d = vγ(v)T0 = 1.28255 in these units. We see this is the spatial
period of the above �gure. The trajectory on the right, is produced if the electron is boosted
in the direction orthogonal to the zitterbewegung plane and the spin is pointing forward. The
spatial periodicity is exactly the same and the separation between the center of mass and center
of charge remains constant.

For the non-relativistic electron we get in the low velocity case v/c → 0 and |q − r| = R0,
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the equations of the Galilei case

d2q

dt2
= 0,

d2r

dt2
= ω2

0(q − r). (2.187)

a free motion for the center of mass and a harmonic motion around q for the position of the
charge, of constant frequency ω0 = c/R0.

2.6.3 Interaction with some external �eld

The free equation for the center of mass motion q(2) = 0, represents the conservation of the
linear momentum dP /dt = 0. But the linear momentum is written in terms of the center of
mass velocity as P = mγ(v)v, so that the free dynamical equations (2.186) in the presence of
an external �eld should be replaced by

dP

dt
= F ,

d2r

dt2
=
c2 − v · u
(q − r)2

(q − r) , (2.188)

where F is the external Lorentz force and the second equation is left unchanged because,
according to the Atomic Principle, the internal structure is unchanged by any interaction, and
thus we still have the same de�nition of the center of mass position.

dP

dt
= mγ(v)

dv

dt
+m

γ(v)3

c2

(
v · dv

dt

)
v

we get

mγ(v)3
(
v · dv

dt

)
= F · v

and by leaving the highest derivative d2q/dt2 on the left hand side we �nally get the di�erential
equations which describe the evolution of a relativistic spinning electron in the presence of an
external electromagnetic �eld, in any inertial reference frame:

d2q

dt
=

e

mγ(v)

[
E + u×B − 1

c2
v ([E + u×B] · v)

]
, (2.189)

d2r

dt
=

c2 − v · u
(q − r)2

(q − r) . (2.190)

where

v =
dq

dt
, u =

dr

dt
,

with the constraint |u| = c.
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2.7 Appendix: Rotation group

We are going to describe geometrically a rotation of value α around an arbitrary axis,
described by the unit vector u. We interpret α > 0 when the rotation is clockwise when looking
along the direction given bu the unit vector u. If α < 0, the rotation is in the opposite sense,
i.e., anticlockwise. Then, according to the �gure 2.9, an arbitary point, characterized by the
vector r, will be rotated to the position given by the vector r′,

Figure 2.9: Active rotation of value α of the vector r, around the axis OA

From the vector point of view, r′ = OA + AD + DC, where DC is orthogonal to the
vectors OA and AB.

OA = (r · u)u

AD = AB cosα = (r − (r · u)u) cosα

DC = |AC| sinαn

where n is a unit vector orthogonal to u and r, and therefore

n =
u× r

|u× r|

but |u× r| = |AC| = |AB|, |AD| = |AC| cosα, |DC| = |AC| sinα, and thus

DC = u× r sinα

Finally, the vector r′ is expressed as:

r′ = r cosα+ (r · u)u(1− cosα) + u× r sinα, (2.191)

and its Cartessian components:

x′i = xi cosα+ (xjuj)ui(1− cosα) + εijkujxk sinα =

= (δik cosα+ uiuk(1− cosα) + εijk uj sinα)xk = R(α,u)ikxk.
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This linear expression of x′i in terms of xk is expressed in terms of the matrix R(α,u)ik. If we
de�ne the vector α = αu, then every rotation is parameterized by this three vector,

R(α)ik = δik cosα+
αiαk

α2
(1− cosα) + εijk

αj

α
sinα (2.192)

where the �rst index i represents the row and the second the column k, of the matrix which
characterize this rotation. If we �x the vector u, then any positive rotation of value α produces
tha same rotation as another of value 2π− α in the opposite direction. In order to single out a
unique vector α, for each rotation, we have to restrict ourselves to the set of points of a sphere
of radius π, (see �gure 2.10) but with the constraint that points on the surface of the sphere,
which represent rotations of value π, represent the same rotation and have to be identi�ed as
the same point, from the topological point of view.

Figure 2.10: Doubly connected and compact manifold of the group SO(3)

This feature means that if we try to join two points of this manifold by a curve of points in it,
there are two types of paths. These two types cannot be reduced to each other by deformation.
There are paths passing through the surface and paths which do not cross the surface. This
implies that the rotation group is characterized by a doubly connected, compact manifold.

Because the determinant of R(α) = 1, then the rotation group is isomorphic to the group
SO(3), of 3× 3 orthogonal matrices of unit determinant (Special Orthogonal group).

Other alternative parameterizations are obtained by de�ning a three vector ϕ = sin(α/2)u
and the rotation matrix is given by:

R(ϕ)ik = (1− 2ϕ2) δik + 2ϕiϕk + 2
√

1− ϕ2 εijkϕj . (2.193)

Now the group manifold is a unit sphere with opposite points on its surface, identi�ed.
Another interesting parameterization is given by the vector ρ = tan(α/2)u, where the

matrix is
R(ρ)ik =

1

1 + ρ2
[(1− ρ2) δik + 2ρiρk + 2εijkρj ] (2.194)

where the manifold is the compact space R3, where compacti�cation is done by adding to R3 the
points of in�nity in any direction, when the additional condition that opposite points represent
the same rotation. We shall denote this manifold by R3

c , to enhance its compact character.
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Exercise: Given the orthogonal matrix:  0 1 0
0 0 1
−1 0 0


determine what kind of transformation produces.
Solution: Since the determinant is −1 it is a rotation followed by a space inversion. The trace
is zero, and the value of the rotation is 0 = 1 + 2 cosα, α = 2π/3, around an axis with director
cosines proporcional to u ∼ (1,−1, 1).

Exercise: Calculate, by using two di�erent parameterizations of the rotation group, the rota-
tion matrix, in the pasive sense, of value α = 30◦ around an axis of director cosines directores
proportional to (−1, 2, 2).

2.7.1 Normal or Canonical parameterization of the group SO(3)

Any rotation matrix satis�es RTR = 1. From this we have nine relations between the nine
components of the matrixR. However only six of these relations are independent. If we consider
that any rotation matrix is formed, by raws or columns, as a set of three orthogonal unit vectors
ei, i = 1, 2, 3 the above relations mean that these three vectors are orthogonal to each other
and of modulus 1. The feature that the detreminant is +1, represents that these vectors, taken
in correlative order form a direct triad of unit vectors (anticlockwise). If the determinant is −1,
they form a clockwise triad. Then only three values determine each rotation, and therefore the
rotation group is of dimension 3. The part of the group continuously connected with the unit
element, SO(3), as a Lie group, has a Lie algebra of dimensiion 3. Let R = I+ ϵM an arbitary
rotation close to the unit rotation, with ϵ in�nitesimal andM a matrix to be determined. Since
RT = R−1 = I + ϵMT = I − ϵM , implies that MT = −M and therefore M is an , arbitrary
3× 3 antisymmetric matrix. It is called the generator of the in�nitesimal rotation.

The Lie algebre of SO(3), is the real vector space of real 3× 3 antysymmetric matrices. A
basis of this vector space can be given by the three linearly independent antisymmetric matrices:

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 ,

which clearly generate a real vector space of dimension 3.
Any Lie algebra, in addition of its structure as a real vector space, it also has another

internal composition law, distributive with respect to the sum of elements, but it is not in
general, neither commutative nor associative. To characterize this structure is su�cient to
know this composition law for the basis vectors Ji. For matrices this law [A,B] is just the
commutator between them. The three Ji satisfy the following commutation rules:

[Ji, Jk] = εiklJl, i, k, l = 1, 2, 3, (2.195)

Let M =
∑
αiJi be an arbitrary linear combination of elements of the base Ji, with three

arbitrary real numbers αi. This sum we are going to write formally as
∑
αiJi = αu · J , where

αi = αui in terms of the three components of a unit vector u and where by means of the dot
product, u · J ≡ U what we want to express is just the sum

∑
uiJi in a compact way. If we

calculate the matrix

exp(M) ≡ lim
n→∞

(
I+

M

n

)n

≡ exp(αU) = exp

α
 0 −u3 u2

u3 0 −u1
−u2 u1 0

 =

 1 0 0
0 1 0
0 0 1

+
α

1!

 0 −u3 u2
u3 0 −u1
−u2 u1 0

+
α2

2!

−(u22 + u23) u1u2 u1u3
u1u2 −(u21 + u23) u2u3
u1u3 u2u3 −(u21 + u22)

+
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+
α3

3!

 0 u3 −u2
−u3 0 u1
u2 −u1 0

+ · · ·

If we call

U = u · J =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , U2 =

−(u22 + u23) u1u2 u1u3
u1u2 −(u21 + u23) u2u3
u1u3 u2u3 −(u21 + u22)

 ,

then U satis�es U3 = −U , U4 = −U2 and the subsequent powers, so that the above expansion
can be expressed in terms of matrices U , U2 and the unit matrix I, in the form

exp(αU) ≡ exp(α · J) = I+ U

(
α

1!
− α3

3!
+ · · ·

)
+ U2

(
α2

2!
− α4

4!
+ · · ·

)
,

i.e., the expression obtained previously in (2.192).
If we consider that two parameters αi are zero and we analyze the one-parameter subgroup

generated by the nonvanishing parameter, for instance α1, then

exp(αJ1) exp(βJ1) = (I+ sinαJ1 + (1− cosα)J2
1 )(I+ sinβJ1 + (1− cosβ)J2

1 ) =

I+ sin(α+ β)J1 + (1− cos(α+ β))J2
1 = exp((α+ β)J1),

and in this parametrization the composition of rotations of any one-parameter subgroup is just
the addition of the corresponding parameters of the two elements. This parameter which de�nes
the exponential mapping, is called the normal or canonical parameter.

The normal parameterization of the rotation group corresponds to that in which the group
manifold is the compact sphere of radius π, and in this parameterization any rotation can also
be represented by:

R(α)ik = (exp(α · J))ik = δik cosα+
αiαk

α2
(1− cosα) + εijk

αj

α
sinα,

which is the expression (2.192).
In an extended form R(α), is: cosα+ u21(1− cosα) −u3 sinα+ u1u2(1− cosα) u2 sinα+ u1u3(1− cosα)
u3 sinα+ u2u1(1− cosα) cosα+ u22(1− cosα) −u1 sinα+ u2u3(1− cosα)
−u2 sinα+ u3u1(1− cosα) u1 sinα+ u3u2(1− cosα) cosα+ u23(1− cosα)


We can see that R(α)−1 = RT (α) = R(−α) and that its trace is 1 + 2 cosα. The director

cosines of the unit vector u, which de�nes the direction of the rotation axis, are proportional to
the terms (R32 −R23,R13 −R31,R21 −R12), with the exception of a rotation of value α = π,
which in that case will be related to the que diagonal elements because R is symmetric. These
diagonal elements in this case are −1 + 2u21, −1 + 2u22 and −1 + 2u23, respectively, and the two
possible solutions for each ui have to be compatible with the remaining elements of Rij .

1 + 2 cosα = Rii, ui =
1

2 sinα
ϵijkRkj , α ̸= 0, π.

If α = 0, the components Rkj , k ̸= j vanish and the above relation in undetermined, as it
corresponds to a nul rotation.

The eigenvalues of any rotation matrix are reduce to the real value 1 with eigenvector in
the direction of the rotation axis, and another two eigenvalues, in general complex, of the form
eiα y e−iα, without real eigenvectors, which in the particular case α = π they are −1, and the
corresponding eigenspace is the two-dimensional vector space orthogonal to the rotation axis.
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Exercise: Given the following two rotation matrices determine the angle and axis of rotation.

A =


√

2
2

−
√

10
5

−
√

10
10√

10
5

1+2
√
2

5

√
2−2
5√

10
10

√
2−2
5

8+
√

2
10

 , B =


1
6

− 4+
√

3
6

√
3−1
3√

3−4
6

1
6

√
3+1
3

−
√

3+1
3

1−
√

3
3

−1
3


Solution: αA = π/4, nA ∼ (0,−1, 2). αB = 2π/3, nB ∼ (−2, 2, 1).

The analysis of rotations we have done is called the active representation because we rotate
the points in the space while leaving �xed the Cartesian reference frame. The pasive interpre-
tation consists in describing the coordinates of the same point in three-dimensional space with
respect to two di�erent frames which are rotated with respect to each other. But to rotate a
coordinate system by means of the rotation α, the new coordinates of the point correspond
to those of an active rotation in the opposite direction, of parameters −α. It is su�ciente to
replace α by −α to obtain the matrix representation of a change of coordinates when we make
a change of reference frame. In this case the commutation relations of the basic generators, in
the pasive representation, are

[Ji, Jk] = −εiklJl, i, k, l = 1, 2, 3

2.7.2 Composition law of rotations

If every rotation is represented by a vector α ∈ SO(3), then it is possible to obtain the
resultant vector of the composition of two arbitrary rotations. Let R(γ) = R(α)R(β) the
composition of two rotations given by the product of the corresponding matrix representation.
If the vectors are α = αu, β = βv and γ = γw, making the matrix product and after a term
by term identi�cation we get

w tan
γ

2
=

u tanα/2 + v tanβ/2 + tanα/2 tanβ/2(u× v)

1− tanα/2 tanβ/2(u · v)
(2.196)

If instead of using the normal parameterization we use the vectors

ρ = tan
α

2
u, µ = tan

β

2
v, ν = tan

γ

2
w

then R(ν) = R(ρ)R(µ) implies:

ν =
ρ+ µ+ ρ× µ

1− ρ · µ
(2.197)

We can see in the above relation that if α = β = π, tan(α/2) = tan(β/2) = ∞ and therefore
in this limit:

w tan
γ

2
=

v × u

u · v
so that the compound rotation is around an axis orthogonal to the previous ones in the direction
of the cross product of the second times the �rst. If they are separated by an angle ϕ then
tan(γ/2) = sinϕ/ cosϕ = tanϕ, and the value of the rotation angle is γ = 2ϕ, twice the angle
that u and v subtend. Conversely, every rotation can always be written as the composition of
two rotations of value π, around two axis orthogonal to its rotation axis and separated half the
angle to be performed.

If we have a cylindrical lid and we turn around, i.e., we rotate it a value π around one of its
diameters, and subsequently we make again another rotation of value π around another diameter,
it is �nally face up and its points have rotated an angle twice the angle subtended between the
above diameters, and in the consecutive from the �rst to the second.
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Figure 2.11: Composition of rotations by means of rotations of value π

This allows us to produce a geometrical picture of the composition of rotations 12 by using
the decomposition of each one into two of value π. Let in the �gure 2.11, u and v the two unit
vectors which represent the two rotation axis of values α and β, respectively. If we construct the
orthogonal planes to both vectors, passing through the point O, they intersect along a straight
line characterized by the unit vector n. In the perpendicular plane to vector u, and in the
anticlockwise direction, we locate another unit vector n1, separated from n by an angle α/2.
Similarly, in the plane orthogonal to v, this time in the clockwise direction, we de�ne the unit
vector n2 separated β/2 from n. Therefore:

R(β,v)R(α,u) = R(π,n2)R(π,n)R(π,n)R(π,n1) = R(π,n2)R(π,n1), (2.198)

and thus the composite rotation is around an axis orthogonal to n1 and n2, in the sense n2×n1

of value twice the angle these two vectors are separated.
The above analysis can also give rise to another geometrical interpretation on a unit sphere.

Let us assume that, as usual each rotation is described by the rotation angle α and the unit
vector u, which de�nes the rotation axis. Let us represent both rotations on the unit sphere in
the following way. Vector u de�nes a point, and this de�nes an equatorial plane orthogonal to
u. Along this maximal circle we depict an oriented circular segment of lentgh α/2. Simmilarly
we also depict the corresponding oriented circular segment of length y β/2 in the maximal circle
orthogonal to the unit vector v.

If we displace both circular segments, along the corresponding maximal circles, as in the
�gure 2.12, such that the segment AC is consecutive to the segment BA, then the points B and
C will correspond with the end points of the unit vectors n2 and n1, respectively. Since the
�nal rotation is orthogonal to both axis, the compound rotation axis is de�ned by the maximal
circle passing through B y C, and the angle of rotation is twice the corresponding segment BC
of value γ/2.

Because the angular separation between the two planes is π−ϕ, where ϕ is the angle between
the unit vectors u and v, by spherical trigonometry applied to the spherical triangle ABC, we
�nd:

cos γ/2 = cosα/2 cosβ/2 + sinα/2 sinβ/2 cos(π − ϕ) =

12J.M. Aguirregabiria, A. Hernández, M. Rivas, Eur. J. Phys., 13, 139-141 (1992).
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Figure 2.12: Composition of rotations on the unit sphere

= cosα/2 cosβ/2− sinα/2 sinβ/2 cosϕ

which is a relation that can be obtained form the composition of the corresponding matrices
associated to those rotations.

2.7.3 Kinematics of rotation

The description of a mechanical system with orientation, for instance a rigid body or a
spinning elementary particle, is by means of three unit vectors ei, i = 1, 2, 3, of the three
orthogonal axis associated to a moving point. In the case of the rigid body, these axes can be
the principal axes of inertia around the center of mass of the body. In the case of an elementary
particle, an arbitrary Cartesian frame located at the center of charge.

If these three unit vectors are written as column vectors, consecutively, they form an or-
thogonal 3 × 3 matrix of unit determinant, i.e., a rotation matrix. Then, only three essential
parameters αi, i = 1, 2, 3, characterize the independent degrees of freedom associated to the
change of orientation.

R(α) = ((e1), (e2), (e3))

If at instant t = 0, we select the laboratory axis in coincidence with the body axis, then at
instant t, the matrix R(α(t)) represents the active rotation I have to produce to the laboratory
axis to transform them into the body axis.

If we consider now another inertial observer O′ related to O by means a Galilei transforma-
tion, then the relative spacetime measurement of some spacetime event is given by

t′ = t+ b, r′ = R(µ)r + vt+ a.

This means that the three unit vectors linked to the body transform among inertial observers
in the form

e′i = R(µ)ei,

and if we collect them in the form of a matrix in both members, at any instant t:(
(e′1), (e

′
2), (e

′
3)
)
≡ R(α′(t′)) = (R(µ)(e1), R(µ)(e2), R(µ)(e3)) = R(µ)R(α(t)) (2.199)
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For the observer O, R(α(t)) is the orientation of the body at the instant t and R(α(t + dt))
the orientation at the instant t+ dt. This can be written as a rotation R(α(t)) followed by the
in�nitesimal rotation I+Ωdt, i.e.,

R(α(t+ dt)) = (I+Ωdt)R(α(t)) = R(α(t)) + ΩR(α(t))dt = R(α(t)) + Ṙ(α(t))dt,

and the matrix Ω, is

Ω(t)R(α(t)) = Ṙ(α(t)), → Ω(t) = Ṙ(α(t))R−1(α(t)) = Ṙ(α(t))RT (α(t))

and Ω is an antisymmetric matrix with three essential components wich de�ne the components
of the instantaneous angular velocity ω(t), ωi =

1
2ϵijkΩjk.

In fact, for any rotation matrix RRT = I, and also at any instant t, R(t)RT (t) = I, and thus
taking the time derivative

ṘRT +RṘT = 0, Ω+ ΩT = 0.

The relation Ṙ(α(t)) = Ω(t)R(α(t)), if we analyze by columns is equivalent to

dei
dt

= Ωei ≡ ω × ei.

The kinematics corresponds to an instantaneous rotation around an axis in the direction of ω.
If we express the rotations in terms of the vector α = αu, the angular velocity is given by

ω = u
dα

dt
+ sinα

du

dt
+ (1− cosα)u× du

dt
. (2.200)

Exercise. Show that if we use the parameterization of the orientation by the three-vector
ρ = tan(α/2)n, where n is the unit vector along the rotation axis and α the rotated angle, the
angular velocity can be written as

ω =
2

1 + ρ2
(ρ̇+ ρ× ρ̇), w = RT (ρ)ω =

2

1 + ρ2
(ρ̇− ρ× ρ̇).

where w is the angular velocity vector with respect to the body frame.

If in (2.199) we take the derivative of both sides with respect to t′, taking into account that
∂t/∂t′ = 1, gives

Ṙ(α′(t′)) = R(µ)Ṙ(α(t))

and taking the transpose of (2.199)

RT (α′(t′)) = RT (α(t))RT (µ)

and thus the matrices Ω transform between inertial observers

Ω′(t′) = Ṙ(α′(t′))RT (α′(t′)) = R(µ)Ṙ(α(t))RT (α(t))RT (µ) = R(µ)Ω(t)RT (µ)

which corresponds to the transformation equations of a second antisymmetric rank tensor, such
that for its essential components, gives

ω′(t′) = R(µ)ω(t).

From expression (2.194) we get that the unit vectors associated to the body axis ek, in the
ρ representation of rotations, admit the following representation

(ek)i =
1

1 + ρ2
[(1− ρ2) δik + 2ρiρk + 2εijkρj ]. (2.201)
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2.7.4 Dynamics of rotation

If we want to make the Lagrangian description of a body with orientation α, because
the rotation group has no central extensions, and the dynamical equations must be rotation
invariant, then the Lagrangian has to be an invariant function L(α, α̇), of the variables we
use to describe the orientation α, and its time derivatives α̇. It must be a function of them
through its dependence of the angular velocity ωi, L(ωi). In this way, Euler-Lagrange dynamical
equations are

∂L

∂αi
− d

dt

(
∂L

∂α̇i

)
=

∂L

∂ωj

∂ωj

∂αi
− d

dt

(
∂L

∂ωj

∂ωj

∂α̇i

)
= 0,

If we call Wj = ∂L/∂ωj , we propose to the reader (is relatively simpler in the ρ parameteriza-
tion) to show that the above equations lead to

dW

dt
= ω ×W , Wi =

∂L

∂ωi
.

The angular momentum components with respect to the body axis, are constants of the
motion. Let us call Ti = W · ei. Its time derivative gives

dTi
dt

=
dW

dt
· ei +W · dei

dt
= (ω ×W ) · ei +W · (ω × ei) = 0.

In the case of a nonrelativistic elementary particle, if it is a rigid body and its spin is a
constant of the motion, then W ∼ ω and the Lagrangian has to be an arbitrary function of ω2.
A simple case corresponds to

L =
1

2
Iω2

an object with spherical symmetry, i.e., with the three principal moments of inertia of the same
value, and the angular momentum S = W = Iω. We have to remark that an object with the
three principal inertia momenta of the same value does not mean that its shape is that of a
sphere. The same thing happens to a cube.

If the three principal momenta are di�erent

L =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3),

and Euler-Lagrange equations are, with Si = Iiωi, (no addition on indes i)

I1
dω1

dt
= (I3 − I2)ω2ω3, I2

dω2

dt
= (I1 − I3)ω3ω1, I3

dω3

dt
= (I2 − I1)ω1ω2.

The ω1 component will be a constant of the motion if I3 = I2, and the same criteria for the
others.
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2.8 Appendix: Galilei group

The Galilei group is a group of space-time transformations characterized by ten parameters
g ≡ (b,a,v,α). The action of g on a space-time point x ≡ (t, r) is given by x′ = gx, and is
considered in the form

x′ = exp(bH) exp(a · P ) exp(v ·K) exp(α · J)x

as the action of a rotation of value α, followed by a pure Galilei transformation of velocity v and
�nally a space and time translation of values a and b, respectively. In this way all parameters
that de�ne each one-parameter subgroup are normal, because the exponential mapping works.
Explicitly

t′ = t+ b, (2.202)

r′ = R(α)r + vt+ a, (2.203)

and the composition law of the group g′′ = g′g is:

b′′ = b′ + b, (2.204)

a′′ = R(α′)a+ v′b+ a′, (2.205)

v′′ = R(α′)v + v′, (2.206)

R(α′′) = R(α′)R(α). (2.207)

For rotations we shall alternatively use two di�erent parameterizations. One is the normal
or canonical parameterization in terms of a three vector α = αn, where n is a unit vector along
the rotation axis, and α ∈ [0, π] is the clockwise rotation angle in radians, when looking along
n. Another, in terms of a three vector µ = n tan(α/2), which is more suitable to represent
algebraically the composition of rotations.

The rotation matrix R(α) = exp(α·J) is expressed in terms of the normal parameters αi and
in terms of the antisymmetric matrix generators Ji which have the usual matrix representation

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 ,

and satisfy the commutation relations [Ji, Jk] = ϵiklJl, such that if we write the normal param-
eters α = αn in terms of the rotation angle α and the unit vector n along the rotation axis, it
is written as

R(α)ij = δij cosα+ ninj(1− cosα)− ϵijknk sinα, i, j, k = 1, 2, 3. (2.208)

In the parametrization µ = n tan(α/2), the rotation matrix is

R(µ)ij =
1

1 + µ2
(
(1− µ2)δij + 2µiµj − 2ϵijkµk

)
, i, j, k = 1, 2, 3. (2.209)

In terms of these variables, R(µ′′) = R(µ′)R(µ) is equivalent to

µ′′ =
µ′ + µ+ µ′ × µ

1− µ′ · µ
. (active) (2.210)

This can be seen in a simple manner by using the homomorphism between the rotation group
and the group SU(2), of 2 × 2 unitary matrices of unit determinant. The matrix generators
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of SU(2) are J = −iσ/2 in terms of Pauli matrices σ. In the normal parameterization the
rotation matrix exp(α · J) = exp(−iα · σ/2) is written in the form

R(α) = cos(α/2)I− i(n · σ) sin(α/2).

By de�ning µ = n tan(α/2), this rotation matrix is expressed as

R(µ) =
1√

1 + µ2
(I− iµ · σ) , (2.211)

where I is the 2× 2 unit matrix and in this form we can get the composition law (2.210). 13

If the rotation is of value π, then eqs. (2.208) or (2.209) lead to

R(n, π)ij = −δij + 2ninj .

Even if the two rotations R(µ) and R(µ′) involved in (2.210) are of value π, although tan(π/2) = ∞,
this expression is de�ned and gives:

n′′ tan(α′′/2) =
n× n′

n · n′ .

The absolute value of this relation leads to tan(α′′/2) = tan θ, i.e., α′′ = 2θ, where θ is the angle
between the two unit vectors n and n′. We obtain the known result that every rotation of value α
around an axis n can be obtained as the composition of two rotations of value π around two axes
orthogonal to n and separated by an angle α/2.

Because every transformation of the Galilei group corresponds to a change of reference frame,
it is necessary to consider the rotations from the pasive point of view. This amounts, when
compared with the active point of view a simple change of sign in the group parameter. In this
way, the composition of rotations in the pasive representation is:

µ′′ =
µ′ + µ− µ′ × µ

1− µ′ · µ
. (pasive) (2.212)

For the orientation variables we shall use throughout the book the early Greek variables
α,β, . . . whenever we consider the normal parametrization, while for the tan(α/2) parameter-
ization we will express rotations in terms of the intermediate Greek variables µ,ν,ρ, . . . . In
this last notation, transformation equations (2.204-2.207) should be replaced by

b′′ = b′ + b, (2.213)

a′′ = R(µ′)a+ v′b+ a′, (2.214)

v′′ = R(µ′)v + v′, (2.215)

µ′′ =
µ′ + µ− µ′ × µ

1− µ′ · µ
. (2.216)

The neutral element of the Galilei group is (0,0,0,0) and the inverse of every element is

(b,a,v,α)−1 = (−b,−R(−α)(a− bv),−R(−α)v,−α).

The generators of the group in the realization (2.202, 2.203) are the di�erential operators

H = ∂/∂t, Pi = ∂/∂ri, Ki = t∂/∂ri, Jk = εklirl∂/∂ri (2.217)

and the commutation rules of the Galilei Lie algebra are

[J ,J ] = −J , [J ,P ] = −P , [J ,K] = −K, [J ,H] = 0, (2.218)

13 D. Hestenes, Space-time algebra, Gordon and Breach, NY (1966).
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[H,P ] = 0, [H,K] = P , [P ,P ] = 0, [K,K] = 0, [K,P ] = 0. (2.219)

All throughout this book, except when explicitly stated, we shall use the following shorthand
notation for commutators of scalar and 3-vector operators, that as usual, are represented by
bold face characters:

[A,B] = C, =⇒ [Ai, Bj ] = ϵijkCk,

[A,B] = C, =⇒ [Ai, Bj ] = δijC,

[A, B] = C, =⇒ [Ai, B] = Ci,

[B,A] = C, =⇒ [B,Ai] = Ci,

where δij = δji is Kronecker's delta and ϵijk is the completely antisymmetric symbol, so that
Latin indexes match on both sides of commutators.

The group action (2.202)-(2.203) represents the relationship between the coordinates (t, r)
of a space-time event as measured by the inertial observer O and the corresponding coordinates
(t′, r′) of the same space-time event as measured by another inertial observer O′. The ten group
parameters have the following meaning. If we consider the event (0,0) measured by O, for
instance the �ashing of a light beam from its origin at time t = 0, it takes the values (b,a)
in O′, where b is the time parameter that represents the time translation and a is the space
translation. The parameter v of dimensions of velocity represents the velocity of the origin of
the Cartesian frame of O as measured by O′, and �nally the parameters α, or R(α), represent
the orientation of the Cartesian frame of O as measured by O′. In a certain sense the ten
parameters (b,a,v,α) with dimensions respectively of time, position, velocity and orientation
describe the relative motion of the Cartesian frame of O by O′.

The Galilei group has non-trivial exponents given by 14

ξ(g, g′) = m

(
1

2
v2b′ + v ·R(α)a′

)
. (2.220)

They are characterized by the non-vanishing parameter m.
The central extension of the Galilei group 15 is an 11-parameter group with an additional

generator I which commutes with the other ten,

[I,H] = [I,P ] = [I,K] = [I,J ] = 0, (2.221)

and the remaining commutation relations are the same as above (2.218, 2.219), except the last
one which appears as

[Ki, Pj ] = −mδijI, or [K,P ] = −mI, (2.222)

using our shorthand notation, in terms of a non-vanishing parameter m. If we de�ne the
following polynomial operators on the group algebra

W = IJ − 1

m
K × P , U = IH − 1

2m
P 2, (2.223)

U commutes with all generators of the extended Galilei group and W satis�es the commutation
relations:

[W ,W ] = −IW , [J ,W ] = −W , [W ,P ] = [W ,K] = [W ,H] = 0,

so that W 2 also commutes with all generators. It turns out that the extended Galilei group has
three functionally independent Casimir operators which, in those representations in which the

14 V. Bargmann, Ann. Math. 5, 1 (1954).
15 J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory and its applica-

tions, Acad. Press, NY (1971), vol. 2, p. 221.



112 CHAPTER 2. SOLUBLE EXAMPLES OF SPINNING PARTICLES

operator I becomes the unit operator, for instance in irreducible representations, are interpreted
as the mass, M = mI, the internal energy H0 = H−P 2/2m, and the absolute value of the spin
with respect to the center of mass

S2 =

(
J − 1

m
K × P

)2

. (2.224)

The spin operator S in those representations in which I = I, satisfy the commutation relations:

[S,S] = −S, [J ,S] = −S, [S,P ] = [S,H] = [S,K] = 0,

i.e., it is an angular momentum operator, transforms like a vector under rotations and is invariant
under space and time translations and under Galilei boosts, respectively.
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2.9 Appendix: Poincaré group

The Poincaré group is the group of transformations of Minkowski's space-time that leave
invariant the separation between any two close space-time events ds2 = ηµνdx

µdxν = c2dt2−dr2.
We shall consider the contravariant components xµ ≡ (ct, r), and x′ = gx is expressed as
x′µ = Λµ

ν x
ν + aµ, in terms of a constant 4 × 4 matrix Λ and a constant translation four-

vector aµ ≡ (cb,a). We take for the covariant components of Minkowski's metric tensor ηµν ≡
diag(1,−1,−1,−1). Then dx′µ = Λµ

νdx
ν and ds2 = ηµνdx

′µdx′ν = ησρdx
σdxρ implies for the

matrix Λ
ηµνΛ

µ
σΛ

ν
ρ = ησρ. (2.225)

Relations (2.225) represent ten conditions among the 16 components of the matrix Λ, so that
each matrix depends on six essential parameters, which can be chosen in many ways. Through-
out this book we shall take three of them as the components of the relative velocity v between
inertial observers and the remaining three as the orientation α of their Cartesian frames, ex-
pressed in a suitable parametrization of the rotation group.

Therefore, every element of the Poincaré group P will be represented, as in the previous case
of the Galilei group, by the ten parameters g ≡ (b,a,v,α) and the group action on a space-time
point x ≡ (t, r) will be interpreted in the same way, i.e., x′ = gx:

x′ = exp(bH) exp(a · P ) exp(β ·K) exp(α · J)x, (2.226)

as the action of a rotation of value α, followed by a boost or pure Lorentz transformation of
normal parameter β and �nally a space and time translation of values a and b, respectively. It
is explicitly given on the space-time variables by

t′ = γt+ γ(v ·R(µ)r)/c2 + b, (2.227)

r′ = R(µ)r + γvt+ γ2(v ·R(µ)r)v/(1 + γ)c2 + a. (2.228)

Parameter β in (2.226) is the normal parameter for the pure Lorentz transformations, that in
terms of the relative velocity among observers v is expressed as β/β tanhβ = v/c as we shall see
below. The dimensions and domains of the parameters b, a and µ are the same as those of the
Galilei group, and the parameter v ∈ R3, with the upper bound v < c, has also dimensions of
velocity. The physical meaning of these ten parameters, that relate any two inertial observers,
is the same as in the Galilei case. The parameter v is the velocity of the origin of the observer
O, as measured by O′, and R(µ) represents the orientation of the Cartesian frame O relative
to O′, once O′ is boosted with velocity v. The factor γ(v) = (1− v2/c2)−1/2.

The composition law of the group is obtained from x′′ = Λ′x′+ a′ = Λ′(Λx+ a)+ a′ that by
identi�cation with x′′ = Λ′′x+ a′′ reduces to Λ′′ = Λ′Λ and a′′ = Λ′a+ a′, i.e., the composition
law of the Lorentz transformations, that we will �nd in the next Section 2.9.1, and a Poincaré
transformation (Λ′, a′) of the four-vector aµ. In this parameterization g′′ = g′g, is: 16

b
′′

= γ′b+ γ′(v′ ·R(µ′)a)/c2 + b′, (2.229)

a
′′

= R(µ′)a+ γ′v′b+
γ

′2

(1 + γ′)c2
(v′ ·R(µ′)a)v′ + a′, (2.230)

v
′′

=

R(µ′)v + γ′v′ +
γ

′2

(1 + γ′)c2
(v′ ·R(µ′)v)v′

γ′(1 + v′ ·R(µ′)v/c2)
, (2.231)

µ
′′

=
µ′ + µ− µ′ × µ+ F (v′,µ′,v,µ)

1− µ′ · µ+G(v′,µ′,v,µ)
, (2.232)

16 M.Rivas, M.Valle and J.M.Aguirregabiria, Eur. J. Phys. 6, 128 (1986).
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where F (v′,µ′,v,µ) and G(v′,µ′,v,µ) are the real functions:

F (v′,µ′,v,µ) =
γγ′

(1 + γ)(1 + γ′)c2
[
v × v′ + v(v′ · µ′) + v′(v · µ)

+ v × (v′ × µ′) + (v × µ)× v′ + (v · µ)(v′ × µ′)

+ (v × µ)(v′ · µ′) + (v × µ)× (v′ × µ′)
]
, (2.233)

G(v′,µ′,v,µ) =
γγ′

(1 + γ)(1 + γ′)c2
[
v · v′ + v · (v′ × µ′) + v′ · (v × µ)

− (v · µ)(v′ · µ′) + (v × µ) · (v′ × µ′)
]
. (2.234)

The unit element of the group is (0,0,0,0) and the inverse of any arbitrary element
(b,a,v,µ) is

(−γb+ γv · a/c2,−R(−µ)(a− γvb+
γ2

(1 + γ)c2
(v · a)v),−R(−µ)v,−µ).

The group generators in the realization (2.227, 2.228), and in terms of the normal parameters
(b,a,β,α), are

H = ∂/∂t, Pi = ∂/∂ri, Ki = ct∂/∂ri + (ri/c)∂/∂t, Jk = εkl
irl∂/∂ri.

Thus, K and J are dimensionless and the commutation relations become

[J ,J ] = −J , [J ,P ] = −P , [J ,K] = −K, [J ,H] = 0, [H,P ] = 0, (2.235)

[H,K] = cP , [P ,P ] = 0, [K,K] = J , [K,P ] = −H/c. (2.236)

If, as usual, we call x0 = ct, p0 = H/c, pi = Pi and Ki = J0i = −Ji0 and Jk = 1
2ϵklrJlr,

xµ = ηµνx
ν , µ = 0, 1, 2, 3 and ∂ν ≡ ∂/∂xν , then,

pµ = ∂µ, Jµν = −Jνµ = xµ∂ν − xν∂µ.

In covariant notation the commutation relations appear:

[pµ, pν ] = 0,
[Jµν , pσ] = −ηµσpν + ηνσpµ,
[Jµν , Jρσ] = −ηµρJνσ − ηνσJµρ + ηνρJµσ + ηµσJνρ.

The Poincaré group has two functionally independent Casimir invariants. One is interpreted
as the squared mass of the system,

pµpµ = (H/c)2 − P 2 = m2c2, (2.237)

and the other is the square of the Pauli-Lubanski four-vector wµ. The Pauli-Lubanski four-
vector is de�ned as

wµ =
1

2
εµνσλ pνJσλ ≡ (P · J ,HJ/c−K × P ) ≡ (P · S,HS/c), (2.238)

which is by construction orthogonal to pµ, i.e., wµpµ = 0.
It is related to the spin with respect to the center of mass SCM , de�ned through the relation

SCM = J − q × P , HSCM/c = HJ/c−K × P , (2.239)
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after writing K = Hq/c2 − P t, so that its time component w0 = P · S = P · J = P · SCM is
the helicity of the particle, and the spatial part is the vector (2.239).

The other Casimir operator is thus

wµwµ = (P · J)2 − (HJ/c−K × P )2 = −m2c2S2, (2.240)

where it depends on S2, the absolute value squared of the spin with respect to the CM. We see
in the relativistic case that the two parameters m and S characterize the two Casimir invariants
and therefore they are the intrinsic properties of the elementary particle the formalism provides.
In the quantum case, since the representation must be irreducible S2 = s(s + 1)~2, for any
s = 0, 1/2, 1, . . ., depending on the value of the quantized spin of the particle, but in the
classical case S2 can take any continuous value.

These wµ operators satisfy the commutation relations:

[wµ, wν ] = ϵµνσρwσpρ, (2.241)

where we take ϵ0123 = +1, and

[pµ, wν ] = 0, [Jµν , wσ] = −ηµσwν + ηνσwµ. (2.242)

The Poincaré group has no non-trivial exponents, so that gauge functions when restricted to
homogeneous spaces of P vanish.

2.9.1 Lorentz group

The Lorentz group L is the subgroup of the Poincaré group P of transformations of the
form (0,0,v,µ), and every Lorentz transformation Λ(v,µ) will be interpreted as Λ(v,µ) =
L(v)R(µ), as mentioned before where L(v) is a boost or pure Lorentz transformation and
R(µ) a spatial rotation. Expressions (2.231, 2.232) come from Λ(v′′,µ′′) = Λ(v′,µ′)Λ(v,µ).
Expression (2.231) is the relativistic composition of velocities since

L(v′′)R(µ′′) = L(v′)R(µ′)L(v)R(µ)

= L(v′)R(µ′)L(v)R(−µ′)R(µ′)R(µ),

but the conjugate of the boost R(µ′)L(v)R(−µ′) = L(R(µ′)v) is another boost and thus

L(v′′)R(µ′′) = L(v′)L(R(µ′)v)R(µ′)R(µ).

The product L(v′)L(R(µ′)v) = L(v′′)R(w) where v′′ is the relativistic composition of the
velocities v′ and R(µ′)v, and R(w) is the Thomas-Wigner rotation associated to the boosts
L(v′) and L(R(µ′)v).

Therefore, expression (2.231) is equivalent to

L(v′′) = L(v′)L(R(µ′)v)R(−w), (2.243)

and (2.232) is
R(µ′′) = R(w)R(µ′)R(µ) ≡ R(ϕ)R(µ). (2.244)

The Thomas-Wigner rotation matrix R(w) is:

R(w)ij = δij +
1

1 + γ′′

(
γ′2

c2

(
1− γ

1 + γ′

)
v′iv

′
j +

γ2

c2

(
1− γ′

1 + γ

)
R′

ikvkR
′
jlvl

+
γ′γ

c2
(v′iR

′
jkvk − v′jR

′
ikvk) +

2γ′2γ2(v′kR
′
klvl)

(1 + γ′)(1 + γ)c2
v′iR

′
jkvk

)
,
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and the factor

γ′′ = γ′γ

(
1 +

v′ ·R(µ)v
c2

)
.

Matrix R(w) is written in terms of the vector parameter w, which is a function of v′, µ′ and
v, given by

w =
F (v′,0, R(µ′)v,0)

1 +G(v′,0, R(µ′)v,0)
, (2.245)

and the parameter ϕ, such that R(ϕ) = R(w)R(µ′) is

ϕ =
µ′ + F (v′,µ′,v,0)

1 +G(v′,µ′,v,0)
. (2.246)

If any one of the two velocities v or v′ vanishes, R(w)ij = δij .
The composition law is obtained by the homomorphism between the Lorentz group L and

the group SL(2,C) of 2× 2 complex matrices of determinant +1. The Lie algebra of this group
has as generators J = −iσ/2 and K = σ/2, where σi are Pauli spin matrices. A rotation of
angle α around a rotation axis given by the unit vector n is given by the 2× 2 unitary matrix
exp(α · J),

R(α) = cos(α/2)σ0 − in · σ sin(α/2). (2.247)

In terms of the vector µ = tan(α/2)n,

R(µ) =
1√

1 + µ2
(σ0 − iµ · σ), (2.248)

where σ0 is the 2 × 2 unit matrix. A pure Lorentz transformation of normal parameters βi is
represented by the hermitian matrix exp(β ·K). This matrix is:

L(β) = cosh(β/2)σ0 +
σ · β
β

sinh(β/2). (2.249)

In terms of the relative velocity parameters, taking into account the functions coshβ = γ(v),
sinhβ = γv/c and the trigonometric relations cosh(β/2) =

√
(coshβ + 1)/2 and tanh(β/2) =

sinhβ/(1 + coshβ), the matrix can be written as

L(v) =

√
1 + γ

2

(
σ0 +

γ

1 + γ

σ · v
c

)
. (2.250)

Then, every element of SL(2,C) is parametrized by the six real numbers (v,µ), and inter-
preted as

A(v,µ) = L(v)R(µ). (2.251)

We thus see that every 2 × 2 matrix A ∈ SL(2,C) can be written in terms of a complex
four-vector aµ and the four Pauli matrices σµ. As A = aµσµ, and detA = 1 leads to aµaµ = 1
or (a0)2 − a2 = 1. The general form of (2.251) is

A(v,µ) =

√
1 + γ

2(1 + µ2)

[
σ0

(
1− i

µ · u
1 + γ

)
+ σ ·

(
u+ u× µ

1 + γ
− iµ

)]
, (2.252)

here the dimensionless vector u = γ(v)v/c.
Conversely, since Tr (σµσν) = 2δµν , we obtain aµ = (1/2)Tr (Aσµ). If we express (2.252) in

the form A(v,µ) = aµσµ we can determine µ and v, and thus u, from the components of the
complex four-vector aµ as:

µ = − Im (a)

Re (a0)
, (2.253)

u = 2
[
Re (a0)Re (a) + Im (a0)Im (a) + Re (a)× Im (a)

]
, (2.254)
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where Re (aµ) and Im (aµ) are the real and imaginary parts of the corresponding components
of the four-vector aµ. When Re (a0) = 0 expression (2.253) is de�ned and represents a rotation
of value π along the axis in the direction of vector Im (a).

If we represent every Lorentz transformation in terms of a rotation and a boost, i.e., in the
reverse order, Λ(v,µ) = R(µ)L(v), then the general expression of A is the same as (2.252) with
a change of sign in the cross product term u×µ. Therefore, the decomposition is also unique,
the rotation R(µ) is the same as before but the Lorentz boost is given in terms of the variables
aµ by

u = 2
[
Re (a0)Re (a) + Im (a0)Im (a) + Im (a)× Re (a)

]
.

Note the di�erence in the third term which is reversed when compared with (2.254).
In the four-dimensional representation of the Lorentz group on Minkowski space-time, a

boost is expressed as L(β) = exp(β · K) in terms of the dimensionless normal parameters βi
and the 4× 4 boost generators Ki given by

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

If we call B = β ·K ≡
∑

i βiKi, we have

B =


0 β1 β2 β3
β1 0 0 0
β2 0 0 0
β3 0 0 0

 , B2 =


β2 0 0 0
0 β1β1 β1β2 β1β3
0 β2β1 β2β2 β2β3
0 β3β1 β3β2 β3β3

 ,

with β2 = β21 + β22 + β23 and B3 = β2B, and so on for the remaining powers of B, so that the
�nal expression for L(β) = exp(β ·K) is

exp(β ·K) = exp(B) = I+
1

1!
B+

1

2!
B2+

1

3!
B3+ · · · = I+

1

1!
B+

1

2!
B2+

1

3!
β2B+

1

4!
β2B2+ · · ·

and the addition term by term converges to

C (β1/β)S (β2/β)S (β3/β)S

(β1/β)S 1 +
β1β1
β2

(C − 1)
β1β2
β2

(C − 1)
β1β3
β2

(C − 1)

(β2/β)S
β2β1
β2

(C − 1) 1 +
β2β2
β2

(C − 1)
β2β3
β2

(C − 1)

(β3/β)S
β3β1
β2

(C − 1)
β3β2
β2

(C − 1) 1 +
β3β3
β2

(C − 1)


where S = sinhβ and C = coshβ.

What is the physical interpretation of the normal parameters βi? Let us assume that
observers O and O′ relate their space-time measurements x and x′ by x′µ = L(β)µνx

ν . Observer
O sends at time t and at a later time t+ dt two light signals from a source placed at the origin
of its Cartesian frame. These two signals when measured by O′ take place at points r′ and
r′ + dr′ and at instants t′ and t′ + dt′, respectively. They are related by

cdt′ = L0
0cdt, dx′

i
= Li

0cdt

because dxi = 0. The quotient dx′i/dt′ is just the velocity of the light source vi, i.e., of the origin
of the O frame as measured by observer O′, and then this velocity vi = cLi

0/L
0
0 = c(βi/β)S/C,
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such that the relation between the normal parameters and the relative velocity between observers
is

v

c
=

β

β
tanhβ

and therefore tanhβ = v/c. Function coshβ ≡ γ(v) = (1 − v2/c2)−1/2 and when the transfor-
mation is expressed in terms of the relative velocity it takes the form of the symmetric matrix:

L(v) =



γ γvx/c γvy/c γvz/c

γvx/c 1 +
v2x
c2

γ2

γ + 1
vxvy
c2

γ2

γ + 1
vxvz
c2

γ2

γ + 1

γvy/c
vyvx
c2

γ2

γ + 1 1 +
v2y
c2

γ2

γ + 1
vyvz
c2

γ2

γ + 1

γvz/c
vzvx
c2

γ2

γ + 1
vzvy
c2

γ2

γ + 1 1 +
v2z
c2

γ2

γ + 1


. (2.255)

The inverse transformation L−1(v) = L(−v). The orthogonal 4 × 4 rotation matrix takes the
block form

R(µ) =

(
1 0
0 R̃(µ)

)
, (2.256)

where R̃(µ) is the 3×3 orthogonal matrix (2.208). When a Lorentz transformation is expressed
in the form Λ(v,µ) = L(v)R(µ), then by construction the �rst column of Λ(v,µ) is just
the �rst column of (2.255) where the velocity parameters v are de�ned. Therefore, given the
general Lorentz transformation Λ(v,µ), from its �rst column we determine the parameters v
and thus the complete L(v) can be worked out. The rotation involved can be easily calculated
as L(−v)Λ(v,µ) = R(µ). If expressed in the reverse order Λ(v,µ) = R(µ)L(v), then it is the
�rst row of Λ that coincides with the �rst row of (2.255). It turns out that, given any general
Lorentz transformation Λ(v,µ), then Λ(v,µ) = L(v)R(µ) = R(µ)L(v′) with the same rotation
in both sides as derived in (2.253) and L(v′) = R(−µ)L(v)R(µ) = L(R(−µ)v), i.e, the velocity
v′ = R(−µ)v. In any case, the decomposition of a general Lorentz transformation as a product
of a rotation and a boost is a unique one, in terms of the same rotation R(µ) and a boost to
be determined, depending on the order in which we take these two operations.

Matrix Λ can be considered as a tetrad (i.e., a set of four orthonormal four-vectors, one
time-like and the other three space-like) attached by observer O′ to the origin of observer O.
In fact, if the matrix is considered in the form Λ(v,µ) = L(v)R(µ), then the �rst column of
Λ is the four-velocity of the origin of the O Cartesian frame and the other three columns are
just the three unit vectors of the O reference frame, rotated with rotation R(µ) and afterwards
boosted with L(v).



Chapter 3

Quantization of the models

Quantization of generalized Lagrangian systems will suggest that wave functions for elemen-
tary particles must be squared integrable functions de�ned on the kinematical space.

We shall use Feynman's quantization method to show the structure of the wave function and
the way it transforms under the kinematical or symmetry group of the theory. Once the Hilbert
space structure of the state space is determined, this leads to a speci�c representation of the
generators of the group as self-adjoint operators and the remaining analysis is done within the
usual quantum mechanical context, i.e., by choosing the complete commuting set of operators
to properly determine a set of orthogonal basis vectors of the Hilbert space. Special emphasis
is devoted to the analysis of the di�erent angular momentum operators the formalism supplies.
They have a similar structure to the classical ones, and this will help us to properly obtain the
identi�cation of the spin observables.

The structure of the spin operator depends on the kind of translation invariant kinematical
variables we use to describe the particle, and the way these variables transform under the
rotation group. Since in the Galilei and Poincaré case, as we have seen previously, these variables
are the velocity u and orientation α and they transform in the same way under rotations in both
approaches, then the mathematical structure of the spin as a di�erential operator is exactly the
same in both relativistic and nonrelativistic formalisms.

In fact the spin operators are related to the compact part of the velocity variable u, i.e.,
its direction given by the two angles, the polar angle θ and the azimuthal angle ϕ, and to the
three variables which characterize the orientation of the cartesian frame linked to the particle,
and therefore they will be di�erential operators with respect to these �ve compact, angular
variables.

Half integer spins depend on the kind of the di�erential operators and on the manifold they
act. If the angular momentum operators act on a two-dimensional manifold, like the surface of
the unit sphere, we do not obtain all representations of the rotation group but only those related
to integer spin. It is necessary that the operators act on the three dimensional manifold of the
whole rotation group, to obtain both integer and half integer representations. This implies that
the classical spin has to depend on the angular variables which describe the classical orientation
of the particle.

As we have seen in the classical description the position of the charge of the particle and
its center of mass are di�erent points, and the spin is related to the rotation and internal
motion (zitterbewegung) of the charge around the center of mass of the particle. The magnetic
properties of the particle are connected only with the motion of the charge and therefore to
the zitterbewegung part of spin. It is this double spin structure that gives rise to the concept
of gyromagnetic ratio when expressing the magnetic moment in terms of the total spin. If the
Lagrangian shows no dependence on the acceleration, the spin is only of rotational nature, and
the position and center of mass position de�ne the same point. Spin 1/2 particles arise if the

119
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corresponding classical model rotates but no half integer spins are obtained for systems with
spin of orbital nature related only to the zitterbewegung. On the manifold spanned by non-
compact variables u no half-integer spins can be found, because the spin operator has the form
of an orbital angular momentum and eigenvectors are but spherical harmonics.

Dirac's equation will be obtained when quantizing the classical relativistic spinning particles
whose center of charge is circling around its center of mass at the speed c. In that case, the
internal orientation of the electron completely characterizes its Dirac algebra.

3.1 Feynman's quantization of Lagrangian systems

Let us consider a generalized Lagrangian system as described in previous chapters and whose
evolution is considered on the kinematical space between points x1 and x2.

The variational formulation requieres to know the boundary states, and the particular so-
lution of the Euler-Lagrange equations passing through them, singles out the evolution of the
particle. However, from the experimental point of view it is impossible to get a precise determi-
nation of these boundary states, because any measurement means to interact with the particle,
and when we measure some property other properties become distorted, and their uncertainty
increases. This means that we do not know accurately the values of the point x1, but some
average values around x1, with a certain probability. The same happens with respect to x2,
so that �nding the path described by the particle is equivalent to determine among all paths
coming from a region R1 around x1 to the region R2 around x2. What we have is a kind of
thick tube of paths, linking both regions, so that to determine a unique trajectory like in the
classical description, is physically impossible. We have to replace the variational formulation
by a theory which predicts the probability that a mechanical system starting from a region R1

in kinematical space, reaches the region R2.
For quantizing these generalized Lagrangian systems we shall follow Feynman's path integral

method 1. The Quantization Principle is introduced in Feynman's approach by the condition
that if no measurement is performed to determine the trajectory followed by the system from
x1 to x2, then all paths x(τ) are allowed with the same probability. Therefore a probability
de�nition P [x(τ)], must be given for every path. The variational formalism does not longer
works and it is substituted by a quantization principle which considers that all paths have the
same probability.

The probability associated to each possible path P [x(τ)], is calculated in terms of a complex
number ϕ[x(τ)], associated to every path, and called the probability amplitude, such that

P [x(τ)] = |ϕ[x(τ)]|2, ∀x(τ), 0 ≤ P [x(τ)] ≤ 1.

Since all paths have the same probability all probability amplitudes are complex numbers of the
same absolute value and they only have a di�erent phase. Thus, to every possible trajectory
followed by the system, x(τ) in X space, Feynman associates a complex number ϕ[x(τ)] called
the probability amplitude of this alternative, given by

ϕ[x(τ)] = N exp

{
i

~

∫ τ2

τ1

L(x(τ), ẋ(τ))dτ

}
= N exp

{
i

~
A[x](x1, x2)

}
, (3.1)

where N is a normalization factor, the same for all paths, and where the phase of this complex
number in units of ~ is the classical action of the system A[x](x1, x2) along the corresponding
path x(τ). Once we perform the integration along the path, this probability amplitude becomes
clearly a complex function of the initial and �nal points in X space, x1 and x2, respectively.

1 R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, MacGraw Hill, NY (1965), p. 36.
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In this Feynman statistical procedure, the probability amplitude of the occurrence of any
alternative of a set of independent alternatives is the sum of the corresponding probability
amplitudes of the di�erent independent events. The probability of the whole process is the
square of the absolute value of the total probability amplitude. This produces the e�ect that
the probability of the whole process can be less than the probability of any single alternative of
the set. This is what Feynman calls interfering statistics.

Then, the total probability amplitude that the system arrives at point x2 coming from x1,
i.e., Feynman's kernel K(x1, x2), is obtained as the sum or integration over all paths, of terms
of the form of Eq. (3.1). Feynman writes this probability amplitude as

K(x1, x2) =

∫ x2

x1

ϕ[x(τ)]D(x(τ)),

where D(x(τ)) represents a measure over the kind of paths x(τ) going from x1 to x2.
Feynman's kernel K(x1, x2), will be in general a function, or more precisely a distribution,

on the X ×X manifold. If information concerning the initial point is lost, and the �nal point
is left arbitrary, say x, the kernel reduces to the probability amplitude for �nding the system at
point x, i.e., the usual interpretation of the quantum mechanical wave function Φ(x). By the
above discussion we see that the wave functions must be complex functions of the kinematical
variables but not of other kind of variables. The Hilbert space of pure states is the vector space
L2(X) of squared integrable complex functions on the kinematical space.

We thus see that Feynman's quantization method enhances the role of the kinematical
variables to describe the quantum state of an arbitrary system, in spite of the independent
degrees of freedom. We consider that this is one of the reasons why the kinematical variables
have to play a leading role also in the classical approach.

We are used to consider in quantum mechanics, instead of a single function Φ(x), multicom-
ponent wave functions, i.e, a set of linearly independent functions ψi(t, r) de�ned on space-time
and labeled with a discrete subindex that runs over a �nite range, such that it can be consid-
ered as a vector valued function in a �nite dimensional complex vector space. In general this
�nite space carries some irreducible representation of the rotation group and each component
ψi represents a de�nite spin state of the system. Nevertheless, our wave function Φ(x) depends
on more variables than space-time variables. Once we de�ne later the complete commuting set
of observables to obtain, in terms of their simultaneous eigenvectors, an orthonormal basis for
the Hilbert space of states, we shall �nd that Φ(x) can be separated in two parts. One part
ϕ(t, r) depending on space-time variables and another part χ that depends on the remaining
translation invariant kinematical variables, that in our case will reduce to the velocity u and
orientation α. It is this possible separation of our wave function that will produce the emergence
of the di�erent components of the usual formalism.

3.1.1 Transformation of the wave function

To see how the wave function transforms between inertial observers, and therefore to obtain
its transformation under the kinematical groups, let us consider that O and O′ are two inertial
observers related by means of a transformation g ∈ G, such that the kinematical variables
transform as:

x′
i
= f i(x, g). (3.2)

If observer O considers that the system follows the path x̄(τ), then it follows for O′ the
path x̄′(τ) = f(x̄(τ), g) and because the action along classical paths transforms according to
Eq. (1.13), the probability amplitude for observer O′ is just

ϕ′[x̄′(τ)] = N exp

{
i

~

∫ τ2

τ1

L(x̄′(τ), ˙̄x′(τ))dτ

}
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= N exp

{
i

~

∫ τ2

τ1

L(x̄(τ), ˙̄x(τ))dτ

}
exp

{
i

~

∫ τ2

τ1

dα(g; x̄(τ))

dτ
dτ

}
,

i.e.,

ϕ′[x̄′(τ)] = ϕ[x̄(τ)] exp

{
i

~
(α(g;x2)− α(g;x1))

}
,

where the last phase factor is independent of the integration path. If we add all probability
amplitudes of this form, it turns out that Feynman's kernel transforms as:

K ′(x′1, x
′
2) = K(x1, x2) exp

{
i

~
(α(g;x2)− α(g;x1))

}
. (3.3)

If information concerning the initial point x1 is lost, the wave function transforms as the part
related to the variables x2, up to an arbitrary function on G,

Φ′(x′(x)) = Φ′(gx) = Φ(x) exp

{
i

~
(α(g;x) + θ(g))

}
, (3.4)

or in terms of unprimed x variables

Φ′(x) = Φ(g−1x) exp

{
i

~
(
α(g; g−1x) + θ(g)

)}
, (3.5)

where θ(g) is some function de�ned on G but independent of x.
Since our system is somewhere in X space, the probability of �nding the system anywhere is

1. Then we have to de�ne the way of adding probabilities at di�erent points x ∈ X. If we de�ne
a measure on X, µ(x), such that dµ(x) is the volume element in X space and |Φ(x)|2dµ(x) is
interpreted as the probability of �nding the system inside the volume element dµ(x) around
point x, the probability of �nding it anywhere in X must be unity, so that∫

X
|Φ(x)|2dµ(x) = 1. (3.6)

Since from (3.5)
|Φ′(x′)|2 = |Φ(x)|2, (3.7)

it is su�cient for the conservation of probability to assume that the measure to be de�ned µ(x) is
group invariant. In that case, equation (3.7) implies also that inertial observers measure locally
the same probability. This will have strong consequences about the possibility of invariance of
the formalism under arbitrary changes of phase of the wave function. But the phase can be
changed in a di�erent manner at di�erent points x. We can use this fact to further impose the
local gauge invariance of the theory. It must be remarked that this arbitrary change of phase
β(x) is not only a phase on space-time, but rather on the whole kinematical space of the system
and this enlarges the possibilities of analyzing di�erent transformation groups that can be more
general than the original kinematical groups, because they act on a larger manifold.

3.1.2 Hilbert space structure of the probability amplitudes

The complex function Φ(x), if interpreted as the probability amplitude for �nding the system
around the point x ∈ X, coming from anywhere, satis�es (3.6). It means that Φ(x) is a complex,
squared integrable function de�ned on the kinematical space. Because probability amplitudes
add to form new probability amplitudes when properly normalized, the set of possible functions
Φ(x) forms a complex vector space, because we can add and multiply them by arbitray complex
numbers to produce new complex functions which will describe new probability amplitudes.
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Consequently, the Hilbert space H whose unit rays represent the pure states of the system
is the space of squared-integrable functions L2(X,µ) de�ned on the kinematical space X, µ(x)
being an invariant measure such that the scalar product on H is de�ned as

< Φ|Ψ >=

∫
X
Φ∗(x)Ψ(x)dµ(x), (3.8)

Φ∗(x) being the complex conjugate function of Φ(x). There is an arbitrariness in the election
of the invariant measure µ(x) but this will be guided by physical arguments. Nevertheless, the
invariance condition will restrict the possible measures to be used.

The absolute value of the above (3.8) | < Φ|Ψ > | represents the probability that preparing
the system in the state given by Ψ(x) we �nd the system in the state Φ(x), and conversely,
because | < Φ|Ψ > | = | < Ψ|Φ > |.

3.1.3 Representation of Observables

Wigner's theorem 2,3, implies that to every symmetry g ∈ G of a continuous group, there
exists a one to one mapping of unit rays into unit rays that is induced on H by a unitary
operator U(g) de�ned up to a phase that maps a wave function de�ned on x into an arbitrary
wave function of the image unit ray in x′. The Relativity Principle is a strong symmetry of
physical systems that de�nes the equivalence between the set of inertial observers whose space-
time measurements are related by means of a transformation of a kinematical group G. Now, if
we interpret Φ(x) as the wave function that describes the state of the system for the observer
O and Φ′(x) for O′, then we have

U(g)Φ(x) = Φ′(x) = Φ(g−1x) exp

{
i

~
α(g; g−1x) + θ(g)

}
. (3.9)

Since the θ(g) function gives rise to a constant phase we can neglect it and take as the
de�nition of the unitary representation of the group G on the Hilbert space H, the following

Φ′(x) = U(g)Φ(x) = Φ(g−1x) exp

{
i

~
α(g; g−1x)

}
. (3.10)

Gauge functions satisfy (1.15), and therefore the phase term can be replaced by

α(g; g−1x) = −α(g−1;x) + α(0;x) + ξ(g, g−1) = −α(g−1;x) + ζ(g), (3.11)

because gauge functions can always be chosen such that α(0;x) = 0 and the group function
ζ(g) = ξ(g, g−1) giving rise also to a constant phase, can be suppressed. We thus de�ne the
transformation of the wave function by

Φ′(x) = U(g)Φ(x) = Φ(g−1x) exp

{
− i

~
α(g−1;x)

}
. (3.12)

If the unitary operator is represented in terms of the corresponding self-adjoint generators of
the Lie algebra in the form

U(g) = exp

{
− i

~
gσXσ

}
, (3.13)

2 E.P. Wigner, Group theory and its application to the quantum mechanics of atomic spectra, Acad. Press,
NY (1959).

3 V. Bargmann, J. Math. Phys. 5, 862 (1964).
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then, for an in�nitesimal transformation of parameters δgσ its inverse transformation has in-
�nitesimal parameters −δgσ, we obtain at �rst order in δgσ

U(δg)Φ(x) =

(
I− i

~
δgσXσ

)
Φ(x) = Φ(x)− i

~
δgσXσ Φ(x),

while

Φ(δg−1x) ≡ Φ(f(x, δg−1)) = Φ(x)− δgσuiσ(x)
∂Φ(x)

∂xi
,

and

exp

{
− i

~
α(δg−1;x)

}
= 1− i

~
α(δg−1;x).

But because α(0;x) = 0,

α(δg−1;x) =
∂α(g;x)

∂gσ

∣∣∣∣
g=0

(−δgσ),

and the substitution of the above terms in (3.12) and further identi�cation of the �rst order
terms in δgσ imply that the self-adjoint operators Xσ when acting on the wave functions have
the di�erential representation

Xσ =
~
i
ujσ(x)

∂

∂xj
− λσ(x), (3.14)

where

ujσ(x) =
∂f j(x, g)

∂gσ

∣∣∣∣
g=0

, λσ(x) =
∂α(g;x)

∂gσ

∣∣∣∣
g=0

. (3.15)

If we restrict ourselves to transformations of the enlarged con�guration space (t, qi) that
can be extended to the whole kinematical space x ≡ (t, qi, . . . , q

(k−1)
i ), then, using the same

notation as in (1.18)-(1.21), if the in�nitesimal transformation is of the form

t′ = t+Mσδg
σ, q′i = qi +Miσδg

σ, . . . , q′
(k−1)
i = q

(k−1)
i +M

(k−1)
iσ δgσ,

these generators take the form

Xσ =
~
i

(
Mσ

∂

∂t
+Miσ

∂

∂qi
+ . . .+M

(k−1)
iσ

∂

∂q
(k−1)
i

)
− λσ(x). (3.16)

When compared with the Noether constants of the motion (1.34) written in the form

−Nσ = −HMσ + pi(s+1)M
(s)
iσ − λσ(x), (3.17)

we see a certain kind of `correspondence recipe'. When restricted to kinematical groups,
the functions λσ(x) of (1.34), are obtained from the Lagrangian gauge functions α(g;x), by
(1.14), which is exactly the same derivation as the functions λσ(x) above in (3.15). Now, by
identifying the di�erent classical observables and generalized momenta that appear in (3.17)
with the corresponding di�erential operators of (3.16) that multiply the corresponding M (s)

iσ

function, we get: the generalized Hamiltonian H = pi(s)q
(s)
i − L, is multiplied in (3.17) by the

function Mσ, is identi�ed with the operator i~∂/∂t which is also in front of the function Mσ in
(3.16), and similarly, the generalized momentum pi(s+1), the factor that multiplies the function

M
(s)
iσ , with the di�erential operator −i~∂/∂q(s)i , for s = 0, . . . , k − 1.

Recipe: Remember that pi(s+1) and q
(s)
i are canonical conjugate variables. Then, each gen-

eralized momentum pi(s+1) is replaced by (~/i) times the di�erential operator that di�erentiates
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with respect to its conjugate generalized coordinate q(s)i and the generalized Hamiltonian H by
the di�erential operator i~∂/∂t.

pi(s+1) −→
~
i

∂

∂q
(s)
i

, H −→ i~
∂

∂t
.

In the case of elementary particles, the kinematical variables are t, r,u,ρ, the generalized vari-
ables we have r,u and ρ and the corresponding conjugate momenta are pr = P , pu = U and
pρ = V , and H the Hamiltonian, these will be given by the di�erential operators

P =
~
i

∂

∂r
, U =

~
i

∂

∂u
, V =

~
i

∂

∂ρ
, H = i~

∂

∂t
. (3.18)

Instead of the momentum V = ∂L̃/∂ρ̇, we have used the functionW = ∂L̃/∂ω, which produces
the part of the spin related to the rotation of the particle, which will be described as a di�erential
operator with respect to the orientation variables ρ, in the form which is described in the
appendix about general spinors 3.3, at the end of this chapter. This takes the form

W =
~
2i

{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} , (3.19)

where ∇ρ ≡ ∂/∂ρ. This representation of the momenta (3.18) is valid even when the particle
is under any interaction, because its mathematical structure depends only on the kinematical
variables.

We know that Vi = ∂L̃/∂ρ̇i and Wj = ∂L̃/∂ωj = ∂L̃/∂ρ̇i ∂ρ̇i/∂ωj = Vi∂ρ̇i/∂ωj . Since in the
pasive representation of rotations

ωi =
2

1 + ρ2
(ρ̇i + ϵijkρj ρ̇k), ρ̇i =

1

2
(ωi − ϵikjρkωj + ρi(ρ · ω)) ,

∂ρ̇i
∂ωj

=
1

2
(δij − ϵikjρk + ρiρj) , Wj = Vi

∂ρ̇i
∂ωj

=
~
2i

(
∂

∂ρj
+ ϵjikρi

∂

∂ρk
+ ρjρi

∂

∂ρi

)
,

i.e.,(3.19).

The Heisenberg representation is that representation in which the time dependence has been
withdrawn from the wave function by means of a time dependent unitary transformation. Then
the wave function in this representation depends on the kinematical variables with the time
excluded, i.e., it depends only on the generalized coordinates q(r)i . Therefore, when acting on

the wave function in the Heisenberg representation ψ(qi, q
(1)
i , . . . , q

(k−1)
i ), the observables q(r)i

and pj(s) satisfy the canonical commutation relations

[q
(r)
i , pj(s+1)] = i~δji δ

r
s .

If the functions λσ(x) in (3.14) vanish, theXσ generators satisfy the commutation relations of
the group G. But if some λσ(x) ̸= 0 theXσ generators do not satisfy in general the commutation
relations of the initial group G, but rather the commutation relations of a central extension of
G. The group representation on the Hilbert space is not a true representation but a projective
representation of G as shown by Bargmann 4.

In fact, from (3.10) we get

U(g1)Φ(x) = Φ(g−1
1 x) exp{ i

~
α(g1; g

−1
1 x)},

4 V. Bargmann, Ann. Math. 59, 1 (1954).
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acting now on the left with U(g2),

U(g2)U(g1)Φ(x) = U(g2)Φ(g
−1
1 x) exp{ i

~
α(g1; g

−1
1 x)}

= Φ((g2g1)
−1x) exp{ i

~
α(g2; g

−1
2 x)} exp{ i

~
α(g1; (g2g1)

−1x)}, (3.20)

while acting on Φ(x) with U(g2g1),

U(g2g1)Φ(x) = Φ((g2g1)
−1x) exp{ i

~
α(g2g1; (g2g1)

−1x)}. (3.21)

If we de�ne (g2g1)−1x = g−1
1 g−1

2 x = z, then g1z = g−1
2 x and because gauge functions satisfy

(1.15), we write
α(g2; g1z) + α(g1; z) = α(g2g1; z) + ξ(g2, g1), (3.22)

and by comparing (3.20) with (3.21), taking into account (3.22), we obtain

U(g2)U(g1)Φ(x) = U(g2g1)Φ(x) exp{
i

~
ξ(g2; g1)}. (3.23)

Since Φ(x) is arbitrary, we have a projective unitary representation of the group G characterized
by the non-trivial exponent ξ(g, g′).

For both Galilei and Poincaré particles the kinematical space is the ten-dimensional manifold
spanned by the variables (t, r,u,α), t being the time, r the charge position, u the velocity and
α the orientation of the particle. Thus in the quantum formalism the wave function of the most
general elementary particle is a squared-integrable function Φ(t, r,u,α) of these kinematical
variables. For point particles, the kinematical space is just the four-dimensional space-time, so
that wave functions are only functions of time and position, but spinning particles will have to
depend on the additional variables like velocity and orientation. The spin structure will thus
be related to these additional variables.

3.2 Nonrelativistic spinning particles

3.2.1 Nonrelativistic spinning particles. Bosons

Now let us apply the formalism to the most interesting case of spinning particles. Let us
consider next Galilei particles with (anti)orbital spin. This corresponds for example to particles
whose kinematical variables are time, position and velocity. A particular classical example is
given in Chapter 2, Section 2.2 by the free Lagrangian

L =
m

2

(
dr

dt

)2

− m

2ω2

(
du

dt

)2

, (3.24)

with u = dr/dt. For the free particle, the center of mass q = r−k has a straight motion while
the relative position vector k follows an elliptic trajectory with frequency ω around its center
of mass. The spin with respect to the center of mass is expressed as SCM = −mk × dk/dt.

The kinematical variables transform under G in the form

t′(τ) = t(τ) + b, (3.25)

r′(τ) = R(α)r(τ) + vt(τ) + a, (3.26)

u′(τ) = R(α)u(τ) + v. (3.27)

The wave functions are functions on X and thus functions of the variables (t, r,u). On this
kinematical space the gauge function is the same as in (2.38), where m de�nes the mass of the
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particle. Taking into account the correspondence recipe for the Hamiltonian H → i~∂/∂t, the
�rst generalized momentum pr ≡ P → −i~∇ and the other generalized momentum pu ≡ U →
−i~∇u, the generators of the projective representation are given by

H = i~
∂

∂t
, P =

~
i
∇, K = mr − t

~
i
∇− ~

i
∇u, (3.28)

J = r × ~
i
∇+ u× ~

i
∇u = L+Z, (3.29)

where ∇ is the gradient operator with respect to the r variables and ∇u the gradient operator
with respect to the u variables. It is important to stress that this representation of the generators
is independent of the particular Lagrangian that describes the particle. It depends only on
the kinematical variables (t, r,u) and the usual Galilei gauge function. We write the symbol
Z = u × U for the angular momentum with respect to the center of charge, related to the
Zitterbewegung motion of the particle and we shall see that quantizes with integer values.

If we de�ne q = r − k = (K + P t)/m, it satis�es the commutation relations with P ,

[qi, Pj ] = i~ δij ,

which are the canonical commutation relations between the linear momentum and position for
a point particle and therefore these canonical commutation relations between the total linear
momentum and the center of mass position for a spinning particle are already contained in
the commutation relations of the extended Lie algebra of the kinematical group. Therefore the
quantum mechanical operator

q = r − ~
im

∇u, (3.30)

can be interpreted as the center of mass position operator. Discussion of other possibilities for
the center of mass position operator can be found in the book by the author.

In this representation, one Casimir operator is the internal energy H−P 2/2m. We see that
the spin operator with respect to the center of mass is de�ned as usual

SCM = J − 1

m
K × P = u×U + k × P = u× ~

i
∇u +

~
im

∇u × ~
i
∇,

which is written in terms of two non-commuting terms. It satis�es

[SCM ,SCM ] = i~SCM , [J ,SCM ] = i~SCM , [SCM ,P ] = [SCM ,H] = [SCM ,K] = 0,

i.e., it is an angular momentum operator, transforms like a vector under rotations and is invariant
under space and time translations and under Galilei boosts, respectively. The second part of
the spin operator is of order ~2 so that it produces a very small correction to the �rst Z part.

The angular momentum operators Z, or spin with respect to the center of charge, satisfy
the commutation relations

[Z,Z] = i~Z, [J ,Z] = i~Z, [Z,P ] = [Z,H] = 0,

[Z,K] = −i~U = −~2∇u,

i.e., Z is an angular momentum operator, transforms like a vector under rotations and is
invariant under space and time translations but not under Galilei boosts. It is usually considered
as the quantum mechanical spin operator, because commutes with H and P .

We see however, that the angular momentum operator J is split into two commuting terms
r × P and Z. They both commute with H, but the �rst one is not invariant under space
translations. The Z operators are angular momentum operators that only di�erentiate the
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wave function with respect to the velocity variables, and consequently commute with H and
P , and although it is not the true Galilei invariant spin operator, we can �nd simultaneous
eigenstates of the three commuting operators H−P 2/2m, Z2 and Z3. Because the Z operators
only a�ect the wave function in its dependence on u variables, we can choose functions with
the variables separated in the form Φ(t, r,u) =

∑
i ψi(t, r)χi(u) so that

(H − P 2/2m)ψi(t, r) = Eψi(t, r), (3.31)

Z2χi(u) = z(z + 1)~2χi(u), (3.32)

Z3χi(u) = mz~χi(u). (3.33)

The space-time dependent wave function ψi(t, r), satis�es Schroedinger's equation and is un-
coupled with the spin part χ(u).

Due to the structure of Z2 in terms of the u variables, which is that of an orbital angular
momentum, the spin part of the wave function is of the form

χ(u) = f(u)Y mz
z (θ, ϕ), (3.34)

f(u) being an arbitrary function of the modulus of u and Y mz
z (θ, ϕ) the spherical harmonics on

the direction of u.
For the center of mass observer, S = Z and both angular momentum operators are the same.

But for an arbitrary observer, Z operators do not commute with the boosts generators so that
its absolute value is not Galilei invariant, while S is. But the splitting of the wave function into
a multiple-component function that re�ects its spin structure is an intrinsic property that can
be done in any frame.

It turns out that if for a free particle Z is not conserved, r×P is not the conserved orbital
angular momentum, because r does not represent the position of the center of mass of the
particle.

When there is an interaction with an external electromagnetic �eld, equation (3.31) is sat-
is�ed for the mechanical parts Hm = H − eϕ and Pm = P − eA and we thus obtain the usual
equation (

H − eϕ− (P − eA)2

2m

)
ψi(t, r) = Eψi(t, r). (3.35)

This formalism, when the classical spin is of orbital nature, does not lead to half integer
spin values, and therefore, from the quantum mechanical point of view these particles can be
used only as models for representing bosons.

3.2.2 Nonrelativistic spinning particles. Fermions

Other examples of nonrelativistic spinning particles are those which have orientation and
thus angular velocity. For instance, if X = G/R3

v, R3
v being the subgroup {R3,+} of pure

Galilei transformations, then the kinematical space is spanned by the variables (t, r,α). This
corresponds for instance to the Lagrangian system described by

L =
m

2

(
dr

dt

)2

+
I

2
ω2. (3.36)

The particle travels freely at constant velocity while it rotates with constant angular velocity
ω. The classical spin is just S = Iω, and the center of charge and center of mass represent the
same point.

To describe orientation we can think of the three orthogonal unit vectors ei, i = 1, 2, 3
linked to the body, similarly as in a rigid rotator. If initially they are taken parallel to the
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spatial Cartesian axis of the laboratory inertial frame, then their nine components considered
by columns de�ne an orthogonal rotation matrix Rij(α) that describes the triad evolution with
the initial condition Rij(t = 0) = δij .

Now, kinematical variables t, r and ρ transform under G in the form

t′(τ) = t(τ) + b, (3.37)

r′(τ) = R(α)r(τ) + vt(τ) + a, (3.38)

ρ′(τ) =
µ+ ρ(τ) + µ× ρ(τ)

1− µ · ρ(τ)
. (3.39)

On the corresponding Hilbert space, the Galilei generators are given by:

H = i~
∂

∂t
, P =

~
i
∇, K = mr − t

~
i
∇, (3.40)

J =
~
i
r ×∇+

~
2i

{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} = L+W , (3.41)

∇ρ being the gradient operator with respect to the ρ variables and in the ρ parameterization
of the rotation group.

TheW part comes from the general group analysis. The group generators in this parametriza-
tion Xi will be obtained from (3.39) and according to (1.38) and (1.40). They are obtained
as

Xi =

(
∂ρ′k

∂µi

)∣∣∣∣∣
µ=0

∂

∂ρk
,

that can be written in vector notation as

X = ∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)

They satisfy the commutation relations

[Xi, Xk] = −2ϵiklXl

and therefore the operators Wk = ~
2iXk, or in vector notation

W =
~
2i

{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} , (3.42)

will satisfy the angular momentum commutation relations

[W ,W ] = i~W . (3.43)

In this way since L and W commute among each other, we also get [J ,J ] = i~J .
In this example the center of mass and center of charge are the same point, L = r × P is

the orbital angular momentum associated to the center of mass motion and W ≡ S is the spin
operator with respect to the CM. The spin operator commutes with H, P and K and the wave
function can be separated as Φ(t, r,ρ) =

∑
i ψi(t, r)χi(ρ) leading to the equations

(H − P 2/2m)ψi(t, r) = Eψi(t, r), (3.44)

S2χi(ρ) = s(s+ 1)~2χi(ρ), (3.45)

S3χi(ρ) = ms~χi(ρ). (3.46)
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Bopp and Haag 5 succeeded in �nding s = 1/2 solutions for the system of equations (3.45)
and (3.46). They are called Wigner's functions 6. Solutions of (3.45) for arbitrary spin s are
but a linear combination of the matrix elements of a (2s + 1) × (2s + 1) irreducible matrix
representation of the rotation group as can be derived from the Peter-Weyl theorem on �nite
representations of compact groups 7,8,9. We shall deal with the s = 1/2 functions in the
Appendix Section 3.3, where explicit expressions and a short introduction to the Peter-Weyl
theorem, will be given.

To describe fermions, the classical particles must necessarily have compact orientation vari-
ables as kinematical variables, otherwise no spin 1/2 values can be obtained when the classical
spin is related only to the zitterbewegung.

3.3 Appendix: Spinors

In this section of mathematical content we shall review the main properties of spinors, in
particular those connected with the possible representation of the wave function to describe spin
1/2 particles. We shall describe the representations in terms of eigenfunctions of the di�erent
commuting spin operators. But it must be remarked that in addition to the spin operators
in the laboratory frame we also have spin operators in the body frame, because our general
spinning particle has orientation, and therefore, a local Cartesian frame linked to its motion.
This produces the result that for a spin 1/2 particle the wave function necessarily is a four-
component object.

All calculations in this Appendix can be obtained in the Mathematica10 notebook �le by
the author http://tp.lc.ehu.es/documents/SpinorsNotesBilbao.nb.

The general wave function is a function of the ten kinematical variables, Φ(t, r,u,ρ), and
the spin with respect to the center of charge is related to the kinematical variables u and ρ, as

S = u×U +W = Z +W , (3.47)

where Z and W are given by

Z = u× ~
i
∇u, W =

~
2i

{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} , (3.48)

in the tan(α/2) representation of the rotation group, as has been deduced in previous sections.
∇u and ∇ρ are respectively the gradient operators with respect to u and ρ variables. These
operators always commute with the H = i~∂/∂t and P = −i~∇ operators, and therefore
they are translation invariant. This feature allows the separation of the general wave function
in terms of space-time variables and velocity-orientation variables to describe the translation
invariant properties of the system.

The above spin operators satisfy the commutation relations

[Z,Z] = i~Z, [W ,W ] = i~W , [Z,W ] = 0, (3.49)

and thus
[S,S] = i~S.

5 F. Bopp and R. Haag, Z. Naturforschg. 5a, 644 (1950).
6 L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics. Theory and Application,

Cambridge U. P., Cambridge, England (1989).
7 A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton U. P., Princeton NJ (1957).
8 N. Ja. Vilenkin, Fonctions spéciales et Théorie de la représentation des groups, Dunod, Paris (1969).
9 A.O. Barut and R. Raczka, Theory of group representations and applications, PWN, Warszawa (1980).

10Mathematica is the registered computer program edited by Wolfram
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3.3.1 Unit vectors

Because we are describing the orientation of the particle by attaching to it a system of three
unit vectors ei, whose orientation in space is described by variables ρ or α, then, if at initial
instant τ = 0 we choose the body axes coincident with the laboratory axes, the components of
the unit vectors ei at any time are

(ei)j = Rji(α) = δji cosα+ njni(1− cosα)− ϵjiknk sinα, (3.50)

in the normal parameterization and also in the ρ parameterization by

(ei)j = Rji(ρ) =
1

1 + ρ2
((1− ρ2)δji + 2ρjρi − 2ϵjikρk), (3.51)

where the Cartesian components of the rotation axis unit vector n are:

n1 = sin θ cosϕ, n2 = sin θ sinϕ, n3 = cos θ, (3.52)

where θ is the polar angle and ϕ the usual azimuth angle. Explicitly:

e11 = cosα+ sin2 θ cos2 ϕ(1− cosα),

e12 = cos θ sinα+ sin2 θ sinϕ cosϕ(1− cosα),

e13 = − sin θ sinϕ sinα+ sin θ cos θ cosϕ(1− cosα),

e21 = − cos θ sinα+ sin2 θ sinϕ cosϕ(1− cosα),

e22 = cosα+ sin2 θ sin2 ϕ(1− cosα),

e23 = sin θ cosϕ sinα+ sin θ cos θ sinϕ(1− cosα),

e31 = sin θ sinϕ sinα+ sin θ cos θ cosϕ(1− cosα),

e32 = − sin θ cosϕ sinα+ sin θ cos θ sinϕ(1− cosα),

e33 = cosα+ cos2 θ(1− cosα),

in the α = αn, or normal parametrization of the rotation group. In the ρ = tan(α/2)n
parametrization the body frame is

e11 = (1 + ρ21 − ρ22 − ρ23)/(1 + ρ2),

e12 = (2ρ1ρ2 + 2ρ3)/(1 + ρ2),

e13 = (2ρ1ρ3 − 2ρ2)/(1 + ρ2),

e21 = (2ρ2ρ1 − 2ρ3)/(1 + ρ2),

e22 = (1− ρ21 + ρ22 − ρ23)/(1 + ρ2),

e23 = (2ρ2ρ3 + 2ρ1)/(1 + ρ2),

e31 = (2ρ1ρ3 + 2ρ2)/(1 + ρ2),

e32 = (2ρ3ρ2 − 2ρ1)/(1 + ρ2),

e33 = (1− ρ21 − ρ22 + ρ23)/(1 + ρ2),

where ρ2 ≡ ρ21 + ρ22 + ρ23 = tan2(α/2).
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3.3.2 Spin projection on the unit vectors

In addition to the di�erent components of the spin operators Si, Zi andWi in the laboratory
frame, we also have another set of spin operators. They are the spin projections on the body
axes ei, i.e., the operators Ri = ei ·S, Mi = ei ·Z and Ti = ei ·W , respectively. In particular,
spin operators Ti, collecting terms from (3.51) and (3.48), take the expression

Ti =
k=3∑
k=1

(ei)kWk =
~

2i(1 + ρ2)

k=3∑
k=1

(
(1− ρ2)δik + 2ρiρk − 2ϵkijρj

)
×
(

∂

∂ρk
+ ϵklrρl

∂

∂ρr
+ ρk(ρ · ∇ρ)

)
,

and after some tedious manipulations we reach the �nal result, written in vector notation as

T =
~
2i

{∇ρ − ρ×∇ρ + ρ(ρ · ∇ρ)} . (3.53)

We see, by inspection, that this result can also be obtained from the expression of W in (3.48),
just by replacing ρ by −ρ, followed by a global change of sign. This is because we describe the
orientation of the particle by vector ρ in the laboratory frame from the active viewpoint, i.e.,
with the laboratory reference frame �xed. However, its orientation with respect to the body
frame is described by the motion of the laboratory frame, whose orientation for the body is
−ρ, and the global change of sign comes from the change from the active point of view to the
passive one. This is the di�erence in the spin description in one frame or another.

It satis�es the following commutation relations

[T ,T ] = −i~T , [T ,W ] = 0.

and in general all spin projections on the body frame Ri, Mi and Ti, commute with all the spin
projections on the laboratory frame Si, Zi and Wi. This is in agreement with the quantum
mechanical uncertainty principle, because spin components with respect to di�erent frames are
compatible observables.

3.3.3 Spinor wave functions

To �nd eigenstates of the spin operator we have to solve equations of the form:

S2χ(u,ρ) = s(s+ 1)~2χ(u,ρ), S3χ(u,ρ) = m~χ(u,ρ).

But we also have the orientation of the particle, and therefore the spin projections on the
body axes. These projections commute with S2 and S3, and it is possible to choose another
commuting spin operator, like the T3 operator, and therefore our wave function can be taken
also as an eigenvector of T3,

T3χ(u,ρ) = n~χ(u,ρ),

so that the complete commuting set of operators that describe the spin structure must also
include spin projections on the body axes.

The spin squared operator is

S2 = Z2 +W 2 + 2Z ·W , (3.54)

and we see from (3.49) is expressed as the sum of three commuting terms and its eigenvectors
can be obtained as the simultaneous eigenvectors of the three commuting operators on the
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right-hand side of (3.54). Operators Z and W produce derivatives of the wave function with
respect to u and ρ variables, separately. Thus, each χ(u,ρ) can again be separated as

χ(u,ρ) =
∑
j

Uj(u)Vj(ρ), (3.55)

where the sum runs over a �nite range, and where Uj(u) will be eigenfunctions of Z2 and Vj(ρ)
of W 2, respectively.

Functions Uj(u) are multiples of spherical harmonics de�ned on the orientation of the ve-
locity vector u, because the Z operator has the structure of an orbital angular momentum in
terms of the u variables, and thus its eigenvalues are integer numbers. The global factor left
out is an arbitrary function depending on the absolute value of the velocity u.

In fact, if the velocity is expressed in polar spherical coordinates, u ≡ (u, β, λ), where β is
the polar angle and λ the azimuthal angle

ux = u sinβ cosλ, uy = u sinβ sinλ, uz = u cosβ,

the components of the angular momentum Zi are:

Z1 = i~
(
sinλ

∂

∂β
+

cosβ

sinβ
cosλ

∂

∂λ

)
, Z2 = −i~

(
cosλ

∂

∂β
− cosβ

sinβ
sinλ

∂

∂λ

)
, Z3 = −i~ ∂

∂λ
,

Z± = Z1 ± iZ2 = ~e±iλ

{
± ∂

∂β
+ i

cosβ

sinβ

∂

∂λ

}
. (3.56)

We see that they are independent of the variable u, because the rotation group is not acting on
the whole R3 space but only on the surface of the unit sphere, parameterized by β and λ.

The operator Z2 commutes with th three Zi, and takes the form

Z2 = −~2
[
∂2

∂β2
+

cosβ

sinβ

∂

∂β
+

1

sin2 β

∂2

∂λ2

]
. (3.57)

We have to search for eigenfucntions of Z2 and Z3 in separate variables in the form f(u)G(β, λ),
with f(u) arbitrary and as far as the angular part is concerned

Z2 Y m
l (β, λ) = l(l + 1)~2Y m

l (β, λ), Z3 Y
m
l (β, λ) = m~Y m

l (β, λ).

Only solutions for integer eigenvalues of l andm = −l,−l+1, . . . , l, can be found for this system
of di�erential equations.

The functions |l,m >≡ Y m
l (β, λ), de�nided on the unit sphere, are called spherical har-

monics. The normalized measure on the unit sphere is∫ π

0
dβ

∫ 2π

0

1

4π
sinβdλ = 1 (3.58)

The spherical harmonics are orthogonal with respect to the hermitian scalar product de�ned by

< l,m|s, n >= 1

4π

∫ 2π

0
dλ

∫ π

0
sinβdβ Y m∗

l (β, λ)Y n
s (β, λ) = δmnδls,

i.e., with respect to the normalized invariant measure on the unit sphere (1/4π) sinβdβdλ.
The solution of this system is to �nd functions Y l

l (β, λ) of the separate variables Y l
l (β, λ) =

Al(β)Bl(λ), which satisfy

Z+Al(β)Bl(λ) = 0, Z3Al(β)Bl(λ) = l~Al(β)Bl(λ),
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i.e.,
A′

l − l(cosβ/ sinβ)Al = 0, −iB′
l = lBl.

They have to be proportional to the functions Al(β) ≃ sinl β and Bl(λ) ≃ exp(ilλ). Because
on the unit sphere the point (β, λ) is the same than the point (β, λ + 2π), it implies that
exp(ilλ) = exp(il(λ+ 2π)), and therefore necessarily l must be an integer number.

These functions, normalized with respect to the measure (3.58) can be written as

Y l
l (β, λ) = (−1)l

√
(2l + 1)(2l)!

22l(l!)2
sinl β eilλ, (3.59)

and the remaining eigenvectors are obtained by the action on them of the operator Z−. There
are no half integer eigenvectors, because the surface of the unit sphere is not the most general
homogeneous spsce of the rotation group. We can see that Y m∗

l = (−1)mY −m
l , and the �rst

normalized spherical harmonics are:
|0, 0 >= 1,

|1, 1 >= −
√

3

2
sinβ eiλ, |1, 0 >=

√
3 cosβ, |1,−1 >=

√
3

2
sinβ e−iλ, (3.60)

|2, 2 >=
√

15

8
sin2 β e2iλ, |2, 1 >= −

√
15

2
sinβ cosβ eiλ, |2, 0 >=

√
5

4
(3 cos2 β − 1).

It turns out that to �nd the most general spinor is necessary to seek also solutions of the Vj(ρ)
part, depending on the orientation variables. This goal will be achieved in the next section,
where we consider the action of the rotation group on itself as a transformation group.

3.3.4 Spinor representation on SU(2)

We shall describe now in detail the orientation part of the general wave function, Vi(ρ).
If there is no contribution to spin from the zitterbewegung part Z, the spin operator (3.47)
reduces to the W operator given in (3.48). To solve the corresponding eigenvalue equations we
shall �rst represent the spin operators in spherical coordinates.

If we represent vector ρ = tan(α/2)n = rn in spherical coordinates (r, θ, ϕ), with r = |ρ| =
tan(α/2) and θ and ϕ the usual polar and azimuth angles, respectively, then unit vector n has
the Cartesian components given in (3.52). If from now on we take ~ = 1, the spin operators
(3.48) are represented by the di�erential operators

W1 =
1

2i

[
(1 + r2) sin θ cosϕ

∂

∂r
+

(
1

r
cos θ cosϕ− sinϕ

)
∂

∂θ
−
(

sinϕ

r sin θ
+

cos θ cosϕ

sin θ

)
∂

∂ϕ

]
,

W2 =
1

2i

[
(1 + r2) sin θ sinϕ

∂

∂r
+

(
1

r
cos θ sinϕ+ cosϕ

)
∂

∂θ
−
(
cos θ sinϕ

sin θ
− cosϕ

r sin θ

)
∂

∂ϕ

]
,

W3 =
1

2i

[
(1 + r2) cos θ

∂

∂r
− sin θ

r

∂

∂θ
+

∂

∂ϕ

]
.

The Casimir operator of the rotation group W 2 is:

W 2 = −1 + r2

4

[
(1 + r2)

∂2

∂r2
+

2(1 + r2)

r

∂

∂r
+

1

r2

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

}]
.

The up and down spin operators de�ned as usual by W± =W1 ± iW2 are

W+ =
eiϕ

2i

[
(1 + r2) sin θ

∂

∂r
+

(
cos θ + ir

r

)
∂

∂θ
−
(
r cos θ − i

r sin θ

)
∂

∂ϕ

]
,
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W− =
e−iϕ

2i

[
(1 + r2) sin θ

∂

∂r
+

(
cos θ − ir

r

)
∂

∂θ
−
(
r cos θ + i

r sin θ

)
∂

∂ϕ

]
.

They satisfy the commutation relations

[W3,W+] =W+, [W3,W−] = −W−, [W+,W−] = 2W3.

We can check that (Wi)
∗ = −Wi and W+ = −(W−)

∗, where ∗ means to take the complex
conjugate of the corresponding operator.

If Fm
s (r, θ, ϕ) is an eigenfunction of W 2 and W3, it satis�es the di�erential equations:

W 2Fm
s (r, θ, ϕ) = s(s+ 1)Fm

s (r, θ, ϕ), W3F
m
s (r, θ, ϕ) = mFm

s (r, θ, ϕ).

To �nd solutions of the above system we know that we can proceed in the following way. Let
us compute �rst the eigenfunctions of the form F s

s . Then operator W+ annihilates this state
W+F

s
s = 0 and by acting on this function with operator W− we can obtain the remaining

eigenstates Fm
s of the same irreducible representation characterized by parameter s and for

−s ≤ m ≤ s. Then our task will be to obtain �rst the F s
s functions.

Now, let us consider eigenfunctions F s
s that can be written in separate variables as F

s
s (r, θ, ϕ) =

A(r)B(θ)C(ϕ). Then
W3A(r)B(θ)C(ϕ) = sA(r)B(θ)C(ϕ)

gives rise to

(1 + r2) cos θA′BC − sin θ

r
AB′C +ABC ′ = 2isABC

where A′ is the derivative of A and so on, and by dividing both sides by ABC we have

(1 + r2) cos θ
A′(r)

A(r)
− sin θ

r

B′(θ)

B(θ)
+
C ′(ϕ)

C(ϕ)
= 2is.

Now, the third term on the left-hand side must be a constant, because the remaining terms
are functions independent of ϕ. Therefore, this term is written as C ′(ϕ)/C(ϕ) = ik and thus
C(ϕ) = eikϕ up to an arbitrary constant factor. Since C(ϕ + 2π) = C(ϕ) this implies that the
constant k must be an integer. The other two functions satisfy

r(1 + r2) cos θA′B − sin θAB′ + ir(k − 2s)AB = 0. (3.61)

If there exist solutions with real functions A and B, then necessarily k = 2s so that the
eigenvalue s can be any integer or half integer, and equation (3.61) can be separated in the
form:

r(1 + r2)
A′(r)

A(r)
=

sin θ

cos θ

B′(θ)

B(θ)
= p = constant, (3.62)

where, up to constant factors, the general solution is

A(r) =

(
r2

1 + r2

)p/2

, B(θ) = (sin θ)p.

By acting on this solution F s
s ≡ A(r)B(θ)C(ϕ), with W+, since W+F

s
s = 0, it gives:

r(1 + r2) sin2 θA′B + (sin θ cos θ + ir sin θ)AB′ − 2s(ir cos θ + 1)AB = 0.

By dividing all terms by AB, taking into account (3.62), we get the condition (p − 2s)(1 +
ir cos θ) = 0. Then there exist real solutions in separate variables whenever p = 2s = k. They
are given, up to a constant factor, by

F s
s (r, θ, ϕ) =

(
r2

1 + r2

)s

(sin θ)2sei2sϕ. (3.63)
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For s = 1/2 and after the action of W− we obtain the two orthogonal spinors

Ψ
1/2
1/2 =

r√
1 + r2

sin θ eiϕ, W−Ψ
1/2
1/2 = Ψ

−1/2
1/2 =

r cos θ + i√
1 + r2

,

that produce a two-dimensional representation of the rotation group. We can similarly check
that W−Ψ

−1/2
1/2 = 0.

By inspection of the structure of W± operators, if we take the complex conjugate of expres-
sion W+F

s
s = 0 we get −W−(F

s
s )

∗ = 0 and therefore (F s
s )

∗ ∼ G−s
s so that taking the complex

conjugate spinors of the above representation we obtain another pair of orthogonal s = 1/2
spinors,

Ψ̃
1/2
1/2 =

r cos θ − i√
1 + r2

, Ψ̃
−1/2
1/2 =

r√
1 + r2

sin θ e−iϕ.

The remaining representations for higher spins can thus be obtained by the same method,
or by taking tensor products of the above two-dimensional representations. For instance, for
s = 1 we can obtain the following three orthogonal representations. From (3.63) with s = 1
and acting with the W− operator we get

Ψ1
1 = (Ψ

1/2
1/2)

2 =
r2

1 + r2
sin2 θ ei2ϕ,

Ψ0
1 = (Ψ

1/2
1/2)(Ψ

−1/2
1/2 ) =

r

1 + r2
sin θ (i+ r cos θ) eiϕ,

Ψ−1
1 = (Ψ

−1/2
1/2 )2 =

(i+ r cos θ)2

1 + r2
,

that can also be obtained as the tensor product Ψ⊗Ψ.
If we work in the normal or canonical representation of the rotation group, where the

parameters are α = αn, this amounts to replacing the variable r = tan(α/2) in terms of
parameter α and expressing the di�erential operator ∂/∂r in terms of ∂/∂α, and then the spin
operators are given by

W1 =
1

2i

[
2 sin θ cosϕ

∂

∂α
+

(
cos θ cosϕ

tan(α/2)
− sinϕ

)
∂

∂θ
−
(

sinϕ

tan(α/2) sin θ
+

cos θ cosϕ

sin θ

)
∂

∂ϕ

]
,

W2 =
1

2i

[
2 sin θ sinϕ

∂

∂α
+

(
cos θ sinϕ

tan(α/2)
+ cosϕ

)
∂

∂θ
−
(
cos θ sinϕ

sin θ
− cosϕ

tan(α/2) sin θ

)
∂

∂ϕ

]
,

W3 =
1

2i

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
+

∂

∂ϕ

]
,

W 2 = −
[
∂2

∂α2
+

1

tan(α/2)

∂

∂α
+

1

4 sin2(α/2)

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

}]
,

W+ =
eiϕ

2i

[
2 sin θ

∂

∂α
+

(
cos θ

tan(α/2)
+ i

)
∂

∂θ
−
(
cos θ tan(α/2)− i

tan(α/2) sin θ

)
∂

∂ϕ

]
,

W− =
e−iϕ

2i

[
2 sin θ

∂

∂α
+

(
cos θ

tan(α/2)
− i

)
∂

∂θ
−
(
cos θ tan(α/2) + i

tan(α/2) sin θ

)
∂

∂ϕ

]
and the orthogonal spinors of the two two-dimensional representations can be written as

Ψ
1/2
1/2 = i sin

α

2
sin θ eiϕ, Ψ

−1/2
1/2 = cos

α

2
− i sin

α

2
cos θ (3.64)

and
Ψ̃

1/2
1/2 = cos

α

2
+ i sin

α

2
cos θ, Ψ̃

−1/2
1/2 = −i sin α

2
sin θ e−iϕ. (3.65)
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We have mentioned that the di�erent spinors are orthogonal. To endow the group manifold
with a Hilbert space structure it is necessary to de�ne a hermitian, de�nite positive, scalar
product. The Jacobian matrix of variables ρ′ in terms of variables ρ given in (3.39), has the
determinant

det

(
∂ρ′i

∂ρj

)
=

(1 + µ2)2

(1− µ · ρ)4
,

and thus the transformation of the volume element

d3ρ′ =
(1 + µ2)2

(1− µ · ρ)4
d3ρ.

We also get from (3.39) that

1 + ρ′
2
=

(1 + µ2)

(1− µ · ρ)2
(1 + ρ2)

and then the measure

d3ρ′

(1 + ρ′2)2
=

(
(1− µ · ρ)2

(1 + µ2)(1 + ρ2)

)2
(1 + µ2)2

(1− µ · ρ)4
d3ρ =

d3ρ

(1 + ρ2)2

is in fact an invariant measure.
In spherical coordinates it is written as

r2 sin θ

(1 + r2)2
drdθdϕ

and in the normal representation is

sin2(α/2) sin θdαdθdϕ.

Since the rotation group is a double-connected group, the above measure must be de�ned
on a simply connected manifold, i.e., on the universal covering group of SO(3), which is SU(2).
The SU(2) group manifold in the normal representation is given by the three-dimensional sphere
of radius 2π and where points on the surface of this sphere represent a unique SU(2) element,
namely the 2× 2 unitary matrix −I. The normalized invariant measure becomes

dµN (α, θ, ϕ) ≡ 1

4π2
sin2(α/2) sin θ dα dθ dϕ. (3.66)

Therefore, the hermitian scalar product will be de�ned as

< f |g >= 1

4π2

∫ 2π

0
dα

∫ π

0
dθ

∫ 2π

0
dϕ f∗(α, θ, ϕ)g(α, θ, ϕ) sin2(α/2) sin θ, (3.67)

where f∗ is the complex conjugate function of f .
All the previous computed spinors are orthogonal vectors with respect to the group invariant

measure (3.66). In particular, the normalized s = 1/2 spinors are those given in (3.64)-(3.65),
multiplied by

√
2.

The spin projection operators on the body axis ei linked to the particle, are given in (3.53)
in the ρ parametrization, and we have seen that they di�er from the spin operators W only
in the change of ρ → −ρ, and a global change of sign. In the normal parametrization this
corresponds to the change α→ −α, followed by a global change of sign.

It can be checked as mentioned before, that

[Ti, Tk] = −iϵikl Tl, (3.68)
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[Wi, Tk] = 0. (3.69)

Since W 2 = T 2 we can �nd simultaneous eigenvectors of the operators W 2, W3 and T3,
which will be denoted by D(s)

mn(α) in such a way that

W 2D(s)
mn(α) = s(s+ 1)D(s)

mn(α),

W3D
(s)
mn(α) = mD(s)

mn(α),

T3D
(s)
mn(α) = nD(s)

mn(α).

SinceW3(α)D
(s)
mn(α) = mD

(s)
mn(α), by producing the change α→ −α we getW3(−α)D(s)

mn(−α) =
mD

(s)
mn(−α) and the subsequent global change of sign it reduces to

−W3(−α)D(s)
mn(−α) = T3(α)D

(s)
mn(−α) = −mD(s)

mn(−α),

so that the above spinors (3.64)-(3.65) are also eigenvectors of T3.
With this notation, the four normalized spinors, denoted by the corresponding eigenvalues

|s,m, n >, are

Φ1 = |1/2, 1/2, 1/2 > =
√
2(cos(α/2) + i cos θ sin(α/2)), (3.70)

Φ2 = |1/2,−1/2, 1/2 > = i
√
2 sin(α/2) sin θe−iϕ, (3.71)

Φ3 = |1/2, 1/2,−1/2 > = i
√
2 sin(α/2) sin θeiϕ. (3.72)

Φ4 = |1/2,−1/2,−1/2 > =
√
2(cos(α/2)− i cos θ sin(α/2)), (3.73)

They form an orthonormal set with respect to the normalized invariant measure (3.66) and with
the scalar product de�ned in (3.67). We can check that the lowering operators W−Φ1 = Φ2,
W−Φ2 = 0, W−Φ3 = Φ4, W−Φ4 = 0, and simmilarly T−Φ1 = 0, T−Φ3 = Φ1, T−Φ2 = 0, and
T−Φ4 = Φ2, and the corresponding up relations when acting with the rising operators W+ and
T+, respectively. Remark that because the opposite sign in the commutation relations of the Ti
operators, here the T± operate in the reverse direction.

The important feature is that if the system has spin 1/2, although the s = 1/2 irreducible
representations of the rotation group are two-dimensional, to describe the spin part of the
wave function we need a function de�ned in the above four-dimensional complex Hilbert space,
because to describe orientation we attach some local frame to the particle, and therefore in
addition to the spin values in the laboratory frame we also have as additional observables the
spin projections on the body axes, which can be included within the set of commuting operators.

3.3.5 Matrix representation of internal observables

The matrix representation of any observable A that acts on the orientation variables or in
this internal four-dimensional space spanned by these spin 1/2 wave functions Φi, is obtained
as Aij =< Φi|AΦj >, i, j = 1, 2, 3, 4. Once these four normalized basis vectors are �xed, when
acting on the subspace they span, the di�erential operators Wi and Ti have the 4 × 4 block
matrix representation

S ≡ W =
~
2

(
σ 0
0 σ

)
, (3.74)

T1 =
~
2

(
0 I
I 0

)
, T2 =

~
2

(
0 iI

−iI 0

)
, T3 =

~
2

(
I 0
0 −I

)
, (3.75)

where σ are the three Pauli matrices and I represents the 2× 2 unit matrix. We have included
Planck's constant into the angular momentum operators.
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If we similarly compute the matrix elements of the nine components of the unit vectors
(ei)j , i, j = 1, 2, 3 we obtain the nine traceless hermitian matrices

e1 =
1

3

(
0 σ
σ 0

)
, e2 =

1

3

(
0 iσ

−iσ 0

)
, e3 =

1

3

(
σ 0
0 −σ

)
. (3.76)

We can check that the Ti = S · ei = ei · S. We see that the di�erent components of the unit
vectors ei, in general do not commute. The eigenvalues of every component eij , in this matrix
representation of de�nite spin, are ±1/3. However, the matrix representation of the square of
any component is (eij)2 = I/3, so that the magnitude squared of each vector e2i =

∑
j(eij)

2 = I
when acting on these wave functions. The eigenvalues of the squared operator (eij)

2 are not
the squared eigenvalues of eij . This is because the function eijΦk does not belong in general
to the same space spanned by the Φk, k = 1, . . . , 4 although this space is invariant space for
operators Wi and Tj . In fact, each function eijΦk is a linear combination of a spin 1/2 and a
spin 3/2 wave function.

We do not understand why any component of a classical unit vector eij of a Cartessian
frame, can have as eigenvalues ±1/3 in the quantum case and its square (ejj)

2 = I/3 instead
of I/9.

3.3.6 Peter-Weyl theorem for compact groups

The above spinors can also be obtained by making use of an important theorem for rep-
resentations of compact groups, known as the Peter-Weyl theorem, 11 which is stated without
proof that can be read in any of the mentioned references.

Theorem.- LetD(s)(g) be a complete system of non-equivalent, unitary, irreducible
representations of a compact group G, labeled by the parameter s. Let ds be the
dimension of each representation andD(s)

ij (g), 1 ≤ i, j ≤ ds the corresponding matrix
elements. Then, the functions√

dsD
(s)
ij (g), 1 ≤ i, j ≤ ds

form a complete orthonormal system on G, with respect to some normalized invari-
ant measure µN (g) de�ned on this group, i.e.,∫

G

√
dsD

(s)∗
ij (g)

√
drD

(r)
kl (g) dµN (g) = δsrδikδjl. (3.77)

That the set is complete means that every square integrable function de�ned on G, f(g), admits
a series expansion, convergent in norm, in terms of the above orthogonal functions D(s)

ij (g), in
the form

f(g) =
∑
s,i,j

a
(s)
ij

√
dsD

(s)
ij (g),

where the coe�cients, in general complex numbers a(s)ij , are obtained by

a
(s)
ij =

∫
G

√
dsD

(s)∗
ij (g) f(g)dµN (g).

11 N. Ja. Vilenkin, Fonctions spéciales et Théorie de la représentation des groupes, Dunod, Paris (1969), p.
39.
A.O. Barut and R. Raczka, Theory of group representations and applications, PWN-Polish Scienti�c Publishers,
Warszawa (1980), p. 174.
F. Peter and H. Weyl, Math. Ann. 7, 735 (1927).
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In our case SU(2), as a group manifold, is the simply connected three-dimensional sphere of
radius 2π, with the normalized measure as seen before (3.66),

dµN (α, θ, ϕ) =
1

4π2
sin θ sin(α/2)2 dαdθdϕ.

In the normal parametrization, the two-dimensional representation of SU(2) corresponds to
the eigenvalue s = 1/2 of S2 and the matrix representation is given by

D(1/2)(α) = cos(α/2)I− i sin(α/2)(u · σ),

i.e.,

D(1/2)(α) =

(
cos(α/2)− i cos θ sin(α/2) −i sin θ sin(α/2) e−iϕ

−i sin θ sin(α/2) eiϕ cos(α/2) + i cos θ sin(α/2)

)
.

If we compare these four matrix components with the four orthogonal spinors given in
(3.70)-(3.73) we see that

D(1/2)(α) =
1√
2

(
Φ4 −Φ2

−Φ3 Φ1

)
(3.78)

In the three-dimensional representation of SO(3), considered as a representation of SU(2)

D
(1)
ij (α) = δij cosα+ uiuj(1− cosα) + ϵikjuk sinα ≡ ej i

we get another set of nine orthogonal functions. Multiplied by
√
3 they form another orthonor-

mal set orthogonal to the previous four spinors. It is a good exercise to check this orthogonality
among these functions.

3.3.7 General spinors

In the case that the zitterbewegung content of the spin is not vanishing we can also obtain
spin 1/2 wave-functions as the irreducible representations contained in the tensor product of
integer and half-integer spin states coming from the U(u) and V (ρ) part of the general wave
function (3.55).

The total spin operator of the system is of the form

S = u×U +W = Z +W ,

where Z = −i~∇u and W is given in (3.48). Spin projections on the body axes, i.e., operators
Ti = ei ·W , are described in (3.53). They satisfy the commutation relations

[Z,Z] = iZ, [W ,W ] = iW , [T ,T ] = iT ,

[Z,W ] = 0, [Z,T ] = 0, [W ,T ] = 0.

These commutation relations are invariant under the change ρ by −ρ in the de�nition of the
operators W and T , because they are changed into each other. The expression of the body
frame unit vectors ei is given in (3.50) and (3.51).

We can see that these unit vector components and spin operators Wi and Tj satisfy the
following properties:

1) eij(−α, θ, ϕ) = −ej i(α, θ, ϕ).
2) ei ·W ≡

∑
j eijWj = Ti.

3)
∑

j ejTj = W .
4) For all i, j, the action Wiej i = 0, with no addition on index i.
5) For all i, j, the action Tieij = 0, with no addition on index i.



3.3. APPENDIX: SPINORS 141

6) For all i, j, k, with i ̸= j, we have that Wiekj +Wjeki = 0, and in the case that i = j, it
leads to property 4.

7) For all i, j, k, with i ̸= j, we have that Tiejk + Tjeik = 0, and similarly as before in the
case i = j it leads to property 4.

This implies that ei · W = W · ei = Ti, because of property 4, since when acting on an
arbitray function f ,

(W · ei)f ≡
∑
j

Wj(eijf) = f
∑
j

Wj(eij) +
∑
j

eijWj(f) = Ti(f),

because
∑

j Wjeij = 0.
In the same way

∑
j ejTj ≡

∑
j Tjej = W .

Now we �x the value of spin. Particles of di�erent values of spin can be described. Let us
consider systems that take the lowest admissible spin values. For spin 1/2 particles, if we take
�rst for simplicity eigenfunctions V (ρ) of W 2 with eigenvalue 1/2, and then since the total spin
has to be 1/2, the orbital Z part can only contribute with spherical harmonics of value z = 0
and z = 1.

If there is no zitterbewegung spin, z = 0, and Wigner's functions can be taken as simulta-
neous eigenfunctions of the three commuting W 2, W3, and T3 operators, and the normalized
eigenvectors |w,w3, t3 > are explicitly given by the functions (3.70-3.73).

If we have a zitterbewegung spin of value z = 1, then the U(u) part contributes with the
spherical harmonics described in (3.60)

Y 1
1 (β, λ) ≡ |1, 1 >= − sin(β)eiλ

√
3

8π
, (3.79)

Y 0
1 (β, λ) ≡ |1, 0 >= cos(β)

√
3

4π
, (3.80)

Y −1
1 (β, λ) ≡ |1,−1 >= sin(β)e−iλ

√
3

8π
, (3.81)

normalized with respect to the measure∫ π

0

∫ 2π

0
sin(β)dβdλ,

which are the indicated eigenfunctions |z, z3 > of Z2 and Z3, and where the variables β and λ
determine the orientation of the velocity u.

The tensor product representation of the rotation group constructed from the two irreducible
representations 1 associated to the spherical harmonics (3.79)-(3.81) and 1/2 given in (3.70)-
(3.73) is split into the direct sum 1⊗ 1/2 = 3/2⊕ 1/2.

The following functions of �ve variables β, λ, α, θ and ϕ, where variables β and λ correspond
to the ones of the spherical harmonics Y m

l , and the remaining α, θ and ϕ, to the previous spinors
Φi, are normalized spin 1/2 functions |s, s3, t3 > that are eigenvectors of total spin S2, and S3
and T3 operators

Ψ1 ≡ |1/2, 1/2, 1/2 > =
1√
3

(
Y 0
1 Φ1 −

√
2Y 1

1 Φ2

)
, (3.82)

Ψ2 ≡ |1/2,−1/2, 1/2 > =
1√
3

(
−Y 0

1 Φ2 +
√
2Y −1

1 Φ1

)
, (3.83)

Ψ3 ≡ |1/2, 1/2,−1/2 > =
1√
3

(
Y 0
1 Φ3 −

√
2Y 1

1 Φ4

)
, (3.84)

Ψ4 ≡ |1/2,−1/2,−1/2 > =
1√
3

(
−Y 0

1 Φ4 +
√
2Y −1

1 Φ3

)
, (3.85)
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such that Ψ2 = S−Ψ1 and similarly Ψ4 = S−Ψ3, and also that Ψ3 = T−Ψ1, and Ψ4 = T−Ψ2.
They are no longer eigenfunctions of the W3 operator, although they span an invariant vector
space for S2, S3 and T3 operators. In the above basis (3.82)-(3.85) formed by orthonormal
vectors Ψi, the matrix representation of the spin is

S = Z +W =
~
2

(
σ 0
0 σ

)
, (3.86)

while the matrix representation of the Z and W part is

Z =
2~
3

(
σ 0
0 σ

)
, W =

−~
6

(
σ 0
0 σ

)
, (3.87)

which do not satisfy commutation relations of angular momentum operators because the vector
space spanned by the above basis is not an invariant space for these operators Z and W .

It must be remarked that Z has the same orientation than the spin S, because it is a positive
multiple of it, while W has the opposite orientation, as suggested by the picture of the front
page of these Notes.

S2 =
3

4
I, S =

√
3

2
I, Z2 =

4

3
I, Z =

2√
3
I, W 2 =

1

12
I, W =

1

2
√
3
I.

The absolute value of S, S is
√
3/2, while that ofZ is just 2/

√
3, only 4/3 of the other, meanwhile

for W its absolute value is 1/2
√
3, just 1/3 of the absolute value of S but in the opposite

direction. Therefore, because Z is opposite to W , the modulus of S is S = Z −W =
√
3/2.

This justi�es, from the quantum point of view, the geometrical representation of those operators
in the front page, with Z in the same direction than S, and W in the opposite direction.

If we pay attention to the spinors Ψi, they are eigenvectors of Z2 with eigenvalue 1(1+1) = 2,
and of W 2 with eigenvalue 1/2(1/2 + 1) = 3/4, but they are not eigenvectors of Z3 and W3.
In fact, the action of these operators on these vectors, take them out of this four-dimensional
Hilbert space. It is not a representation space of an irreducible representation of the algebra
generated by the operators Zi and Wi, but it is a vector space of a closed representation of the
operators Si. It is a direct sum of two irreducible representations of spin s = 1/2.

The spin projection of the W part on the body axis, i.e., the T operator, takes the same
form as before (3.75)

T1 =
~
2

(
0 I
I 0

)
, T2 =

~
2

(
0 iI

−iI 0

)
, T3 =

~
2

(
I 0
0 −I

)
, (3.88)

because Ψ1 and Ψ2 functions are eigenfunctions of T3 with eigenvalue 1/2, while Ψ3 and Ψ4 are
of eigenvalue −1/2, and thus the spinors Ψi span an invariant space for Si and Tj operators.
In fact the basis is formed by simultaneous eigenfunctions of total spin S2, S3 and T3, and the
ket representation is the same as in the case of the Φi given in (3.70)-(3.73).

The expression in this basis of the components of the unit vectors ei are represented by

e1 = −1

9

(
0 σ
σ 0

)
, e2 = −1

9

(
0 iσ

−iσ 0

)
, e3 = −1

9

(
σ 0
0 −σ

)
. (3.89)
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3.4 Summary of Classical and Quantum Mechanics

We shall summarize very general aspects of classical and quantum mechanical elementary
particles.

Classical Mechanics

States: Each point x ∈ X of the kinematical space X.

Elementary particle: X is a homogeneous space of the kinematical group G.

Observables: Every function of the kinematical variables and their time deriva-
tives.

Transformation of the state: x′ = gx ≡ f(x, g), g ∈ G.

Elementary particle: L̃0 = T ṫ+R · ṙ +U · u̇+W · ω.

Transformation of the Lagrangian: L̃′(x′, ẋ′) = L̃(x, ẋ) + dα(g, x)/dτ

Interaction: L̃I = −eA0(t, r)ṫ+ eA(t, r) · ṙ.

Noether Constants (non-rel.) G ⊗ SO(3)L:

H = −T−u· dU
dt
, P = mu− dU

dt
, K = mr−P t−U , J = r×P+u×U+W ,

Ti = W · ei, i = 1, 2, 3.

Noether Constants (relat.) P ⊗ SO(3)L:

H = −T−u·dU
dt
, P = R−dU

dt
, K = Hr/c2−P t−S×u/c2, J = r×P+u×U+W ,

Ti = W · ei, i = 1, 2, 3.

Invariants (no relat.)

m, H − P 2

2m
= 0, S2

CM =

(
J − 1

m
K × P

)2

, T 2

Invariants (relat.)

pµp
µ = (H/c)2−P 2 = m2c2, wµw

µ = (P · SCM )2−(HSCM/c)
2 = −m2c2S2, T 2.

SCM = J − q × P , HSCM/c = HJ/c2 −K × P , K = Hq/c2 − P t.
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Quantum Mechanics

States: Each normalized vector |ϕ >, ϕ(x) ∈ L2(X) of the Hilbert space L2(X).

Elementary Particle: L2(X) is the representation space of a projective unitary
irreducible representation of the kinematical group G.

Observables: Every selfadjoint operator acting on the Hilbert space.

Transformation of the state:

|ϕ′ >= U(g)|ϕ >, ϕ′(x) = U(g)ϕ(x) = ϕ(g−1x) exp

{
−i
~
α(g−1;x)

}
,

and the unitary operators and their in�nitesimal generators are

U(g) = exp

{
−i
~
gσXσ

}
, Xσ =

~
i
uiσ(x)

∂

∂xi
− λσ(x), λσ(x) =

∂α(g, x)

∂gσ

∣∣∣∣
g=0

.

Generators (non-relat.) G ⊗ SO(3)L:

H = i~
∂

∂t
, P =

~
i
∇, K = mr − P t−U , J = r × P + u×U +W .

U =
~
i
∇u, W =

~
2i

(∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)) , S = u×U +W ,

Ti = W · ei, i = 1, 2, 3. T =
~
2i

(∇ρ − ρ×∇ρ + ρ(ρ · ∇ρ)) ,

Generators (relat.) P ⊗ SO(3)L:

H = i~
∂

∂t
, P =

~
i
∇, K = Hr/c2−P t−S×u/c2, J = r×P +u×U+W .

U =
~
i
∇u, W =

~
2i

(∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)) , S = u×U +W .

Ti = W · ei, i = 1, 2, 3. T =
~
2i

(∇ρ − ρ×∇ρ + ρ(ρ · ∇ρ)) ,

Invariants-Casimir Operators (non-relat.)

m, H − P 2

2m
= 0, S2

CM =

(
J − 1

m
K × P

)2

, T 2 = W 2

Invariants-Casimir Operators (relat.)

pµp
µ = (H/c)2−P 2 = m2c2, wµw

µ = (P · SCM )2−(HSCM/c)
2 = −m2c2s(s+1)~2, T 2 = W 2.

Dirac equation

H − P · u− 1

c2
S ·
(
du

dt
× u

)
= 0.



Chapter 4

Dirac particle

4.1 Quantization of the u = c model

For Luxons we have the nine-dimensional homogeneous space of the Poincaré group, spanned
by the ten variables (t, r,u,α), but now u is restricted to u = c. For this particle, since u·u̇ = 0
and u̇ ̸= 0, we are describing particles with a circular internal orbital motion at the constant
speed c.

In the center of mass frame, (see Fig.4.1) the center of charge describes a circle of radius
R0 = S/mc at the constant speed c, the spin being orthogonal to the charge trajectory plane
and a constant of the motion in this frame. Let us consider the quantization of this u = c model
whose dynamical equation is given by (2.158).

Figure 4.1: Motion of the center of charge of the particle (H > 0), in the C.M. frame.

If we analyse this particle in the centre of mass frame it becomes a system of three degrees
of freedom. These are the x and y coordinates of the point charge on the plane and the phase
α of the rotation of the body axis with angular velocity ω. But this phase is the same as the
phase of the orbital motion, as we shall see later, and because this motion is a circle of constant
radius only one degree of freedom is left, for instance the x coordinate. In the centre of mass
frame the particle is equivalent to a one-dimensional harmonic oscillator of angular frequency
ω = mc2/S in its ground state.

145
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Identi�cation of the ground energy of the one-dimensional harmonic oscillator ~ω/2 with the
rest energy of the system in the center of mass frame +mc2, for H > 0 particles, implies that
the classical constant parameter S = ~/2. All Lagrangian systems de�ned with this kinematical
space, irrespective of the particular Lagrangian we choose, have this behaviour and represent
spin 1/2 particles when quantized.

4.2 Dirac equation

The kinematical variables of this system transform under P according to

t′(τ) = γt(τ) + γ(v ·R(µ)r(τ))/c2 + b, (4.1)

r′(τ) = R(µ)r(τ) + γvt(τ) +
γ2

(1 + γ)c2
(v ·R(µ)r(τ))v + a, (4.2)

u′(τ) =
R(µ)u(τ) + γv + (v ·R(µ)u(τ))vγ2/(1 + γ)c2

γ(1 + v ·R(µ)u(τ)/c2)
, (4.3)

ρ′(τ) =
µ+ ρ(τ) + µ× ρ(τ) + F c(v,µ;u(τ),ρ(τ))

1− µ · ρ(τ) +Gc(v,µ;u(τ),ρ(τ))
, (4.4)

where the functions F c and Gc are given in (2.124) and (2.125), respectively. When quantized,
the wave function of the system is a function Φ(t, r,u,ρ) of these kinematical variables. For the
Poincaré group all exponents and thus all gauge functions on homogeneous spaces are equivalent
to zero, and the Lagrangians for free particles can thus be taken strictly invariant. Projective
representations reduce to true representations so that the ten generators on the Hilbert space,
taking into account (4.1)-(4.4) and (3.15) are given by:

H = i~
∂

∂t
, P =

~
i
∇, K = r

i~
c2

∂

∂t
− t

~
i
∇− 1

c2
S × u, (4.5)

J = r × ~
i
∇+ S, (4.6)

where as we shall see, the angular momentum operator S with respect to the center of charge,
represents Dirac's spin operator and is given by the di�erential operator

S = u× ~
i
∇u +

~
2i

{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} = u×U +W , (4.7)

and where the di�erential operators ∇u and ∇ρ are the corresponding gradient operators with
respect to the u and ρ variables as in the Galilei case. The operator S, satis�es dS/dt = P ×u,
and is not a constant of the motion even for the free particle.

To obtain the complete commuting set of observables we start with the Casimir invariant
operator, or Klein-Gordon operator

H2 − c2P 2 = m2c4. (4.8)

In the above representation, H and P only di�erentiate the wave function with respect to time
t and position r, respectively. Since the spin operator S operates only on the velocity and
orientation variables, it commutes with the Klein-Gordon operator (4.8). Thus, we can �nd
simultaneous eigenfunctions of the three operators (4.8), S2 and S3. This allows us to try
solutions in separate variables so that the wave function can be written as

Φ(t, r,u,ρ) =
∑
i

ψi(t, r)χi(u,ρ), (4.9)
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where ψi(t, r) are the space-time components and the χi(u,ρ) represent the internal spin struc-
ture. Consequently

(H2 − c2P 2 −m2c4)ψi(t, r) = 0, (4.10)

i.e., space-time components satisfy the Klein-Gordon equation, while the internal structure part
satis�es

S2χi(u,ρ) = s(s+ 1)~2χi(u,ρ), (4.11)

S3χi(u,ρ) = ms~χi(u,ρ). (4.12)

Eigenfunctions of the above type have been found in Section 3.3. In particular we are interested
in solutions that give rise to spin 1/2 particles. These solutions, which are also eigenvectors of
the spin projection on the body axis T3, become a four-component wave function.

For spin 1/2 particles, if we take �rst for simplicity eigenfunctions χ(ρ) of S2 with eigenvalue
1/2, then since the total spin has to be 1/2, the orbital zitterbewegung part Z = u × U can
only contribute with spherical harmonics of value z = 0 and z = 1. This means that we can
�nd at least two di�erent kinds of elementary particles of spin 1/2, one characterized by the
singlet z = 0 (lepton?) and another by z = 1 (quark?) in three possible states according to the
component z3. If we call to the spin part Z the colour, we can have colourless and coloured
systems of spin 1/2. The three di�erent colours z3 are unobservable because the Ψi states (3.82-
3.85) are eigenstates of S3 and T3 but not eigenstates of Z3. Nevertheless this interpretation of
this spin part Z as representing the colour, as in the standard model, is still unclear and will
be discussed elsewhere.

For z = 0, the spin 1/2 functions χi(ρ) are linear combinations of the four Φi functions
(3.70)-(3.73) and in the case z = 1 they are linear combinations of the four Ψi of (3.82)-(3.85),
such that the factor function in front of the spherical harmonics is 1 because for this model
u = c is a constant. It turns out that the Hilbert space that describes the internal structure of
this particle is isomorphic to the four-dimensional Hilbert space C4.

If we have two arbitrary directions in space characterized by the unit vectors u and v
respectively, and Su and Sv are the corresponding angular momentum projections Su = u ·S
and Sv = v · S, then S−u = −Su, and [Su, Sv] = i~Su×v . In the case of the opposite sign
commutation relations of operators Ti, we have for instance for the spin projections [T1, T2] =
−i~T3, thus suggesting that e1×e2 = −e3, and any cyclic permutation 1 → 2 → 3, and thus ei
vectors linked to the body, not only have as eigenvalues ±1/3, but also behave in the quantum
case as a left-handed system. In this case ei vectors are not arbitrary vectors in space, but
rather vectors linked to the rotating body and thus they are not compatible observables, so
that any measurement to determine, say the components of ei, will produce some interaction
with the body that will mask the measurement of the others. We shall use this interpretation
of a left-handed system for particles later, when we analyse the chirality in section 4.2.6. For
antiparticles it will behave as a right handed one.

Operators Si and Ti have the matrix representation obtained before in the two possible basic
states, either (3.70)-(3.73) or in (3.82)-(3.85), which is just

S ≡ W =
~
2

(
σ 0
0 σ

)
, (4.13)

T1 =
~
2

(
0 I
I 0

)
, T2 =

~
2

(
0 iI

−iI 0

)
, T3 =

~
2

(
I 0
0 −I

)
, (4.14)

where we represent by σ the three Pauli matrices and I is the 2× 2 unit matrix.
Similarly, the matrix elements of the nine components of the unit vectors (ei)j , i, j = 1, 2, 3

give rise to the two alternative sets of representations depending on whether the zitterbewegung
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contribution is z = 0 or z = 1. In the �rst case we get

e1 =
1

3

(
0 σ
σ 0

)
, e2 =

1

3

(
0 iσ

−iσ 0

)
, e3 =

1

3

(
σ 0
0 −σ

)
, (4.15)

while in the z = 1 case the representation is

e1 = −1

9

(
0 σ
σ 0

)
, e2 = −1

9

(
0 iσ

−iσ 0

)
, e3 = −1

9

(
σ 0
0 −σ

)
. (4.16)

It must be remarked that the di�erent components of the observables ei are not compatible in
general, because they are represented by non-commuting operators.

We �nally write the wave function for spin 1/2 particles in the following form for z = 0

Φ(0)(t, r,u,α) =

i=4∑
i=1

ψi(t, r)Φi(α, θ, ϕ), (4.17)

independent of the u variables, and in the case z = 1 by

Φ(1)(t, r,u,α) =

i=4∑
i=1

ψi(t, r)Ψi(β, λ;α, θ, ϕ). (4.18)

where β and λ represent the direction of vector u. Then, once the Φi or Ψj functions that de-
scribe the internal structure (given in the appendix in (4.83-4.86) or ((4.87-4.90)), respectively)
are identi�ed with the four orthogonal unit vectors of the internal Hilbert space C4, the wave
function becomes a four-component space-time wave function, and the six spin components Si
and Tj and the nine vector components (ei)j , together the 4 × 4 unit matrix, completely ex-
haust this 16 linearly independent 4×4 hermitian matrices. They form a vector basis of Dirac's
algebra, such that any other translation invariant internal observable that describes internal
structure, for instance internal velocity and acceleration, angular velocity, etc., must necessarily
be expressed as a real linear combination of the mentioned 16 hermitian matrices. We shall see
in Sec. 4.3 that the internal orientation completely characterizes its internal structure.

The velocity operator in the basis Ψi will be calculated in terms of its components in polar
spherical coordinates

u1 = c sinβ cosλ, u2 = c sinβ sinλ, u3 = c cosβ.

Its matrix representation in this basis vanishes because these vectors are eigenvectors of the
operators S2, S3 and T3 and in these states the expectation value of the velocity operator is
zero with a great uncertainty.

The spin operator with respect to the center of charge S = u × U +W which, as seen in
(3.86) and (4.13), coincides with the usual matrix representation of Dirac's spin operator.

4.2.1 Dirac operator

If we consider the expression of the kinematical momentum for free u = c particles (2.150)

K =
H

c2
r − tP − 1

c2
S × u

and we take the time derivative of this expression followed by the scalar product with u, it leads
to the Poincaré invariant operator (Dirac operator):

H − P · u− 1

c2

(
du

dt
× u

)
· S = 0. (4.19)
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When Dirac operator acts on a general wave function Φ(0) or Φ(1), we know that H and P
have the di�erential representation given by (4.5) and the spin by the di�erential representation
(4.7), or the equivalent matrix representation (4.13), but we do not know how to represent the
action of the velocity u and the (du/dt)×u observable. However, we know that for this particle
u and du/dt are orthogonal vectors and together with vector u×du/dt they form an orthogonal
right-handed system, and in the center of mass frame the particle describes a circle of radius
R0 = ~/2mc in the plane spanned by u and du/dt.

Figure 4.2: Representation of the local body frame and the di�erent observables for the
(a) H > 0 solution and (b) H < 0 solution. This orientation produces Dirac equation in the
Pauli-Dirac representation

Let us consider �rst the case z = 0. Since u and du/dt are translation invariant observables
they will be elements of Dirac's algebra, and it turns out that we can relate these three vectors
with the left-handed orthogonal system formed by vectors e1, e2 and e3 with representation
(4.15). Then, as shown in part (a) of Figure 4.2 for the H > 0 system, we have u = ae1 and
du/dt × u = be3, where a and b are constant positive real numbers. Then the third term in
Dirac operator is (b/c2)e3 · S = (b/c2)T3, and (4.19) operator becomes

H − aP · e1 −
b

c2
T3 = 0. (4.20)

If we make the identi�cation with the H < 0 solution of part (b) of Figure 4.2, the relation of
the above observables is opposite to the previous one but now with the coe�cients −a and −b,
respectively, i.e., we get

H + aP · e1 +
b

c2
T3 = 0, (4.21)

which clearly corresponds to the change H → −H in equation (4.20).
Multiplying (4.21) by (4.20) we obtain an expression which is satis�ed by both particle and

antiparticle

H2 − a2

9
P 2I− b2~2

4c4
I = 0, (4.22)

and which is an algebraic relation between H2 and P 2. By identi�cation of this expression with
the Klein-Gordon operator (4.8), which also contains both H > 0 and H < 0 solutions, leads
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to a = 3c and b = 2mc4/~ = c3/R0 and by substitution in (4.20) we obtain Dirac operator:

H − cP ·α− βmc2 = 0, (4.23)

where Dirac's matrices α and β are represented by

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
, (4.24)

and thus Dirac's gamma matrices are

γ0 ≡ β =

(
I 0
0 −I

)
, γ ≡ γ0α =

(
0 σ
−σ 0

)
, (4.25)

i.e., Pauli-Dirac representation, where 3e1 plays the role of a unit vector in the direction of the
velocity. Substitution into (4.21) corresponds to the equivalent representation with the change
γµ → −γµ.

Dirac equation (4.23) represents the relationship between the mechanical temporal momen-
tum or energy H, as the sum of two terms. One related to the motion of the center of mass
cP · α, or energy of translation, and the term related to the spin, or rotation energy. This ex-
pression is valid for the free electron, but if the electron is under the interaction with an external
electromagnetic �eld, this relationship has to be hold for the mechanical properties, according
to the Atomic Principle. According to this principle the internal structure is not modi�ed and
therefore the total energy and linear momentum are H = Hm + eϕ y P = Pm + eA, where
Hm and Pm are the mechanical observables which still satisfy (4.23), and thus for the total
observables we get

H = eϕ+ c (P − eA) ·α+ βmc2, (4.26)

where ϕ and A are the external scalar and vector potential, respectively.

4.2.2 Dynamics of observables

In the Heisenberg representation, the time derivative of any observable A is

dA

dt
=
i

~
[H,A] +

∂A

∂t
. (4.27)

The wave function depends on the kinematical variables. Among them we �nd the time vari-
able. The time evolution of the particle corresponds to a time translation generated by the Hamil-
tonian H, in such a way that ψ(t, x1, . . . , xn) = exp(−iHt/~)ψ(0, x1, . . . , xn). The expectation
value, at instant t of an observable A, when the system is on the state ψ(t) is

< A(t) >=< ψ(t)|A|ψ(t) >=< ψ(0)|eiHt/~Ae−iHt/~|ψ(0) > .

This amounts to take the expectation value of a di�erent operator, eiHt/~Ae−iHt/~ but on the
state at the initial time t = 0. At the instant t+∆t

< A(t+∆t) >=< ψ(t+∆t)|A|ψ(t+∆t) >=< ψ(0)|eiH(t+∆t)/~Ae−iH(t+∆t)/~|ψ(0) > .

and the di�erence

< A(t+∆t) > − < A(t) >=
i

~
< ψ(0)|HA−AH|ψ(0) > ∆t,

and therefore
d < A(t) >

dt
=
i

~
< ψ(0)|[H,A]|ψ(0) > .

In this way, the calculation of the time variation of an expectation value is equivalent to the
expectation value of the observable [H,A] with respect to the initial state ψ(0). It is easy to see
that if the observable A is explicitely time dependent, then the observable we have to consider is
the one de�ned in (4.27), with respect to the initial state ψ(0) of the system.
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We can see that for Dirac, the point r is moving at the speed c. In fact, the commutator
[H, r] is di�erent from zero because [Pi, xj ] = −i~δij , and therefore, the velocity of the point r
is

u =
dr

dt
=
i

~
[H, r] =

i

~
[c (P − eA) ·α, r] = cα,

even under any electromagnetic interaction (4.26). The eigenvalues of the matrices αi are ±1,
and therefore if any component of the velocity vector is measured without dispersion, only can
take the values ±c.

The Pauli-Dirac representation is compatible with the acceleration du/dt lying along the
vector e2. In fact, in the center of mass frame and in the Heisenberg representation, Dirac's
Hamiltonian reduces to H = βmc2, and the time derivative of the velocity observable u = cα
is

du

dt
=
i

~
[mc2β, cα] =

2mc3

~

(
0 iσ

−iσ 0

)
=

c2

R0
3e2, (4.28)

c2/R0 being the constant modulus of the acceleration in this frame, and where 3e2 plays the
role of a unit vector along that direction.

The time derivative of this Cartesian system is

de1
dt

=
i

~
[βmc2, e1] =

c

R0
e2, (4.29)

de2
dt

=
i

~
[βmc2, e2] = − c

R0
e1, (4.30)

de3
dt

=
i

~
[βmc2, e3] = 0, (4.31)

since e3 is orthogonal to the trajectory plane and does not change, and where c/R0 = ω is the
angular velocity of the internal orbital motion. This time evolution of the observables ei is the
correct one if assumed to be a rotating left-handed system of vectors as shown in Figure 4.2-(a).
It is for this reason that we considered at the beginning of this chapter that the body frame
rotates with the same angular velocity as the orbital motion of the charge.

To be consistent with the above consideration as 3ei as unit vectors, this means that the
spin in the center of mass frame should be along 3e3. This is the case for the upper components
while for the lower components (which in this representation correspond to H < 0 states) the
orientation is the opposite. This means that for particles the corresponding set of axis forms
a left handed system while for antiparticles they behave as a right handed system, showing a
clear chirality di�erence between particles and antiparticles.

In general

dS

dt
=
i

~
[H,S] =

i

~
[cP ·α+ βmc2,S] = cP ×α ≡ P × u,

is not a constant of the motion, but for the center of mass observer, this spin operator u×U+W
is the same with respect to any point and is constant in this frame:

dS

dt
=
i

~
[βmc2,S] = 0. (4.32)

Only the T3 spin component on the body axis remains constant while the other two T1 and
T2 change because of the rotation of the corresponding axis,

dT1
dt

=
i

~
[βmc2, T1] =

c

R0
T2, (4.33)

dT2
dt

=
i

~
[βmc2, T2] = − c

R0
T1, (4.34)

dT3
dt

=
i

~
[βmc2, T3] = 0. (4.35)
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When analyzed from the point of view of an arbitrary observer, the classical motion is a
helix and the acceleration is not of constant modulus c2/R0, and the spin operator S is no
longer a constant of the motion, because it is the total angular momentum J = r×P +S that
is conserved.

Identi�cation of the internal variables with di�erent real linear combinations of the ei ma-
trices lead to di�erent equivalent representations of Dirac's matrices, and thus to di�erent
expressions of Dirac's equation.

Figure 4.3: Orientation in the Weyl representation.

For instance if we make the identi�cation suggested by Figure 4.3, u = −ae3 and the
observable du/dt× u = be1 with positive constants a and b, we obtain by the same method

β =

(
0 I
I 0

)
, α =

(
−σ 0
0 σ

)
, (4.36)

and thus gamma matrices

γ0 ≡ β =

(
0 I
I 0

)
, γ ≡ γ0α =

(
0 σ

−σ 0

)
, (4.37)

i.e., Weyl's representation.
When we compare both representations, we see that Weyl's representation is obtained from

Pauli-Dirac representation if we rotate the body frame π/2 around e2 axis. Then the corre-
sponding rotation operator

R(π/2, e2) = exp(
i

~
π

2
e2 · S) = exp(

i

~
π

2
T2) =

1√
2

(
I −I
I I

)
.

We can check that RγµPD R
† = γµW , where γµPD and γµW are gamma matrices in the Pauli-

Dirac and Weyl representation, respectively.
We can similarly obtain Dirac's equation in the case of zitterbewegung z = 1, by using the

set of matrices (4.16) instead of (4.15), because they are multiples of each other and only some
intermediate constant factor will change.

The four basic states Φi, (4.83)-(4.86) or (4.87)-(4.90) in the Pauli-Dirac representation, are
related to the four states represented in the �gure 4.4, where the f i are the unit vectors in
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Figure 4.4: Orientation of the body axis in Pauli-Dirac representation, corresponding to
the four basic states Φi of (4.83)-(4.86), respectively, with the vector e2 along the direction
of the acceleration and e1 and −e1 along the direction of the velocity. The local system of
axis in the cases (1) and (2) is left-handed, while it is right-handed in (3) and (4), which
correspond to the antiparticle.

the laboratory reference frame. The vectors ei are the unit vectors linked to the point r, with
the vector e2 in the direction of the acceleration. In the states (1) and (2) the projection of
the spin along the axis e3, T3 is +1/2, while in the two lower states (3) and (4) correspond to
T3 = −1/2, and both with the two possibilities of S3 = ±1/2 in the laboratory axis. It must
be remarked that the two lower states are states of the antiparticle.

Pauli-Dirac representation leads to represent the hermitian matrix β proportional to the
matrix T3. Weyl representation leads to the hermitian matrix β proportional to the matrix T1.

4.2.3 Probability Conservation

Quantum mechanical Dirac equation is:

i~
∂Φ

∂t
− ~
i
u · ∇Φ−mc2βΦ = 0, (4.38)

where Φ is either the spinor (4.17) or the spinor (4.18) which is a four component spinor.

Φ(t, r,u,α) =


ψ1(t, r)
ψ2(t, r)
ψ3(t, r)
ψ4(t, r)


once the dependence on the kinematical variables u and α has been substituted by a linear
combination in terms of the four basic spinors. The velocity operator u = cα is Dirac velocity
operator written in terms of the hermitian 4× 4 Dirac matrices α, and β = γ0 is the hermitian
4× 4 Dirac matrix, related to the spin projection along the body axis. Each spacetime function
ψi(t, r), i = 1, 2, 3, 4, is solution of the Klein-Gordon equation, (∂µ∂µ +m2c2/~2)ψi = 0.

If we now take the complex conjugate and transpose of the above expression we get

−i~∂Φ
∗

∂t
+

~
i
∇Φ∗ · u−mc2Φ∗β = 0. (4.39)
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Now the �rst equation (4.38) is multiplied on the left hand side by the row vector Φ∗, and the
expression (4.39) by the column vector Φ on the right hand side, and substract the second from
the �rst, we arrive to

∂(Φ∗Φ)

∂t
+∇(Φ∗uΦ) = 0.

If we call Φ∗Φ =
∑
ψ∗
i ψi = ρ(t, r), it is a scalar and de�nite positive function which can be

interpreted as the probability density of presence of the electron and Φ∗uΦ = j(t, r), as the
current probability density, so that Dirac equation leads to the continuity equation

∂ρ

∂t
+∇ · j = 0. (4.40)

There exist a local conservation of the probability at any point (t, r) ∈ R4, of spacetime.
This conservation law implies that the integral at constant t,

∫
V ρdV is conserved for any

integration volume V . If this volume is the whole three-dimensional space, this integral is 1, as
it corresponds to a normalized wave function.

The current density j = Φ∗uΦ = cψ∗γ0γψ, and since (γ0)2 = I, we can de�ne the conjugate
spinor, as the row vector ψ̄ = ψ∗γ0, this allows us to write the continuity equation in a covariant
form in terms of the four vector jµ = cψ̄γµψ ≡ (cρ, j), as

∂µj
µ = 0. (4.41)

If the four vector jµ is multiplied by the value of the charge e, we obtain the electric current
density four vector, which also satis�es the same continuity equation. This reinforces the idea
that the wave function, as a function of t and r, what represents is how the charge is distributed
around the point r, which represents the location of the electric charge, as is assumed in the
classical model.

Because the electric current density four vector is jµ = ecψ̄γµψ, the interaction with an
external �eld is written in the form of a minimal coupling, in terms of the external potentials,
which are functions of (t, r):

jµ(t, r)Aµ(t, r).

In quantum electrodynamics there is no other coupling than the coupling between the external
�elds and the particle current, which also reinforces the idea that, efectively, from the classical
point of view what we have is the interaction of a charged point, the center of charge, with the
external potentials and no further multipoles.

4.2.4 PCT Invariance

Figure 4.5: Space reversal of the electron in the center of mass frame is equivalent to a
rotation of value π along S.



4.2. DIRAC EQUATION 155

In Figure 4.5 we represent the parity reversal P of the description of the electron as given
by this model of luxon which is circling around the center of mass at the velocity c and in the
center of mass frame it changes the variables according to

P : {r → −r,u → −u, du/dt→ −du/dt,S → S,H → H, ei → −ei}.

In the Pauli-Dirac representation as we see in Figure 4.2, this amounts to a rotation of value π
around axis e3 and thus

P ≡ R(π, e3) = exp(iπe3 · S/~) = exp(iπT3/~) = iγ0,

which is one of the possible representations of the parity operator ±γ0 or ±iγ0. In Weyl's
representation this is a rotation of value π around e1 which gives again P ≡ iγ0.

Parity reversal also transforms the local frame of unit vectors ei into −ei, so that it trans-
forms a left handed local frame into a righthanded frame.

Figure 4.6: Time reversal of the electron produces a particle of negative energy.

In Figure 4.6 we represent its time reversal T also in the center of mass frame

T : {r → r,u → −u, du/dt→ du/dt,S → S,H → −H, ei → ei},

but this corresponds to a particle of H < 0 such that the relative orientation of spin, velocity
and position, given by equation (2.160) agrees with the motion depicted in this �gure.

A Dirac particle is a mechanical system whose intrinsic attributes are mass m > 0 and
spin ~/2. We also see that the sign of H is also Poincaré invariant and it is also an intrinsic
property which establishes two di�erent systems of the same value ofm and S. The system with
H > 0 is called the particle and the other with H < 0 the antiparticle. The value of the mass
attribute is introduced by hand. To characterize its interaction with an external electromagnetic
�eld, we also introduce by hand another intrinsic property the electric charge e, located at the
point r. This implies that in addition to the mechanical properties m and S the system has
electromagnetic properties like the electric charge e and because the charge location is separated
from its center of mass and its motion is at the speed of light, we also have an electric dipole
moment d and a magnetic moment µ, respectively. The electric charge can also have either a
positive or negative sign.

If we consider the charge conjugation transformation C, which transforms

C : {e→ −e, d → −d, µ → −µ},

and which does not a�ect to the mechanical properties and to the kinematical variables, we see
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that all these properties are transformed under these discrete transformations as

S
m
H
e
µ
d
ei


P ⇒



S
m
H
e
µ
−d
−ei


T ⇒



S
m
−H
e

−µ
d
ei


C ⇒



S
m
H
−e
−µ
−d
ei


The global PCT transformation gives

PCT



S
m
H
e
µ
d
ei


=



S
m
−H
−e
µ
d

−ei


.

The PCT transformation transforms the particle into the antiparticle and conversely, reversing
also the local frame, while keeping invariant the mechanical attributes m and S and the elec-
tromagnetic attributes µ and d. The PCT invariance of the system establishes a relationship
between the sign of H and the sign of e, although an indeterminacy exists in the selection of
the sign of the charge of the particle. The product eH is PCT invariant. Dirac equation is
PCT invariant because this transformation maps H > 0 solutions into H < 0 solutions and
conversely, because this equation describes both types of elementary particles.

This implies that particle and antiparticle, in the center of mass frame, have a magnetic
moment and an oscillating electric dipole in a plane orthogonal to the spin. Once the spin
direction is �xed, the magnetic moment of both have the same relative orientation with the
spin, either parallel or antiparallel, according to the selection of the sign of the electric charge.
The electric dipole moment oscillates leftwards for particles and rightwards for antiparticles
which shows a di�erence between them which is called chirality. If as usual we call the electron
to the system of negative electric charge the particle, the above PCT transformation transforms
the system (a) of �gure 4.7 into the system (b). If what we call the particle is of positive electric
charge, then the spin and magnetic moment are opposite to each other for both particle and
antiparticle.

However, to our knowledge no explicit direct measurement of the relative orientation between
spin and magnetic moment of the free electron, can be found in the literature although very
high precision experiments are performed to obtain the absolute value of g, the gyromagnetic
ratio.

4.2.5 Two plausible experiments

The inde�niteness in the sign of the charge of matter is also present in Dirac's formalism.
This prediction is consistent with the known structures formed by a particle and the correspond-
ing antiparticle. As a matter of fact, the positronium (electron-positron bound sytem) has a
ground state of spin 0 and magnetic moment 0. This means that the spins of both electron
and positron are antiparallel to each other and the same thing happens to the corresponding
magnetic moments. Therefore, for the electron and positron there should exist the same relative
orientation between the spin and magnetic moment. The neutral pion π0 is a linear combination
of the quark-antiquark bound systems uū, dd̄ and sometimes the pair ss̄ is also included. It is
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Figure 4.7: Electromagnetic attributes µ and d for (a) a negatively charged particle and
its PCT transformed (b), the positive charged antiparticle, and their relative orientation
with respect to the spin, in the center of mass frame. The electric dipole of the particle
oscillates leftwards and rightwards for the antiparticle.

a system of 0 spin and 0 magnetic moment. Because each of the above quarks have di�erent
masses and charges, and thus di�erent magnetic moments, the possibility is that each quark-
antiquark pair is a system of 0 spin and 0 magnetic moment, and, therefore each quark and
the corresponding antiquark must have the same relative orientation between the spin and the
magnetic moment.

A plausible indirect experiment 1 has been proposed to measure the relative orientation
between spin and magnetic moment for one electron atoms in the outer shell, like Rb or Cs.

Rb87 atoms have one electron at the level 5s. Its nucleus has spin 3/2 and the ground
state of the atom has a total spin 1, and therefore the outer electron has its spin in the opposite
direction to the spin of the nucleus. The magnetic moment of the atom is basically the magnetic
moment of this outer electron because the inner shells are full and the magnetic moment of the
nucleus is relatively smaller.

Ultracold Rb87 atoms in an external magnetic �eld will be oriented with their magnetic
moments pointing along the �eld direction. If in this direction we send a beam of circularly po-
larized photons of su�cient energy ∼ 6.8GHz to produce the corresponding hyper�ne transition
to �ip the electron spin in the opposite direction and thus leaving the atom in a spin 2 state,
only those photons with the spin opposite to the spin of the outer electron will be absorbed.
Measuring the spin orientation of the circularly polarized beam will give us the spin orientation
of the electron thus showing its relationship with the magnetic moment orientation. Now the
task is to check also the relative orientation for positrons.

Another experiment is the measurement of the preccession direction of the spin of e+ and
e− and of µ+ and µ− in a storage ring. If e+ and e− and µ+ and µ− have the same relative
orientation between spin and magnetic moment, then the torque and thus the preccession will
be the same.

µ×B =
dS

dt

1M.Rivas, Are the electron spin and magnetic moment parallel or antiparallel vectors?,
ArXiv:physics/0112057.
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Nevertheless, if we inject into the accelerator particles and antiparticles with the spin up, and
because the magnetic �eld of the ring has to be reversed for the antiparticle, then the preccession
direction of both beams will be opposite to each other. If it is possible to detect the precession
direction this will con�rm the prediction and also the relative orientation between spin and
magnetic moment.

4.2.6 Chirality

The classical model which satis�es Dirac's equation when quantized gives rise to two possible
physical systems of H > 0 and H < 0. The H > 0 is usually called the particle. According
to the previous analysis the internal motion of the charge takes place on a plane orthogonal to
the spin direction and in a leftward sense when we �x as positive the spin direction. For the
antiparticle the motion is rightwards. For particles, the local orientable frame of unit vectors
ei behaves as a left handed system rotating with an angular velocity in the opposite direction
to the spin, while for antiparticles it can be considered as a right handed one.

Figure 4.8: Relative orientation of the body axis for the antiparticle that leads to Pauli-
Dirac representation. It behaves as a rotating right handed Cartessian frame around the
spin direction.

If we should have started the analysis by considering �rst the antiparticle, then in order
to get the same Pauli-Dirac representation as before we have to consider the body axis as the
ones depicted in �gure 4.8, i.e., in the opposite direction to the ones we chose before and this
leads by the same arguments that the γµ matrices have to replaced by the −γµ, so that the
Hamiltonian in the center of mass frame is −βmc2. In this way the motion of the body frame,
instead of (4.29-4.31) is

de1
dt

=
i

~
[−βmc2, e1] = −ωe2, (4.42)

de2
dt

=
i

~
[−βmc2, e2] = ωe1, (4.43)

de3
dt

=
i

~
[−βmc2, e3] = 0, (4.44)

with ω = c/R0, which clearly corresponds to a rotating right handed system with an angular
velocity around the spin direction.
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Matter is left handed and antimatter is right handed in this kind of models as far as the
charge motion and the rotation of the local body frame are concerned, so that particles and
antiparticles show a clear chirality.

Although the local motion of the charge, which takes place in a region of order of Compton's
wavelength, is probably physically unobservable, this motion corresponds nevertheless to the
oscillation of the instantaneous electric dipole moment, which oscillates at very high frequency,
but its sense of motion, once the spin direction is �xed, re�ects this di�erence between particle
and antiparticle. This electric dipole motion is independent of whether the particle is positively
or negatively charged.

Finally, when we compare the spin operator and the vector e3 we see

S =
~
2

(
σ 0
0 σ

)
, e3 =

1

3

(
σ 0
0 −σ

)
.

that the two upper components of the Dirac spinor correspond to positive energy solutions
and therefore the upper components of these operators are related by S ∼ e3, while the lower
components correspond to negative energy solutions and for this components these operators
behave as S ∼ −e3, and thus the spin projection operator T ∼ e3 in both cases, a vector
relationship which is clearly depicted in the �gures 4.2 and 4.8 respectively.

4.3 Dirac algebra

The three spatial spin components Si, the three spin projections on the body frame Tj and
the nine components of the body frame (ei)j , i, j = 1, 2, 3, whose matrix representations are
given in the z = 0 case in (4.15) or in (4.16) in the z = 1 case, together with the 4 × 4 unit
matrix I, form a set of 16 linearly independent hermitian matrices. They are a linear basis of
Dirac's algebra, and satisfy the following commutation relations:

[Si, Sj ] = i~ϵijkSk, [Ti, Tj ] = −i~ϵijkTk, [Si, Tj ] = 0, (4.45)

[Si, (ej)k] = i~ϵikr(ej)r, [Ti, (ej)k] = −i~ϵijr(er)k, (4.46)

and the scaled 3ei vectors in the z = 0 case

[(3ei)k, (3ej)l] =
4i

~
(δijϵklrSr − δklϵijrTr) , (4.47)

showing that the ei operators transform like vectors under rotations but they are not commuting
observables. In the case z = 1, the scaled −9ei, satisfy the same relations.

If we �x the pair of indexes i, and j, then the set of four operators S2, Si, Tj and (ej)i form a
complete commuting set. In fact, the wave functions Φi, i = 1, . . . , 4, given before (3.70)-(3.73),
are simultaneous eigenfunctions of S2, S3, T3 and (e3)3 with eigenvalues s = 1/2 and for s3, t3,
and e33 are the following ones:

Φ1 = |1/2, 1/2, 1/3 >, Φ2 = | − 1/2, 1/2,−1/3 >, (4.48)

Φ3 = |1/2,−1/2,−1/3 >, Φ4 = | − 1/2,−1/2, 1/3 >, (4.49)

and similarly for the Ψj spinors of (3.82)-(3.85)

Ψ1 = |1/2, 1/2,−1/9 >, Ψ2 = | − 1/2, 1/2, 1/9 >, (4.50)

Ψ3 = |1/2,−1/2, 1/9 >, Ψ4 = | − 1/2,−1/2,−1/9 > . (4.51)
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The basic observables satisfy the following anticommutation relations:

{Si, Sj} = {Ti, Tj} =
~2

2
δijI, (4.52)

{Si, Tj} =
~2

2
(3ej)i, (4.53)

{Si, (3ej)k} = 2 δikTj , {Ti, (3ej)k} = 2 δijSk, (4.54)

{(ei)j , (ek)l} =
2

9
δikδjlI+

2

3
ϵikrϵjls(er)s. (4.55)

If we de�ne the dimensionless normalized matrices:

aij = 3(ei)j , (or aij = −9(ei)j), si =
2

~
Si, ti =

2

~
Ti, (4.56)

together with the 4× 4 unit matrix I, they form a set of 16 matrices Γλ, λ = 1, . . . , 16 that are
hermitian, unitary, linearly independent and of unit determinant. They are the orthonormal
basis of the corresponding Dirac's Cli�ord algebra.

The set of 64 unitary matrices of determinant +1, ±Γλ, ±iΓλ, λ = 1, . . . , 16 form a �nite
subgroup of SU(4). Its composition law can be obtained from:

aij akl = δikδjlI+ iδikϵjlr sr − iδjlϵikr tr + ϵikrϵjls ars, (4.57)

aij sk = iϵjkl ail + δjk ti, (4.58)

aij tk = −iϵikl alj + δik sj , (4.59)

si ajk = iϵikl ajl + δiktj , (4.60)

si sj = iϵijk sk + δijI, (4.61)

si tj = tj si = aji, (4.62)

ti ajk = −iϵijl alk + δijsk, (4.63)

ti tj = −iϵijk tk + δijI, (4.64)

and similarly we can use these expressions to derive the commutation and anticommutation
relations (4.45-4.55).

Dirac algebra is generated by the four Dirac gamma matrices γµ, µ = 0, 1, 2, 3 that satisfy
the anticommutation relations

{γµ, γν} = 2ηµνI, (4.65)

ηµν being Minkowski's metric tensor.
Similarly it can be generated by the following four observables, for instance: S1, S2, T1 and

T2. In fact by (4.61) and (4.64) we obtain S3 and T3 respectively and by (4.62), the remaining
elements.

Classically, the internal orientation of an electron is characterized by the knowledge of the
components of the body frame (ei)j , i, j = 1, 2, 3 that altogether constitute an orthogonal
matrix. To completely characterize in a unique way this orthogonal matrix we need at least
four of these components. In the quantum version, the knowledge of four (ei)j matrices and by
making use of (4.57)-(4.64), allows us to recover the remaining elements of the complete Dirac
algebra. It is in this sense that the internal orientation of the electron completely characterizes
its internal structure. Dirac's algebra of translation invariant observables of the electron can be
algebraically generated by any four of the orientation operators.
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4.4 Additional spacetime symmetries

The kinematical variables of this classical Dirac particle are reduced to time t, position r,
velocity u and orientation α, but the velocity is always u = c. It is always 1 in natural units.
If the particle has mass m ̸= 0 and spin s ̸= 0, we can also de�ne a natural unit of length
s/mc and a natural unit of time s/mc2. The unit of length is the radius of the zitterbewegung
motion of �gure 2.6, and the unit of time is the time employed by the charge, in the centre of
mass frame, during a complete turn. This implies that the whole set of kinematical variables
and their time derivatives can be taken dimensionless, and the classical formalism is therefore
invariant under spacetime dilations which do not modify the speed of light.

It turns out that although we started with the Poincaré group as the basic spacetime sym-
metry group, this kind of massive spinning Dirac particles, has a larger symmetry group. It
also contains at least spacetime dilations with generator D. The action of this transformation
on the kinematical variables is

t′ = eλt, r′ = eλr, u′ = u, α′ = α.

The new conserved Noether observable takes the form

D = tH − r · P . (4.66)

Let R(β) be an arbitrary rotation which changes observer's axes. The action of this arbitrary
rotation R(β) on the kinematical variables is

t′ = t, r′ = R(β)r, u′ = R(β)u, R(α′) = R(β)R(α),

and this is the reason why the generators J of rotations involve di�erential operators with
respect to all these variables, the time excluded.

The orientation of the particle, represented by the variables α, or the equivalent orthogonal
rotation matrix R(α), is interpreted as the orientation of an hypothetical Cartesian frame of
unit axis ei, i = 1, 2, 3, located at point r. It has no physical reality but can be interpreted as
the corresponding Cartesian frame with origin at that point. But the selection of this frame is
completely arbitrary so that the formalism is independent of its actual value. This means that,
in addition to the above rotation group beteen inertial observers, there will be another rotation
group of elements R(γ) which modi�es only the orientation variables α, without modifying the
variables r and u, i.e., the rotation only of the body frame:

t′ = t, r′ = r, u′ = u, R(α′) = R(γ)R(α), (4.67)

The generators of this new rotation group, which a�ects only the orientation variables, will
be the projection of the angular momentum generators W onto the body axes. It is clear
that the operations of the rotation of the observer frame and the rotation of the body frame
commute with each other. This last rotation represents an active rotation of the body axis.
From Noether's theorem the corresponding classical conserved observables are

Ti = W · ei, (4.68)

where ei are the three orthogonal unit vectors which de�ne the body axis.
If R(α) is the orthogonal rotation matrix which describes the orientation of the particle,

when considered by columns these columns describe the components of the three orthogonal
unit vectors ei, i = 1, 2, 3. Equations (4.67) correspond to the transformation e′i = R(γ)ei of
the body frame.
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The Wi operators represent the components of the angular momentum operators associated
to the change of orientation of the particle and projected in the laboratory frame. The corre-
sponding conserved quantities (4.68) are that components of the angular momentum operators
projected onto the body frame Ti = ei ·W . When quantizing the system they are given by the
di�erential operators (4.80)-(4.82) of the appendix below and satisfy

T 2 =W 2, [Ti, Tj ] = −iϵijkTk,

[Ti,Kj ] = [Ti, Jj ] = [Ti,H] = [Ti, D] = [Ti, Pj ] = 0.

We can see that the self-adjoint operators Ti generate another SU(2) group which is the rep-
resentation of the local rotation group SO(3)L which modi�es only the orientation variables,
commutes with the rotation group generated by the Jj , and with the whole enlarged Poincaré
group, including spacetime dilations.

Since we expect that the formalism is independent of the orientation variables we have
another SO(3) group of spacetime symmetries of the particle.

4.4.1 Analysis of the enlarged symmetry group

Let H, P , K and J be the generators of the Poincaré group P. With the usual identi�cation
of pµ ≡ (H/c,P ) as the four-momentum operators and wµ ≡ (P · J ,HJ/c −K × P ) as the
Pauli-Lubanski four-vector operator, the two Casimir operators of the Poincaré group are

C1 = pµp
µ, C2 = −wµw

µ.

These two Casimir operators, if measured in the centre of mass frame where P = K = 0, in
natural units c = 1, ~ = 1, reduce respectively in an irreducible representation to C1 = m2 and
C2 = H2J2 = m2s(s + 1). The two parameters m and s, which characterize every irreducible
representation of the Poincaré group, represent the intrinsic properties of a Poincaré invariant
elementary particle.

Let us consider the additional spacetime dilations of generator D. The action of this trans-
formation on the kinematical variables is

t′ = eλt, r′ = eλr, u′ = u, α′ = α.

Let us denote this enlargement of the Poincaré group, sometimes called the Weyl group, by W.
In the quantum representation, this new generator when acting on the above wavefunctions,
has the form:

D = it∂/∂t+ ir · ∇. (4.69)

It satis�es
[D, pµ] = −ipµ, [D, Jµν ] = 0.

This enlarged group has only one Casimir operator2 which, for massive systems where the
operator C1 ̸= 0 is invertible, is reduced to

C = C2C
−1
1 = C−1

1 C2 ≡ C2/C1 = s(s+ 1).

In the centre of mass frame this operator is reduced to C = S2, the square of the spin operator.
By assuming also the spacetime dilation invariance this implies that the mass is not an

intrinsic property. It is the spin which is the only intrinsic property of this elementary particle.
In fact, since the radius of the internal motion is R = s/mc, a change of length and time scale
corresponds to a change of mass while keeping s and c constant. By this transformation the

2Abellanas L and Martinez Alonso L 1975 J. Math. Phys. 16 1580
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elementary particle of spin 1/2 modi�es its internal radius and therefore its mass and goes into
another mass state.

The structure of the di�erential operator J = r × P + Z + W , where the spin part S =
Z +W has only s = 1/2 eigenvalue for the above model, implies that the eigenvalue of the W 2

corresponds to w = 1/2 while for the Z2 part can be reduced to the two possibilities z = 0 or
z = 1.

In addition to the group W we also consider the representation of the local rotation group
generated by the Ti with eigenvalue w = t = 1/2. We have thus a larger spacetime symmetry
group with an additional SU(2) structure when quantized.

The generators Ti commute with all generators of the group W, and this new symmetry
group can be written as W ⊗ SU(2)T .

This new group has only two Casimir operators S2 and T 2 of eigenvalues 1/2. This justi�es
that our wavefunction will be written as a four-component wavefunction. When choosing the
complete commuting set of operators to classify its states we take the operator T 2 = S2, the
S3 and T3 which can take the values ±1/2 and for instance the pµpµ and the pµ. In this way
we can separate in the wavefunction the orientation and velocity variables from the spacetime
variables,

ψ(t, r,u,α) =
i=4∑
i=1

ϕi(t, r)χi(u,α)

where the four χi(v,α) can be classi�ed according to the eigenvalues |s3, t3 >. The functions
ϕi(t, r) can be chosen as eigenfunctions of the Klein-Gordon operator

pµp
µϕi(t, r) = m2

iϕi(t, r).

Because this operator pµpµ does not commute with the D observable, the mass eigenvalue mi

is not an intrinsic property and the corresponding value depends on the particular state ϕi we
consider.

For the classi�cation of the χi(u,α) states we have also to consider theZ angular momentum
operators. Because [Z2, S2] = [Z2, T 2] = [Z2, pµ] = 0, we can choose Z2 as an additional
commuting observable. It can only take integer eigenvalues when acting on functions of the
velocity variables, because it has the structure of an orbital angular momentum. But because the
total spin S = Z+W , and the S2 has eigenvalue 1/2, the possible eigenvalues of Z2 can be z = 0
or z = 1. See the appendix below for the possible clasi�cation of the χi(u,α) part, according to
z = 0 which gives rise to the (3.70-3.73) eigenfunctions, and the z = 1 eigenfunctions (4.87-4.90).
In this last case the eigenfunctions cannot be simultaneously eigenfunctions of Z3. Nevertheless
the expectation value of Z3 in the z = 0 basis vectors Φi is 0, while its expectation value in the
z = 1 basis Ψi is ±2/3.

4.4.2 Enlargement of the kinematical space

Once the kinematical group has been enlarged by including spacetime dilations, we have a
new dimensionless group parameter asociated to this one-parameter subgroup which can also
be used as a new kinematical variable, to produce a larger homogeneous space of the group. In
fact, if we take the time derivative of the constant of the motion (4.66) we get

H = P · u.

If we compare this with the equation (4.19), one term is lacking. This implies that we need,
from the classical point of view, an additional kinematical variable, a dimensionless scale β, such
that under the action of this new transformation the enlarged kinematical variables transform

t′ = eλt, r′ = eλr, u′ = u, α′ = α, β′ = λ+ β.
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From the group theoretical point of view this new dimensionless variable corresponds to the
normal dimensionles group parameter of the transformation generated by D.

From the Lagrangian point of view, the new Lagrangian has also to depend on β and β̇,
with a general structure

L̃ = ṫT + ṙ ·R+ u̇ ·U + ω ·W + β̇B,

with B = ∂L̃/∂β̇. The constant of the motion associated to the invariance of the dynamical
equations under this new transformation implies that

D = tH − r · P −B,

and the new generator in the quantum version takes the form

D = it∂/∂t+ ir · ∇+ i
∂

∂β
.

In this way the last term of (4.19) is related to the time derivative of this last term

dB

dt
=

1

c2
S ·
(
du

dt
× u

)
.

This new observable B, with dimensions of action, has a positive time derivative for particles
and a negative time derivative for antiparticles. This sign is clearly related to the sign of H. In
the center of mass frame P = 0, H = ±mc2 = dB/dt, with solution B(t) = B(0) ±mc2t. In
units of ~ this observable represents half the phase of the internal motion

B(t) = B(0)± 1

2
~ωt.

Because the additional local rotations generated by the Ti commute with the W group, the
above kinematical variables also span a homogeneous space of the whole W ⊗ SU(2)T group
and, therefore, they represent the kinematical variables of an elementary system which has this
new group as its kinematical group of spacetime symmetries.

4.4.3 Relationship with the standard model

We have analyzed the spacetime symmetry group of a relativistic model of a Dirac particle.
Matter described by this model (H > 0 states), is left handed while antimatter (H < 0),
is right handed, as far as the relative orientation between the spin and the motion of the
charge, is concerned. For matter, once the spin direction is �xed, the motion of the charge is
counterclockwise when looking along the spin direction. It is contained in a plane orthogonal
to the spin direction, with the usual sign convention for multivectors in the geometric algebra.
The motion is clockwise for antimatter.

This particle has as symmetry group of the Lagrangian W ⊗ SO(3)L and W ⊗ SU(2)T
in its quantum description, which is larger than the Poincaré group we started with as the
initial kinematical group of the model. It contains in its quantum description, in addition to
the Poincaré transformations, a U(1) group which is a unitary representation of the spacetime
dilations and also a SU(2)T group which is the unitary representation of the symmetry group of
local rotations of the body frame. The whole group has two Casimir operators S2, the Casimir
of W and T 2 the Casimir of SU(2)T , which take the eigenvalues s = t = 1/2 for the Dirac
particle considered here.

Some of the features we get have a certain resemblance to the standard model of elementary
particles, as far as kinematics is concerned. If we interpret the generators Ti of the unitary
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representation of the local rotations as describing isospin and the angular momentum operators
Z related to the zitterbewegung as describing colour, an elementary particle described by this
formalism is a massive system of spin 1/2, isospin 1/2, of undetermined mass and charge. It can
be in a s3 = ±1/2 spin state and also in a t3 = ±1/2 isospin state. There are two nonequivalent
irreducible representations according to the value of the zitterbewegung part of the spin z. It
can only be a colourless particle z = 0 (lepton?) or a coloured one z = 1 in any of three
possible colour states z3 = 1, 0,−1, (quark?) but no greater z value is allowed. The basic states
can thus also be taken as eigenvectors of Z2 but not of Z3, so that the corresponding colour is
unobservable. There is no possibility of transitions between the coloured and colourless particles
because of the orthogonality of the corresponding irreducible representations.

Because the eigenvalues of Z3 are unobservable we also have an additional unitary group of
transformations SU(3) which transforms the three Z3 eigenvectors Y j

i of (4.91) among them-
selves and which do not change the z = 1 value of the eigenstates Ψi. Nevertheless, the
relationship between this new SU(3) internal group, which is not a spacetime symmetry group,
and W ⊗ SU(2)T is not as simple as a direct product and its analysis is left to a subsequent
research. In another context, the z = 0 states corresponds to the motion of the charge pasing
through the centre of mass and therefore no closed current loop and thus no magnetic moment.

This formalism is pure kinematical. We have made no mention to any electromagnetic,
weak or strong interaction among the di�erent models. So that, if we �nd this comparison with
the standard model a little arti�cial, the mentioned model of Dirac particle just represents a
massive system of spin 1/2, spin projection on the body frame 1/2, of undetermined mass and
charge. It can be in a s3 = ±1/2 spin state and also in a t3 = ±1/2 when the spin is projected
on the body axis. There are two di�erent models of these Dirac particles according to the value
of the orbital or zitterbewegung spin, z = 0 or z = 1, in any of the three possible orbital spin
states z3 = 1, 0,−1, which are unobservable, but no particle of greater z value is allowed. It
is the spin, with its twofold structure orbital and rotational, the only intrinsic attribute of this
Dirac elementary particle.

4.5 An interaction Lagrangian for two Dirac particles

An elementary particle can be annihilated by the interaction with the corresponding antipar-
ticle, but if it is not destroyed, we made the assumption that the structure of an elementary
particle is not modi�ed by any interaction so that its intrinsic properties, the spin S and the
spin projection on the body frame T cannot be altered by the interaction with an external �eld
or by the presence in its neigbourhood of any other particle.

Let us consider a compound system formed by two spinning particles with the same kind
of kinematical variables. We shall use a subscript a = 1, 2 to distinguish the variables corre-
sponding to each particle. Then the kinematical space of the compound system is spanned by
the variables (ta, ra,ua,αa, βa), a = 1, 2. The Lagrangian of the system will be written as

L = L1 + L2 + LI

where the La, a = 1, 2, are the free Lagrangians of each particle and LI is the interaction
Lagrangian we are looking for. Both La are invariant under the enlarged group S and we are
going to �nd an interaction Lagrangian LI also invariant under S. The general structure of
the free Lagrangian La of each particle, which only depends on the corresponding kinematical
variables of particle a, is

L̃a = Taṫa +Ra · ṙa +Ua · u̇a +W a · ωa +Baβ̇a

where Ta = ∂L̃a/∂ṫa, Ra = ∂L̃a/∂ṙa, Ua = ∂L̃a/∂u̇a, W a = ∂L̃a/∂ωa and Ba = ∂L̃a/∂β̇a,
because of the homogeneity of each L̃a in terms of the τ−derivatives of the corresponding
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kinematical variables. The spin and the spin projection on the body frame for each particle, are

Sa = ua ×Ua +W a, Tai = eai ·W a

where eai, i = 1, 2, 3 are three orthogonal unit vectors with origin at point ra.
The interaction Lagrangian between these two particles L̃I will be in general a function

of the kinematical variables of both particles and of their τ−derivatives. If both intrinsic
properties Sa and Ta of each particle are not modi�ed by any interaction then the interaction
Lagrangian cannot be a function of the derivatives of the kinematical variables u̇a and ωa,
a = 1, 2. Otherwise the functions Ua and W a will be di�erent than in the free case. In this
case the functions Ua and W a, which give rise to the de�nition of the spin, are obtained only
from the corresponding free Lagrangian L̃a.

Then, as far as the τ−derivatives of the kinematical variables are concerned, the interaction
Lagrangian L̃I will only depend on the variables ṫa, ṙa and β̇a, a = 1, 2. In addition to this,
it will also be a function of the kinematical variables ta, ra, ua and βa, but not of αa because
of the invariance under the local rotation group SO(3)L. Spacetime dilation invariance implies
that the Lagrangian is a function of the phase di�erence β1−β2, and of β̇1− β̇2, but being both
phases completely arbitrary and independent of each other it means that must be independent
of these variables.

Because of the constraint ua = ṙa/ṫa, the interaction Lagrangian will thus be �nally a
function

L̃I = L̃I(ta, ra, ṫa, ṙa),

and a homogeneous function of �rst degree of the derivatives ṫa, ṙa, a = 1, 2.
If we call as usual the Minkowski four-vector xµa ≡ (ta, ra), translation invariance implies

that the Lagrangian must be a function of xµ1 − xµ2 . The following two terms ηµν ẋ
µ
1 ẋ

ν
2 and

ηµν(x
µ
1 − xµ2 )(x

ν
2 − xν1), where ηµν is Minkowski's metric tensor, are Poincaré invariant. If we

consider that the evolution parameter τ is dimensionless, these terms have both dimensions of
length squared. It therefore implies that its quotient is dimensionless and therefore invariant
under spacetime dilations. The other requirement is that the Lagrangian is a homogeneous
function of �rst degree of the τ−derivatives of the kinematical variables. The squared root
will do the job. A �nal discrete symmetry will be assumed because when the two particles are
the same, and therefore indistinguishable, the interaction Lagrangian must be invariant under
the interchange 1 ↔ 2 between the labels of the two particles. We thus arrive to the S group
invariant Lagrangian

L̃I = g

√
ηµν ẋ

µ
1 ẋ

ν
2

ηµν(x
µ
1 − xµ2 )(x

ν
2 − xν1)

= g

√
ṫ1ṫ2 − ṙ1 · ṙ2

(r2 − r1)2 − (t2 − t1)2

where g is a coupling constant.
Alternative Lagrangians which ful�ll these requirements can be constructed. For instance,

L̃ = g(ẋ1 − ẋ2)
µ(x1 − x2)µ/(x1 − x2)

2, but this one is a total τ−derivative of the function
log(x1 − x2)

2. Another could be L̃ = g(ẋ1 + ẋ2)
µ(x1 − x2)µ/(x1 − x2)

2, also dimensionless
and linear in the derivatives of the kinematical variables, but it reverses its sign under the
interchange 1 ↔ 2, and thus all interaction observables, like the interaction energy are reversed,
which is physically meaningless for two alike particles.

The interaction between two Dirac particles is not unique. We know that among leptons
and quarks there are short range interactions like the weak and strong interactions and a short
and long range one like the electromagnetic interaction. The proposed Lagrangian has the
advantage of describing an interaction which is scale invariant and thus it is valid as a long and
short range interaction and which has a Coulomb-like behaviour when the spin is supressed, as
we shall see in the next section. In this way it suplies a kind of generalization of an action at a
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distance electromagnetic interaction. The novelty is that this interaction Lagrangian has been
obtained by assuming a spacetime symmetry group larger than the Poincaré group.

4.5.1 Synchronous description

Once an inertial observer is �xed we shall consider a synchronous time description, i.e. to
use as evolution parameter the own observer's time t which is the same as the two time variables
t1 and t2. In this case, t = t1 = t2, ṫ1 = ṫ2 = 1, and thus

LI = g

√
1− u1 · u2

(r2 − r1)2
= g

√
1− u1 · u2

r
(4.70)

where r = |r1 − r2| is the instantaneous separation between the corresponding charges in this
frame and ua = dra/dt the velocity of the charge of particle a.

An average over the charge position and velocity in the centre of mass of particle 1 implies
that < r1 >= q1 and < u1 >= 0, so that the interaction becomes the instantaneous Coulomb
interaction, between the centre of mass of the �rst particle and the charge position of the other.
The average over the other then corresponds to the instantaneous Coulomb interaction of two
spinless point particles because when neglecting the zitterbewegung we are suppressing the spin
structure.

It is suggesting that g ∼ ±e2 in terms of the electric charge of each particle and where the
± sign depends on the kind of particles either of opposite or equal charge.

4.6 Appendix: The group W ⊗ SU(2)T ⊗ U(1)Q

Under in�nitesimal time and space translations of parameters δτ and δb, respectively, the
kinematical variables transform as

t′ = t+ δτ, r′ = r + δb, u′ = u, α′ = α, β′ = β

so that the self-adjoint generators of translations are

H = i
∂

∂t
, P = −i∇, [H,P ] = 0.

Under an in�nitesimal spacetime dilation of normal parameter δλ, they transform in the way:

t′ = t+ tδλ, r′ = r + rδλ, v′ = v, α′ = α, β′ = β + δλ

so that the generator takes the form (~ = 1)

D = it
∂

∂t
+ ir · ∇+ i

∂

∂β
= tH − r · P −B, [D,H] = −iH, [D,Pj ] = −iPj .

To describe orientation we can represent every element of the rotation group by the three-vector
α = αn, where α is the rotated angle and n is a unit vector along the rotation axis. This is
the normal or canonical parameterization. Alternatively we can represent every rotation by the
three-vector ρ = tan(α/2)n. In this case, every rotation matrix takes the form

R(ρ)ij =
1

1 + ρ2
(
(1− ρ2)δij + 2ρiρj + 2ϵikjρk

)
.

The advantage of this parameterization is that the composition of rotations R(ρ′) = R(µ)R(ρ)
takes the simple form

ρ′ =
µ+ ρ+ µ× ρ

1− µ · ρ
.
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Under an in�nitesimal rotation of parameter δµ = δα/2, in terms of the normal parameter, the
kinematical variables transform as

δt = 0, δβ = 0

δri = −2ϵijkrjδµk

δui = −2ϵijkujδµk

δρi = (δik + ρiρk + ϵiklρl) δµk,

so that the variation of the kinematical variables per unit of normal rotation parameter δαk is

δtk = 0, δβk = 0

δrik = −ϵijkrj
δuik = −ϵijkuj

δρik =
1

2
[δik + ρiρk + ϵiklρl] ,

and the self-adjoint generators Jk, are

Jk = iϵijkrj
∂

∂ri
+ iϵijkuj

∂

∂ui
+

1

2i

(
∂

∂ρk
+ ρkρi

∂

∂ρi
+ ϵiklρl

∂

∂ρi

)
.

They can be separated into three parts, according to the di�erential operators involved, with
respect to the three kinds of kinematical variables r, u and ρ, respectively:

J = L+Z +W ,

Lk = iϵijkrj
∂

∂ri
,

Zk = iϵijkuj
∂

∂ui
, Wk =

1

2i

(
∂

∂ρk
+ ρkρi

∂

∂ρi
+ ϵiklρl

∂

∂ρi

)
. (4.71)

They satisfy the angular momentum commutation rules and commute among themselves:

[Lj , Lk] = iϵjklLl, [Zj , Zk] = iϵjklZl, [Wj ,Wk] = iϵjklWl,

[L,Z] = [L,W ] = [Z,W ] = 0.

and thus
[Jj , Jk] = iϵjklJl, [J ,H] = [J , D] = 0, [Jj , Pk] = iϵjklPl.

The above orientation variable ρ, under a general boost of velocity v, transforms as

ρ′ =
ρ+ F (v,u,ρ)

1 +G(v,u,ρ)
,

where

F (v,u,ρ) =
γ(v)

1 + γ(v)
(u× v + v(u · ρ) + (u× ρ)× v) ,

G(v,u,ρ) =
γ(v)

1 + γ(v)
(u · v + v · (u× ρ)) , γ(v) = (1− v2)−1/2.
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Finally, under an in�nitesimal boost of value δv, γ(v) ≈ 1, the kinematical variables trans-
form as

δt = r · δv
δr = tδv

δu = δv − u(u · δv)
δρ = − [ρ(u · δv) + ρ ((u× ρ) · δv)− u× δv − δv(u · ρ)−

(u× ρ)× δv] /2,

δβ = 0,

and the variation of these variables per unit of in�nitesimal velocity parameter δvj is

δtj = rj

δrij = tδij

δvij = δij − uiuj

δρij = −1

2
[ρjui + ρiϵjklukρl − ϵikjuk − δijukρk] ,

δβj = 0,

so that the boost generators Kj have the form

Kj = irj
∂

∂t
+ it

∂

∂rj
+ i

(
∂

∂uj
− ujui

∂

∂ui

)
+

1

2i

(
ρjui

∂

∂ρi
+ ρiϵjklukρl

∂

∂ρi
− ϵikjuk

∂

∂ρi
− ukρk

∂

∂ρj

)
Similarly, the generatorsKj can be decomposed into three parts, according to the di�erential

operators involved and we represent them with the same capital letters as in the case of the J
operators but with a tilde:

K = L̃+ Z̃ + W̃ , L̃j = irj
∂

∂t
+ it

∂

∂rj
, Z̃j = i

(
∂

∂uj
− ujui

∂

∂ui

)
,

W̃j =
1

2i

(
ρjui

∂

∂ρi
+ ρiϵjklukρl

∂

∂ρi
+ ϵjkiuk

∂

∂ρi
− ukρk

∂

∂ρj

)
They satisfy the commutation rules:

[L̃j , L̃k] = −iϵjklLl, [Z̃j , Z̃k] = −iϵjklZl, [L̃, Z̃] = [L̃, W̃ ] = 0,

and also
[Kj ,Kk] = −iϵjklJl.

We can check that
Z̃ = u×Z, W̃ = u×W .

If we de�ne the spin operator S = Z + W , and the part of the kinematical momentum
S̃ = Z̃ + W̃ = u× S, they satisfy

[Sj , Sk] = iϵjklSl, [Sj , S̃k] = iϵjklS̃l, [S̃j , S̃k] = −iϵjklSl,

where in the last expression we have used the constraint u2 = 1. They generate the Lie algebra
of a Lorentz group which commutes with spacetime translations [S, pµ] = [S̃, pµ] = 0.



170 CHAPTER 4. DIRAC PARTICLE

With respect to the part SU(2)T , let us calculate its generators. This group, with in�nites-
imal parameters δνk, when acting on the kinematical variables in the form:

δt = 0, δβ = 0, δri = 0, δui = 0, δρi = (δik + ρiρk + ϵiklρl) δνk,

In the ρ parameterization of the rotation group, the unit vectors of the body frame ei, i = 1, 2, 3
have the following components:

(ei)j = R(ρ)ji,

so that the Tk = ek ·W operators of projecting the rotational angular momentum W onto the
body frame are given by

Tk =
1

2i

(
∂

∂ρk
+ ρkρi

∂

∂ρi
− ϵiklρl

∂

∂ρi

)
. (4.72)

They di�er from the Wk in (4.71) by the change of ρ by −ρ, followed by a global change of
sign. They satisfy the commutation relations

[Tj , Tk] = −iϵjklTl. (4.73)

The minus sign on the right hand side of (4.73) corresponds to the di�erence between the active
and passive point of view of transformations. The rotation of the laboratory axis (passive
rotation) has as generators the J , which satisfy [Jj , Jk] = iϵjklJl. The Ti correspond to the
generators of rotations of the particle axis (active rotation), so that, the generators −Ti will
also be passive generators of rotations and satisfy [−Tj ,−Tk] = iϵjkl(−Tl).

In the normal parameterization of rotations α = αn, if we describe the unit vector n
along the rotation axis by the usual polar and azimuthal angles θ and ϕ, respectively, so that
n ≡ (sin θ cosϕ, sin θ sinϕ, cos θ), the above Wi generators take the form

W1 =
1

2i

[
2 sin θ cosϕ

∂

∂α
+

(
cos θ cosϕ

tan(α/2)
− sinϕ

)
∂

∂θ
−(

sinϕ

tan(α/2) sin θ
+

cos θ cosϕ

sin θ

)
∂

∂ϕ

]
, (4.74)

W2 =
1

2i

[
2 sin θ sinϕ

∂

∂α
+

(
cos θ sinϕ

tan(α/2)
+ cosϕ

)
∂

∂θ
−(

cos θ sinϕ

sin θ
− cosϕ

tan(α/2) sin θ

)
∂

∂ϕ

]
, (4.75)

W3 =
1

2i

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
+

∂

∂ϕ

]
, (4.76)

W 2 = −
[
∂2

∂α2
+

1

tan(α/2)

∂

∂α
+

1

4 sin2(α/2)

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

}]
, (4.77)

W+ =W1 + iW2 =
eiϕ

2i

[
2 sin θ

∂

∂α
+

cos θ

tan(α/2)

∂

∂θ
+ i

∂

∂θ
− cos θ

sin θ

∂

∂ϕ
+

i

tan((α/2)) sin θ

∂

∂ϕ

]
, (4.78)
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W− =W1 − iW2 =
e−iϕ

2i

[
2 sin θ

∂

∂α
+

cos θ

tan(α/2)

∂

∂θ
− i

∂

∂θ
− cos θ

sin θ

∂

∂ϕ
−

i

tan(α/2) sin θ

∂

∂ϕ

]
, (4.79)

and the passive Ti generators take the form

T1 =
−i
2

[
2 sin θ cosϕ

∂

∂α
+

(
cos θ cosϕ

tan(α/2)
+ sinϕ

)
∂

∂θ
−(

sinϕ

tan(α/2) sin θ
− cos θ cosϕ

sin θ

)
∂

∂ϕ

]
, (4.80)

T2 =
−i
2

[
2 sin θ sinϕ

∂

∂α
+

(
cos θ sinϕ

tan(α/2)
− cosϕ

)
∂

∂θ
−(

−cos θ sinϕ

sin θ
− cosϕ

tan(α/2) sin θ

)
∂

∂ϕ

]
, (4.81)

T3 =
−i
2

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
− ∂

∂ϕ

]
. (4.82)

Ti are related to Wi by changing α into −α.
The normalized eigenvectors of W 2 = T 2 and W3 and T3 for w = t = 1/2, written in the

form |w3, t3 >, (which are also eigenvectors of Z2 with z = 0) are written as |0; s3, t3 >

Φ1 = |1/2,−1/2 >= i
√
2 sin(α/2) sin θeiϕ, (4.83)

Φ2 = | − 1/2,−1/2 >=
√
2 (cos(α/2)− i cos θ sin(α/2)) (4.84)

Φ3 = |1/2, 1/2 >= −
√
2 (cos(α/2) + i cos θ sin(α/2)) , (4.85)

Φ4 = | − 1/2, 1/2 >= −i
√
2 sin(α/2) sin θe−iϕ. (4.86)

The rising and lowering operators W± and the corresponding T± transform them among each
other. {Φ1,Φ2} are related by W±, and similarly the {Φ3,Φ4} while the sets {Φ1,Φ3} and
{Φ2,Φ4} are separately related by T±. For instance

W−Φ1 = Φ2, W−Φ2 = 0, W−Φ3 = Φ4,

T−Φ1 = Φ3, T−Φ3 = 0, T−Φ2 = Φ4.

They form an orthonormal set with respect to the normalized invariant measure de�ned on
SU(2)

dg(α, θ, ϕ) =
1

4π2
sin2(α/2) sin θ dα dθ dϕ,

α ∈ [0, 2π], θ ∈ [0, π], ϕ ∈ [0, 2π].∫
SU(2)

dg(α, θ, ϕ) = 1.

The wavefunction ψ can be separated in the form

ψ(t, r,u,α) =

i=4∑
i=1

ϕi(t, r)χi(u,α)

where the four χi can be classi�ed according to the eigenvalues |s3, t3 >. The functions ϕi(t, r)
can be chosen as eigenfunctions of the Klein-Gordon operator

pµp
µϕi(t, r) = m2

iϕi(t, r).
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The functions χ(u,α) can also be separated because the total spin S with s = 1/2, is the sum
of the two parts S = Z + W , with [Z,W ] = 0, so that since the W part contributes with
w = 1/2 then the Z part contributes with z = 0 or z = 1. The z = 0 contribution corresponds
to the functions χi(α) independent of the velocity variables and the orthonormal set are the
above Φi, i = 1, 2, 3, 4, which can also be written in the form |z; s3, t3 >, with z = 0.

Because Z = −iu×∇u, for the z = 1 part the eigenvectors of Z2 and Z3 are the spherical
harmonics Y i

1 (β, λ), i = −1, 0, 1. The variables β and λ represent the orientation of the velocity
vector u. Because [Zi,Wj ] = 0, we can again separate the variables in the functions χ(u,α).
In this case the χ(u,α) =

∑
ϕi(β, λ)λi(α, θ, ϕ). The four orthonormal vectors, eigenvectors of

S3, Z2 with z = 1 and T3, |1; s3, t3 >, are now

Ψ1 = |1; 1/2, 1/2 >= 1√
3

(
Y 0
1 (β, λ)Φ1 −

√
2Y 1

1 (β, λ)Φ2

)
, (4.87)

Ψ2 = |1;−1/2, 1/2 >=
1√
3

(
−Y 0

1 (β, λ)Φ2 +
√
2Y −1

1 (β, λ)Φ1

)
, (4.88)

Ψ3 = |1; 1/2,−1/2 >=
1√
3

(
Y 0
1 (β, λ)Φ3 −

√
2Y 1

1 (β, λ)Φ4

)
, (4.89)

Ψ4 = |1;−1/2,−1/2 >=
1√
3

(
−Y 0

1 (β, λ)Φ4 +
√
2Y −1

1 (β, λ)Φ3

)
. (4.90)

where Φi are the same as those in (4.83-4.86) and the spherical harmonics Y i
1 (β, λ) are

Y 1
1 = −

√
3

8π
sin(β)eiλ̃, Y 0

1 =

√
3

4π
cos(β), Y −1

1 =

√
3

8π
sin(β)e−iλ̃. (4.91)

The Zi operators are given by

Z1 = i sinλ
∂

∂β
+ i

cosβ

sinβ
cosλ

∂

∂λ
, Z2 = −i cosλ ∂

∂β
+ i

cosβ

sinβ
sinλ

∂

∂λ
,

Z3 = −i ∂
∂λ
.

The rising and lowering operators Z± are

Z± = e±iλ

(
± ∂

∂β
+ i

cosβ

sinβ

∂

∂λ

)
,

so that
Z−Y

1
1 =

√
2 Y 0

1 , Z−Y
0
1 =

√
2 Y −1

1 .

The four spinors Ψi are orthonormal with respect to the invariant measure

dg(β, λ;α, θ, ϕ) =
1

4π2
sin2(α/2) sin θ sinβ dα dθ dϕ dβdλ

α ∈ [0, 2π], β, θ ∈ [0, π], λ, ϕ ∈ [0, 2π].

Similarly as before, the rising and lowering operators S± = Z± +W± and the corresponding
T± transform the Ψi among each other. In particular {Ψ1,Ψ2} are related by S±, and similarly
{Ψ3,Ψ4} while the sets {Ψ1,Ψ3} and {Ψ2,Ψ4} are separately related by T±. This is the reason
why the general spinor in this representation is a four-component object.

In the z = 0 basis Φi (4.83-4.86), the spin operators and the basis vectors of the body frame
take the form

S =
1

2

(
σ 0
0 σ

)
= W ,
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T1 =
1

2

(
0 I
I 0

)
, T2 =

1

2

(
0 −iI
iI 0

)
, T3 =

1

2

(
I 0
0 −I

)
,

e1 =
−1

3

(
0 σ
σ 0

)
, e2 =

−1

3

(
0 −iσ
iσ 0

)
, e3 =

−1

3

(
σ 0
0 −σ

)
,

in terms of the Pauli σ matrices and the 2× 2 unit matrix I.
In the z = 1 basis Ψi (4.87-4.90), the operators Si and Ti take the same matrix form as

above, while the ei are

e1 =
1

9

(
0 σ
σ 0

)
, e2 =

1

9

(
0 −iσ
iσ 0

)
, e3 =

1

9

(
σ 0
0 −σ

)
.

In all cases, the 6 Hermitian traceless matrices Si, Tj , the nine Hermitian traceless matrices
eij and the 4× 4 unit matrix are linearly independent and they completely de�ne a Hermitian
basis for Dirac's algebra, so that any other translation invariant observable of the particle will
be expressed as a real linear combination of the above 16 Hermitian matrices. We have used
this fact previously to explicitely obtain Dirac's equation for this model.

Both representations are orthogonal to each other, < Φi|Ψj >= 0, and they produce two
di�erent irreducible representations of the group, so that they describe two di�erent kinds of
particles of the same spin 1/2.

The matrix representation of the Zi and Wi operators in the basis Ψi are given by

Z =
2

3

(
σ 0
0 σ

)
, W =

−1

6

(
σ 0
0 σ

)
,

although the spinors Ψi are not eigenvectors of Z3 and W3.
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Chapter 5

Electromagnetic structure of the

electron

5.1 Electromagnetic structure of the electron

Let us consider that the classical electron is described by the model whose charge is moving
in circles at the speed of light in the center of mass frame.

One of the immediate questions concerning the classical structure of the electron is, what is
the associated electromagnetic �eld of the particle? We see that the charge is accelerated and
according to the classical electromagnetic theory, the particle must necessarily radiate contin-
uously. However, from the mechanical point of view we have produced a classical free system,
such that properties like the mechanical energy and mechanical linear and angular momentum
are conserved in time. The Lagrangian that describes the system is Poincaré invariant, and
if we think about a free system, the corresponding �eld structure cannot produce loss of en-
ergy and linear momentum. The free particle has to have associated an electromagnetic �eld
without radiation. Radiation has to be produced whenever the center of mass of the particle is
accelerated, i.e., when the particle is no longer free.

There must exist radiationless solutions of Maxwell's equations, associated to point charges
moving in circles at the speed of light. One possibility is to consider solutions derived from the
Liénard-Wiechert potentials (Aµ

ret+A
µ
adv)/2, whereA

µ
ret andA

µ
adv are the corresponding retarded

and advanced potentials. But, even if we take as the probable electric �eld (Eret + Eadv)/2,
it is neither static nor Coulomb-like, and therefore it does not look like the estimated electric
�eld of a point electron. We shall consider next a particular static solution: the time average
�eld during a complete turn of the charge.

5.1.1 The time average electric and magnetic �eld

Let us assume that we have a test charge in the neighborhood of the electron. The frequency
of the zitterbewegung is very high, of order ∼ 1021 s−1. If our test particle is moving slowly,
then presumably the detected electric �eld will be some time average �eld during a complete
turn of the charge.

The retarded (or advanced) electric �eld of a point charge at the observation point x at
time t is given by 1

E = Eβ +Ea,

where

Eβ(t,x) =
e(1− β2)

R2(1− n · β)3
(n− β) , (5.1)

1 A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles, Dover, N.Y. (1980).
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Ea(t,x) =
e

Rc2(1− n · β)3
n× ((n− β)× a) , (5.2)

are the velocity and acceleration �elds, respectively. Observables r, u = dr/dt and a = du/dt,
are the position, velocity and acceleration of the charge, evaluated at the retarded (or advanced)
time t̃ = t−R/c, (or t̃ = t+R/c). Vector β = u/c, and

n =
x− r

|x− r|
, R = |x− r|.

The corresponding magnetic �eld is B = n × E/c. Because for the electron the charge is
moving at the speed of light β = 1, the velocity �eld Eβ vanishes, and it seems that the only
�eld contribution behaves as 1/R.

The complete analytical expression of a time average �eld at any arbitrary point has not
yet been obtained. However, to obtain an estimate, let us compute the average �eld on some
particular point. Let us consider that the electron is at rest, with the center of mass at the
origin of a reference frame. The constant spin is pointing along the OZ axis. We shall try to
calculate this average �eld at a point P of coordinate z in this OZ axis. In Figure 5.1, we
represent the di�erent magnitudes at the retarded time t̃, needed to apply equation (5.2).

Figure 5.1: Instantaneous electric �eld of the electron at point P has a component along
−a⊥ and −β.

In that particular point shown in the �gure, n · β = 0, and thus

E =
e

c2R
(n× (n× a)− n× (β × a)) =

e

c2R
(−a⊥ − β(n · a)) ,

where vector a⊥ = a − n(a · n), is the component of the acceleration orthogonal to the unit
vector n. For the observation point P , the expression n · a is constant at any retarded point,
and the time average of β during a complete turn is zero, and for the vector a⊥ it reduces to
its z-component a⊥ sinα. Since the acceleration in this frame is a = c2/R0, a⊥ = a cosα and
sinα = R0/R and cosα = z/R, the time average electric �eld at point P is

E(z) =
ez

(R2
0 + z2)3/2

ẑ, (5.3)

where ẑ is a unit vector along the OZ axis. The advanced �eld has exactly the same expression.
This is a radial �eld from the origin of the reference frame with a Coulomb-like behaviour 1/z2,
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but it does not diverge at the origin. We depict this �eld in Figure 5.2, for comparison with the
Coulomb �eld of a point charge at the origin, where we take as a unit of length the radius R0

of the internal motion.
We can clearly see the �tting of the average �eld and the Coulomb �eld for large z, around

|z| ≥ 5R0. The maximum of the average �eld takes place at z = R0/
√
2. If we consider that the

static �eld of a pointlike electron is this time average �eld, then the electrostatic energy does
not diverge and the energy will be renormalized. The instantaneous �eld diverges at the charge
position like 1/R, the energy behaves like 1/R2 and the volume element goes like 4πR2dR, and
therefore there is no divergence of the energy in the surrounding of the charge. Nevertheless
there are other points of the zitterbewegung plane, in which the instantaneous �eld also diverges,
and the computation of the energy is still to be done.

Figure 5.2: Average retarded (or advanced) electric �eld (5.3) and Coulomb �eld along the
OZ axis.

However, if we are involved in high energy processes, our test particle is moving su�ciently
fast relative to the electron, then the �eld it feels is the instantaneous 1/R �eld, which is greater
than the average �eld, and becomes important for points closer to the electron. This means that
the average energy density of the local instantaneous �eld is greater than the average Coulomb-
like energy density, and we can naively interpret this di�erence, from the classical point of view,
as the energy associated to the cloud of virtual photons in the surroundings of the particle. Is
this the corresponding in�nite energy which is usually cancelled out in the renormalization of
quantum electrodynamics?

To compute numerically the average �eld at an arbitrary position, let us consider the di�erent
magnitudes depicted in Figure 5.3.

If at time t = 0 the charge is located at point A on the OX axis, then at time t the di�erent
observables shown in the �gure are described in Cartesian coordinates and in the laboratory
frame by

k = R0[cosωt, sinωt, 0] ≡ R0k̃, β =
u

c
= [− sinωt, cosωt, 0],

r = [x, y, z], a =
du

dt
=

c2

R0
[− cosωt,− sinωt, 0] =

c2

R0
â,

R = r − k = R0(r̃ − k̃), n =
R

R
, R = |R| = R0R̃.

With these de�nitions, �eld (5.2) can be written as

E(t, r) =

(
e

R2
0

)
n× ((n− β)× â)

(1− n · β)3R̃
.
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Figure 5.3: Charge motion and observation point P .

We want to compare the time average value of this �eld with the static Coulomb �eld of a point
charge e at the center of mass

E0(r) =

(
e

R2
0

)
r̂

r2
,

where r̂ is a unit vector in the radial direction. The constant factor in brackets in front of these
formulae will be dropped out from now on. In this way the unit of length is the zitterbewegung
radius R0.

When the charge is at the point indicated in Figure 5.3, the retarded �eld it produces at
point P is evaluated at the observation time to = t + R/c. Thus dto = dt + dR̃/ω, because
R0/c = 1/ω. If we express dR̃ in terms of dt, we get dto = (N(t)/R̃(t))dt, where N and R̃ are
explicitly given by

R̃(t) =
√

(x̃− cosωt)2 + (ỹ − sinωt)2 + z̃2,

N(t) = R̃(t) + x̃ sinωt− ỹ cosωt.

We are going to average the �eld at P with respect to the observation time at that point during
a complete period of the motion of the charge T . If we de�ne a dimensionless evolution time
τ = ωt, then ωT = 2π and thus

1

T

∫ T

0
E(to) dto =

1

T

∫ T

0
E(t)

N(t)

R̃(t)
dt =

1

2π

∫ 2π

0
E(τ)

N(τ)

R̃(τ)
dτ. (5.4)

In terms of the τ evolution the di�erent expressions are

n× (n× â) = n(n · â)− â,

and

n(n · â) = 1− x̃ cos τ − ỹ sin τ

R̃2
[x̃− cos τ, ỹ − sin τ, z̃],

â = [− cos τ,− sin τ, 0],

while
n× (β × â) =

1

R̃
[ỹ − sin τ,−x̃+ cos τ, 0],
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and

1− n · β =
1

R̃

(
R̃+ x̃ sin τ − ỹ cos τ

)
.

We are interested in the radial and transversal part of the �eld Er = E · r̂, Eθ = E · θ̂,
and Eϕ = E · ϕ̂, respectively. Here r̂, θ̂ and ϕ̂ are respectively the usual unit vectors in polar
spherical coordinates. If we consider that the observation point P is on the plane XOZ, then
we have to take x̃ = r sin θ, ỹ = 0 and z̃ = r cos θ, where r is the radial separation from the
origin in units of R0.

The �nal expressions for the �eld components are

Er(r, θ, τ) =
(R̃2 − r2 − 1) sin θ cos τ + R̃ sin θ sin τ + r(1 + sin2 θ cos2 τ)(

R̃+ r sin θ sin τ
)3 ,

Eθ(r, θ, τ) =

[
(R̃2 − 1) cos τ + R̃ sin τ + r sin θ cos2 τ

]
cos θ(

R̃+ r sin θ sin τ
)3 ,

Eϕ(r, θ, τ) =
(R̃2 − 1) sin τ + R̃(r sin θ − cos τ) + r sin θ sin τ cos τ(

R̃+ r sin θ sin τ
)3 ,

with
R̃ =

√
r2 − 2r sin θ cos τ + 1.

To take the time average value of the above �elds we have to perform the integration (5.4) so
that the above expressions of Er, Eθ and Eϕ have to be multiplied by N(τ)/R̃(τ), where now

N(τ) = R̃+ r sin θ sin τ.

The average retarded radial electric �eld for θ = 0 is already depicted in Figure 5.2 but we
also include it in the next Figure 5.4. We see the Coulomb behavior of the radial component
for the directions θ = 0, π/3, π/4, π/6. Similarly, in Figure 5.5 is displayed the transversal
component of the average retarded electric �eld < Eθ(r, θ) > for the same directions, that goes
to zero very quickly. For θ = π/2, we see that < Eθ(r, π/2) >= 0. The average < Eϕ(r, θ) >
vanishes everywhere for any θ ̸= π/2. On the plane θ = π/2 the numerical routine fails.
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Figure 5.4: Time average < Er(r) > of the radial component of the retarded electric �eld
in the directions θ = 0, π/3, π/4 and π/6.
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Figure 5.5: Time average of the component < Eθ(r) > of the retarded electric �eld in the
directions θ = 0, π/3, π/4 and π/6. It goes to zero very quickly. For θ = π/2 it vanishes
everywhere.

The average magnetic �eld can be computed in the same way. Here we shall consider only
the retarded solution and we will compare it with the magnetic �eld produced by an intrinsic
magnetic moment µ placed at the center of mass. This magnetic �eld is 2

B0(r) =
3r̂(r̂ · µ)− µ

c2r3
.

For our system the magnetic moment produced by the moving charge is of value ecR0/2 in the
direction of OZ, so that in units of R0 it can be written as

B0(r) =

(
e

2cR2
0

)
3r̂(r̂ · ẑ)− ẑ

r̃3
.

The nonvanishing components are

B0r(r, θ) =

(
e

cR2
0

)
cos θ

r̃3
, B0θ(r, θ) =

(
e

cR2
0

)
sin θ

2r̃3
. (5.5)

In our model, the instantaneous magnetic �eld is B = n×E/c. Their components can be
written, after deleting a constant factor e/cR2

0, as:

Br(r, θ, τ) =
(1− r sin θ cos τ) cos θ(
R̃+ r sin θ sin τ

)3 ,

Bθ(r, θ, τ) =
r cos τ(1 + sin2 θ)− (1 + r2) sin θ − R̃r sin τ(

R̃+ r sin θ sin τ
)3 ,

Bϕ(r, θ, τ) =
(R̃ cos τ + sin τ)r cos θ(
R̃+ r sin θ sin τ

)3 .

To proceed with the retarded time average integral we have to multiply the above �elds by
N(t)/R̃(t), as before. The numerical integration is compared with the analytical expression of
the magnetic �eld of a dipole (5.5) for di�erent directions.

The magnetic dipole �eld (5.5) goes to in�nity when r → 0. In Figures 5.6-5.8 we show
the matching of the B0r(r) components of the dipole and the computed time average value
< Br(r, θ) >, for r > R0 and in the directions given by θ = π/6, π/4 and π/3. Similarly, in
Figures 5.9-5.11, for the corresponding B0θ(r, θ) and < Bθ(r, θ) > components.
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Figure 5.6: Radial components of the dipole �eld B0r(r) and the time average retarded
magnetic �eld < Br(r) >, along the direction θ = π/6.
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Figure 5.7: Radial components of the dipole �eld B0r(r) and the time average retarded
magnetic �eld < Br(r) >, along the direction θ = π/4.
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Figure 5.8: Radial components of the dipole �eld B0r(r) and the time average retarded
magnetic �eld < Br(r) >, along the direction θ = π/3.
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Figure 5.9: Time average retarded magnetic �eld < Bθ(r) > and the dipole �eld B0θ(r),
along the direction θ = π/6.
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Figure 5.10: Time average retarded magnetic �eld < Bθ(r) > and the dipole �eld B0θ(r),
along the direction θ = π/4.
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Figure 5.11: Time average retarded magnetic �eld < Bθ(r) > and the dipole �eld B0θ(r),
along the direction θ = π/3.
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The computed time averages < Br(r) > and < Bθ(r) > do not diverge at the origin but
have the behavior depicted in 5.12 and 5.13, respectively, when represented along the directions
θ = 0, π/3, π/4 and π/6, and they take the values cos θ and − sin θ respectively, at point r = 0.
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Figure 5.12: Time average retarded magnetic �eld < Br(r) > along the directions θ =
0, π/3, π/4 and π/6 and its behavior at r = 0. For θ = π/2 it vanishes everywhere.
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Figure 5.13: Time average retarded magnetic �eld < Bθ(r) > along the directions θ =
0, π/3, π/4 and π/6 and its behavior at r = 0.

The time average value of the transversal component < Bϕ(r, θ) > vanishes everywhere for
all directions.

To end this section we can think about the possibility of computing the average �elds using
the advanced solutions in spite of the retarded ones.

In that case the observation time will be related with the laboratory time by to = t−R/c,
and therefore dto = (M(t)/R̃(t))dt, where R̃(t) is the same as before, but

M(t) = R̃(t)− x̃ sinωt+ ỹ cosωt.

Then, if we depict, for instance, the advanced average radial electric �eld in Figure 5.14, for the
same directions as in Figure 5.4, we see the di�erent behavior in these radial directions and,
although the �eld decreases for large distances, it nevertheless does not �t with a Coulomb �eld.

The numerical routine fails to compute the corresponding integrals for θ = π/2 where we
have some inde�niteness of the integrands for observation points lying on theXOY plane. There
are no singularities for points inside the circle of radius R0. We have a divergence of order 1/r
for points on this circle, but this divergence can be removed by taking a principal value of the
time integral. Finally, the quotient term 1 − n · β can vanish for some observation points on

2 J.D. Jackson, Classical Electrodynamics, John Wiley and Sons, NY 3rd. ed. (1998).
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Figure 5.14: Time average radial component < Er(r) > of the advanced electric �eld in the
directions θ = 0, π/3, π/4 and π/6.

the XOY plane outside the circle of radius R0, whenever the retarded n and β become parallel
vectors. But this can happen only for a single point of the retarded charge position in the
average integral and perhaps some kind of principal value should be taken to properly obtain
a �nite average value. The di�culties of obtaining an analytical estimate for these integrals
make this analysis incomplete. Nevertheless, the nice �tting of the average electric �eld with a
Coulomb �eld and the average magnetic �eld with the �eld of a magnetic dipole, for distances
of a few Compton wave lengths away, except on the θ = π/2 plane where we have not been
able to obtain an estimate, suggests that we devote some e�ort to renormalize and improve the
model at a classical level.

5.1.2 Electromagnetic energy and angular momentum

If we compute the electromagnetic energy associated to the instantaneous �eld (5.2), since
B = n×E/c, it implies that the energy density is

1

2
ϵ0E

2 +
1

2µ0
B2 = ϵ0E

2,

and therefore the energy at any instant of observation time to is

E(to) =
∫
R3

ϵ0E
2(to)dV.

The value of E2(to) of the �eld, has to be evaluated from the location of the charge in the
corresponding retarded time t, with to = t + R/c, taking into account that a = (c2/R0)â,
a2/c4 = 1/R2

0, and that
[n× ((n− β)× a)]2 = a2(1− n · β)2

E2 =
e2a2

R2c4(1− n · β)4
=

e2

R2R2
0(1− n · β)4

=
e2

R4
0

1

R̃2(1− n · β)4

once the dimensionless distance R̃ = R/R0 is introduced. To write it in the International
System of Units, we have to replace e→ e/4πϵ0, and thus

E(to) =
∫
R3

ϵ0E
2dV =

ϵ0e
2R3

0

(4πϵ0)2R4
0

∫
R3

dṼ

R̃2(1− n · β)4
=

ϵ0e
2

(4πϵ0)2R0
M

where in the integral, the volume element dV = R3
0dṼ is expressed in terms of dimensionless

variables and thus the integral has to be a �nite and dimensionless numberM . Since the center
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of mass of the electron is at rest, the radius is R0 = ~/2mc and we assume that the whole
energy is pure electromagnetic, we can identify this energy with the rest energy of the electron

mc2 =
e22mc

4πϵ04π~
M, 1 =

e2

4πϵ0hc
M = αM, α ≃ 1

137
, (5.6)

where α is the �ne structure constant. Then the value of the electric charge e2 will be uniquely
determined (up to a sign) once the above integral should be computed. We have not yet
performed this integral, even numerically. It is expected that this integral gave the value
M ≃ 137 and the charge

e2 =
4πϵ0hc

M
.

An elementary particle of pure electromagnetic structure, which does not interact strongly, like
electrons, muons and tau particles, and the corresponding antiparticles, they all will have the
same unique value of the electric charge, independently of its mass. In the case of quarks, they
also interact strongly and therefore not all the structure is of electroweak form, and thus in the
equation (5.6) the electromagnetic energy will be a fraction k of the total rest energy mc2, and
thus

e2 = k
4πϵ0hc

M
, k < 1.

Quarks will have an electric charge smaller than the charge of the particles which only interact
electroweakly. The theory should give the value k = 1/9 or 4/9 for the up and down quarks,
respectively.

The value of the energy must be independent of the observation time to, since the motion
of the center of charge is stationary, and must be the same as the corresponding time average
value,

E =
1

T

∫ T

0
E(to)dto =

ϵ0
T

∫
R3

dV

∫ T

0
E2dto,

for any value T , in particular for the period of the internal motion.
If to is the observation time, the corresponding retarded time t where we have to determine

the position of the charge is t0 = t+R/c, dto = dt+ dR/c = dt+R0dR̃/c = dt+ dR̃/ω.
Because

R̃ =
√

(x̃− cosωt)2 + (ỹ − sinωt)2 + z̃2,

this leads to

1

ω
dR̃ =

1

R̃
(x̃ sinωt− ỹ cosωt) dt, dt0 =

1

R̃
(R̃+ x̃ sinωt− ỹ cosωt)dt.

1− n · β = 1− 1

R̃
R̃ · β =

1

R̃

(
R̃+ x̃ sinωt− ỹ cosωt

)
.

In the calculation of the average energy, with ωt = θ, ωT = 2π, we have that

E =
K

T

∫
R3

dṼ

∫ T

0

dt0

R̃2(1− n · β)4
=
K

2π

∫
R3

dṼ

∫ 2π

0

dθ

R̃2(1− n · β)3
, K =

e2mc

4πϵ0h
,

If we compute the electromagnetic angular momentum with respect to the origin, projected
into the direction of OZ axis, and we identify it with the mechanical angular momentum of the
particle ~/2, we obtain another equation

~
2
=

∫
R3

(r × g)zdV, g = ϵ0E ×B =
ϵ0
c
nE2,
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because E is orthogonal to n. The expression r × g ≃ r × n ≃ −r × k, in the �gure 5.3, we
see that the z-component of this expression is

~
2
=
ϵ0
c

∫
R3

(r × n)zE
2dV =

ϵ0e
2

c

∫
R3

ỹ cosωt− x̃ sinωt

R̃3(1− n · β)4
dṼ ,

which, in the International System of Units

1 =
e2

4πϵ0hc

∫
R3

ỹ cosωt− x̃ sinωt

R̃3(1− n · β)4
dṼ = αN

where N is the value of the above integral and must give the same value than the integral M .
We have not yet succeded in evaluating both integrals, which are expected to produce the

same number. They are

N =

∫
R3

R̃ (ỹ cosωt− x̃ sinωt)(
R̃− (ỹ cosωt− x̃ sinωt)

)4dṼ
M =

∫
R3

R̃2(
R̃− (ỹ cosωt− x̃ sinωt)

)4dṼ
If this ansatz is correct, M −N should vanish,

M −N =

∫
R3

R̃(
R̃− (ỹ cosωt− x̃ sinωt)

)3dṼ
By taking the time average value, integrate �rst in the local time of the particle, the integral to
be computed, making ωt = θ, is

M −N =

∫
R3

dṼ
1

2π

∫ 2π

0

dθ(√
1 + r2 − 2x cos θ − 2y sin θ + x sin θ − y cos θ

)2 .



Chapter 6

Some spin features

6.1 Gyromagnetic ratio

If we have a charged point particle of mass m and charge e moving in space, and let us
compute its angular momentum J and magnetic moment µ with respect to some point, these
properties satisfy

µ =
e

2m
J

In the case of the electron, the relationship between the spin and its magnetic moment with
respect to the center of mass, is

µ = g
e

2m
S, g = 2.

The dimensionless magnitude g is called the gyromagnetic ratio, because determines the re-
lationship between the magnetic property of generating a magnetic �eld with the mechanical
property associated to the rotation.

The g = 2 gyromagnetic ratio of the electron was considered for years a success of Dirac's
electron theory. 1 Later, Levy-Leblond 2 obtained similarly g = 2 but from a s = 1/2 non-
relativistic wave equation. Proca 3 found g = 1 for spin 1 particles and this led Belinfante 4

to conjecture that the gyromagnetic ratio for elementary systems is g = 1/s, irrespective of
the value s of its spin. He showed this to be true for quantum systems of spin 3/2, and a
few years later the conjecture was analyzed and checked by Moldauer and Case 5 to be right
for any half-integer spin, and by Tumanov 6 for the value s = 2. In all these cases a minimal
electromagnetic coupling was assumed.

Weinberg 7 made the prediction g = 2 for the intermediate bosons of the weak interactions
when analyzing the interaction of W bosons with the electromagnetic �eld by requiring a good
high-energy behavior of the scattering amplitude. The discovery of the charged W± spin 1
bosons with g = 2, contradictory to Belinfante's conjecture, corroborated Weinberg's prediction
and raised the question as to whether g = 2 for any elementary particle of arbitrary spin.

Jackiw 8 has given another dynamical argument con�rming that the gyromagnetic ratio of
spin-1 �elds is g = 2, provided a nonelectromagnetic gauge invariance is accepted. He also gives
some ad hoc argument for s = 2 �elds, consistent with the g = 2 prescription.

1 P.A.M. Dirac, Proc. Roy. Soc. London A117, 610 (1928).
2 J.M. Levy-Leblond, Comm. Math. Phys. 6, 286 (1967).
3 A. Proca, Compt. Rend. 202, 1420 (1936); Journ. Phys. Radium, 49, 245 (1988).
4 F.J. Belinfante, Phys. Rev. 92, 997 (1953).
5 P.A. Moldauer and K.M. Case, Phys. Rev. 102, 279 (1956).
6 V.S. Tumanov, Sov. Phys. JETP, 19, 1182 (1964).
7 S. Weinberg, in Lectures on Elementary Particles and Quantum Field Theory, edited by S. Deser, M.

Grisaru and H. Pendleton, MIT press, Cambridge, MA (1970), p. 283.
8 R. Jackiw, Phys. Rev. D 57, 2635 (1998).
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Ferrara et al. 9 in a Lagrangian approach for massive bosonic and fermionic strings, by
the requirement of a smooth �xed-charge M → 0 limit, get g = 2 as the most natural value
for particles of arbitrary spin. However the only known particles which ful�ll this condition
are leptons and charged W± bosons, i.e., charged fermions and bosons of the lowest admissible
values of spin. No other higher spin charged elementary particles have been found.

The aim of this section, instead of using dynamical arguments as in the previous attempts,
is to give a kinematical description of the gyromagnetic ratio of elementary particles 10 which
is based upon the double content of their spin operator structure.

The general structure of the quantum mechanical angular momentum operator with respect
to the origin of the observer frame, in either relativistic or nonrelativistic approach, is

J = r × ~
i
∇+ S = r × P + S, (6.1)

where the spin operator is

S = u× ~
i
∇u +W , (6.2)

and ∇u is the gradient operator with respect to the velocity variables and W is a linear di�er-
ential operator that operates only on the orientation variables α and therefore commutes with
the other. For instance, in the ρ = n tan(α/2) parameterization W is written as

W =
~
2i

[∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)] . (6.3)

The �rst part in (6.2), related to the zitterbewegung spin, has integer eigenvalues because
it has the form of an orbital angular momentum in terms of the u variables. Half-integer
eigenvalues come only from the operator (6.3). This operator W takes into account the change
of orientation, i.e., the rotation of the particle.

We have seen in either relativistic or non-relativistic examples that if the only spin content
of the particle S is related to the zitterbewegung part Z = u×U , then the relationship between
the magnetic moment and zitterbewegung spin is given by

µ =
e

2
k × dk

dt
= − e

2m
Z, (6.4)

i.e., with a normal up to a sign gyromagnetic ratio g = 1. If the electron has a gyromagnetic
ratio g = 2, this implies necessarily that another part of the spin is coming from the angular
velocity of the body, but producing no contribution to the magnetic moment.

Therefore for the electron, both parts W and Z contribute to the total spin. But the W
part is related to the angular variables that describe orientation and does not contribute to the
separation k between the center of charge and the center of mass. It turns out that the magnetic
moment of a general particle is still related to the motion of the charge by the expression (6.4),
i.e., in terms of the Z part but not to the total spin S. It is precisely when we try to express
the magnetic moment in terms of the total spin that the concept of gyromagnetic ratio arises.

Now, let us assume that both Z and W terms contribute to the total spin S with their
lowest admissible values.

For Dirac's particles, the classical zitterbewegung is a circular motion at the speed of light
of radius R = S/mc and angular frequency ω = mc2/S, in a plane orthogonal to the total spin.
The total spin S and the Z part, are both orthogonal to this plane and can be either parallel or
antiparallel. Let us de�ne the gyromagnetic ratio by Z = gS. For the lowest admissible values

9 S. Ferrara, M. Porrati and V.L. Telegdi, Phys. Rev. D 46, 3529 (1992).
10 M. Rivas, J.M.Aguirregabiria and A. Hernández, Phys. Lett. A 257, 21 (1999).
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of the quantized spins z = 1 and w = 1/2 in the opposite direction this gives rise to a total
s = 1/2 perpendicular to the zitterbewegung plane and then g = 2.

For s = 1 particles the lowest possible values compatible with the above relative orientations
are z = 2 and w = 1 in the opposite direction, thus obtaining again g = 2. The possibility
z = 1 and w = 0 is forbidden in the relativistic case because necessarily w ̸= 0 to describe
vector bosons with a multicomponent wave-function.

6.2 The electron clock

In the De Broglie thesis 11 it is postulated that: Every piece of isolated matter has an internal
periodic motion, of an unknown nature, whose frequency is ν = mc2/h. Nevertheless, Dirac
�nds that the frequency associated to the motion of the point r of the electron, is twice than the
frequency postulated by De Broglie. We have shown that this internal frequency corresponds
to the motion at the speed of light, of the center of charge around the center of mass, and
which describes an elementary particle of spin 1/2. This model satisifes Dirac equation when
quantized. This model is depicted is the front page. The motion is a circle of radius R0 = ~/2mc
and frequency ν0 = 2mc2/h, in the center of mass frame.

6.2.1 Measuring the electron clock

If the electron has the internal periodic motion described in our model, when the center
of mass moves with constant velocity, the trajectory of the center of charge has also a spatial
periodicity. We can talk of its wavelength as its spatial period, or equivalently the length run
by the center of mass during a complete turn of the center of charge. The frequency depends
also an the motion of the center of mass.

Let us assume the the center of mass is moving at the speed v as is depicted in the �gure
6.1. The center of charge follows a hellical trajectory at the speed of light, then its transversal
velocity is u⊥ =

√
c2 − v2, and therefore a moving electron takes more time to complete a

turn, and the electron clock is slower than for the electron at rest. If we call T0 = 2πR0/c to
the period of this internal motion for the center of mass observer, then for the observer who
sees the electron moving at the speed v it takes more time T = 2πR0/u⊥ = γ(v)T0, where
γ(v) = (1− v2/c2)−1/2.

If we sent an electron beam with a velocity v through a crystal, for instance a silicon crystal,
and the velocity is such that the spatial periodicity of the latice d = 3.84Å for Si, and the spatial
periodicity of the beam λ = vT , are commensurables, i.e., either d = kλ, or λ = nd, with k
and n integer numbers, then a resonant scattering of the beam with the atoms of the latice
can happen. If every electron gets a transversal linear momentum ∆p when interacts with an
atom, and a longitudinal linear momentum negligible when compared with p, when the electron
has crossed a region with N atoms, the transversal linear momentum will be N∆p, because the
interaction with each atom will be basically the same. This electron will be de�ected by an angle
of order N∆p/p. Gouanére et al.12, propose to measure the intensity of the electron beam which
crosses the crystal in the forward direction. Then they will exist some resonant linear momenta
for which the intensity of the beam will decrease because of this resonant transversal scattering.
In the �gure 6.2 it is represented the motion of two polarized electrons, one longitudinally (a)
and the other (b) transversally to the motion of the center of mass. We compare the spatial

11L. de Broglie, Thèse de doctorat (1924). Sommaire: . . . nous admettons dans le présent travail l'existence

d'un phénomène periodique d'une nature encore à préciser qui serait lié à tout morceau isolé d'énergie et qui

dépendrait de sa masse propre par l'équation de Planck-Einstein.
12M Gouanère, M. Spighel, N. Cue, MJ. Gaillard, R. Genre, R. Kirsch,JC. Poizat, J. Remillieux, P. Catillon

and L. Roussel Found. Phys. 38, 659, (2008).
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Figure 6.1: Motion of the center of mass of the electron with velocity v and hellical motion, at the
speed of light, of the center of charge of the free electron. The two angular momenta S and SCM

are depicted. They show that SCM is conserved, while S precessaround the linear momentum.
The transversal velocity of the center of charge is carga u⊥ =

√
c2 − v2, and therefore it takes more

time for a moving electron to complete a turn. The electron clock of a moving electron is going
slower by a factor γ(v) than the clock of the electron at rest.

periodicity of the motion of the center of charge of each electron with the periodicity of the
silicon latice.

When d = kλ, the electron interacts with every atom of the latice in the same way, and
in the case λ = nd, the interaction is every n atoms. In each interaction the transfer of
transversal linear momentum will be basically the same. A greater λ implies also a greater
linear momentum, and therefore the dispersion angle will be smaller. Since

d = kλ = kvT = kγ(v)vT0 =
kγ(v)v

ν0
=
kmγ(v)v

mν0
=

kp

mν0

there will exist some resonant linear momenta

pDk =
mν0d

k
=

161.748

k
MeV/c, k = 1, 2, . . . (Dirac frequency)

for which the detector will measure a decrease in the intensity of the outgoing beam.
In the mentioned experiment Gouanére et al., used a detector located at 3 m from the

silicon crystal with a window of 3× 3 mm, so that electrons scattered by an angle greater than
0.001 rad will not be detected. They try to measure De Broglie frequency, which is half Dirac's
frequency. In this case the resonant momenta satisfy

pBk =
mν0d

k
=

80.874

k
MeV/c, k = 1, 2, . . . (De Broglie frequency)

and they establish in their experiment a range for the linear momentum between 54 and 110
MeV/c, to obtain, at least, the �rst resonant frequency corresponding to k = 1. What they
obtained, see �gure 6.3, was the resonant peak for the value p = 81.1 MeV/c instead of the
expected p =80.874 MeV/c, which corresponds to k = 2 in the case when the internal frequency
is that of our model or Dirac's frequency.
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Figure 6.2: On the left part of the �gura it is represented the distribution of silicon atoms. The
nucleai are separated by a distance d = 3.84Å. On the right we have two possible motions. Motion
(a) is the projection on the XOY plane of the motion of the center of charge of an electron
polarized in the forward direction. In (b) the spin of the electron is transversal to the motion of
the center of mass. It is also depicted in red, the corresponding trajectory of the center od mass.
This motion and the crystal latice are not depicted at the same scale. λC = 2R ∼ 10−13m is the
amplitude of the transversal oscillation of the center of charge. and λ = vT is the distance the
center of mass runs during a complete turn of the center of charge.

Figure 6.3: Transcription of �gure 4 of the Gouanere et al reference of 2008, which shows the
experimental outcome of the detected number of electrons versus the linear momentum p of the
electron beam in MeV/c (dotted line). Curve (a) (in blue) represents their Monte Carlo calculation
for de Broglie's frequency ν. Curve (b) (in red) represents their Monte Carlo calculation by
considering that the electron internal frequency is twice de Broglie's frequency 2ν. It matches
with the experimental result except for a shift from 80.874 MeV/c to 81.1 MeV/c. This shift could
be related to the temperature of the sample.
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Figure 6.4: Di�erent resonant peaks of the interaction of the electron beam with the silicon latice,
if assumed that the internal electron frequency is De Broglie's frequency ν0 = mc2/h. Some of the
previsible peaks of the following �gure do not appear in this ansatz.

Figure 6.5: Di�erent resonant peaks of the interaction of the electron beam with the silicon latice,
if assumed that the internal electron frequency is twice De Broglie's frequency ν0 = 2mc2/h. Only
the peaks corresponding to pk, k = 1, . . . , 6, are depicted.
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If the electron clock had De Broglie frequency ν0 = mc2/h, then the resonant peaks will
be those of the �gure 6.4, while if the frequency is that of Dirac, twice De Broglie frequency,
the resultant peaks will those of the �gure 6.5. All De Broglie peaks can also be obtained if
the frequency is that of Dirac but not conversely. The presence of one kind of peaks or the
other, will show as a �rst glance, how to discriminate between these alternative frequencies.
The accurate measurement of the peaks represents an accurate measurement of the internal
frequency of the electron ν0. It would be desirable to enlarge the enery range of the experiment
of Gouanére et al. to detect those peaks below 80.874 MeV/c. This will show the existence of
this internal periodic motion and will allow us to determine the frequency of a high precission
clock, the clock of the electron.

The accurate measurement of this frequency will be used to de�ne a natural unit of time,
associated to physical phenomena related the electrons and their interactions. With the natural
unit of velocity c, this allows us to obtain a natural unit of length, and therefore in our classical
kinematical description of the electron, all kinematical variables can be taken dimensionless in
this sytem of units, thus justifying the additional scale invariance of the model.

6.3 Instantaneous electric dipole

The internal motion of the charge of the electron in the center of mass frame is a circle at
the speed of light. The position of the charge in this frame is related to the total spin by eq.
(2.158), i.e.,

k =
1

mc2
S × u, (6.5)

where S is the total constant spin and u = dk/dt, with u = c is the velocity of the charge. In
addition to this motion there is a rotation of a local frame linked to the particle that gives rise
to some angular velocity, but this rotation has no e�ect on the electric dipole structure. (See
Fig. 6.6 where the angular velocity and the local frame are not depicted).

Figure 6.6: Electron charge motion in the C.M. frame.

Now, from the point of view of the center of mass observer, the particle behaves as though
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it has a magnetic moment related to the particle current by the usual classical expression

µ =
1

2

∫
k × j d3r =

e

2
k × dk

dt
,

where e is the charge and j(r − k) = e dk/dt δ3(r − k) is the particle current density. The
orbital term k× dk/dt is related to the zitterbewegung part of spin that quantizes with integer
values and which for spin 1/2 and spin 1 charged particles is twice the total spin S, giving rise
to a pure kinematical interpretation of the gyromagnetic ratio g = 2 for this model as seen in
the previous section.

But also in the center of mass frame the particle has an oscillating instantaneous electric
dipole moment d = ek, that is thus related to the total spin by

d =
e

mc2
S × u. (6.6)

This instantaneous electric dipole, which ful�lls the usual de�nition of the momentum of the
point charge e with respect to the origin of the reference frame, is translation invariant because
it is expressed in terms of a relative position vector k. It can never be interpreted as some kind
of �uctuation of a spherical symmetry of a charge distribution. Even in this kind of model, it
is not necessary to talk about charge distributions, because all particle attributes are de�ned
at a single point r.

In his original 1928 article, 13 Dirac obtains that the Hamiltonian for the electron has, in
addition to the Hamiltonian of a free point particle of mass m, two new terms that in the
presence of an external electromagnetic �eld are

e~
2m

Σ ·B +
ie~
2mc

α ·E = −µ ·B − d ·E, (6.7)

where

Σ =

(
σ 0
0 σ

)
, and α = γ0γ,

i.e., Σ is expressed in terms of σ Pauli-matrices and α is Dirac's velocity operator when written
in terms of Dirac's gamma matrices.

We shall show that the quantum counterpart of expression (6.6) is in fact the electric dipole
term of Dirac's Hamiltonian (6.7). The remaining part of this section is to consider the repre-
sentation of the `cross' product in (6.6) in terms of the matrix (or geometric) product of the
elements of Dirac's algebra that represent the quantum version of the above observables, so that
a short explanation to properly interpret these observables as elements of a Cli�ord algebra is
given in what follows.

Both, velocity operator u = cα and spin operator S are bivectors in Dirac's algebra, consid-
ered as elements of the Geometric or Cli�ord algebra of space-time in the sense of Hestenes. 14

In fact, Dirac's alpha matrices are written as a product of two gamma matrices αi = γ0γi
and also the spin components Sj = (i~/2) γkγl, j, k, l cyclic 1, 2, 3, and where the four gamma
matrices, γµ, µ = 0, 1, 2, 3 are interpreted as the four basic vectors of Minkowski's space-time
that generate Dirac's Cli�ord algebra. They satisfy γµ · γν = ηµν , i.e., γ20 = 1 and γ2i = −1,
where the dot means the inner product in Dirac's Cli�ord algebra. We thus see that velocity
and spin belong to the even subalgebra of Dirac's algebra and therefore they also belong to Pauli
algebra or geometric algebra of three-dimensional space. Under spatial inversions γ0 → γ0 and
γi → −γi, the velocity operator changes its sign and it is thus a spatial vector, while the spin
is invariant under this transformation as it corresponds to a spatial bivector or pseudovector.

13 P.A.M. Dirac, Proc. Roy. Soc. London, A117, 610 (1928).
14 D. Hestenes, Space-Time algebra, Gordon and Breach, NY (1966); D. Hestenes and G. Sobczyk, Cli�ord

Algebra to Geometric Calculus, D. Reidel Pub. Co. Dordrecht, (1984).
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Figure 6.7: A basis for vectors (a) and bivectors (pseudovectors) (b) of Pauli algebra.

The relationship between the cross product and the outer and inner product of two vectors
a and b in Pauli algebra is,

a× b = −ia ∧ b = b · (ia), (6.8)

where ∧ represents the symbol for the outer product in geometric algebra, the imaginary unit
i represents the unit three-vector or pseudoscalar and ia is the dual bivector of vector a.

The inner product of a vector b and a bivector A is expressed in terms of the geometric
product in the form

b ·A =
1

2
(bA−Ab) (6.9)

where in Dirac's or Pauli algebra the geometric product bA is just the ordinary multiplication
of matrices.

If we choose a basis of vectors and pseudovectors as in Fig. 6.7, where the double-lined
objects of part (b) represent the dual vectors of the corresponding spatial bivectors, and express
in these bases the observables of Fig. 6.6, then the spatial velocity vector u = cγ0γ2 and the
pseudovector S = (~/2)γ2γ3 and therefore, using (6.8) and (6.9) we get

S × u = u · (iS) = ic~
2

(
1

2
(γ0γ2γ2γ3 − γ2γ3γ0γ2)

)
=

−ic~
2

γ0γ3.

Now vector k = Rγ0γ3 with R = ~/2mc, and by substitution in (6.6) we get the desired result.

6.4 Classical Tunneling

As a consequence of the zitterbewegung and therefore of the separation between the center
of mass and center of charge, we shall see that spinning particles can have a non-vanishing
crossing of potential barriers.

Let us consider a spinning particle with spin of (anti)orbital type, as described in Section
2.2, under the in�uence of a potential barrier. The Langrangian of this system is given by:

L =
m

2

ṙ2

ṫ
− m

2ω2

u̇2

ṫ
− eV (r)ṫ. (6.10)

Sharp walls correspond classically to in�nite forces so that we shall consider potentials that give
rise to �nite forces like those of the shape depicted in Fig. 6.8, where V0 represents the top of
the potential.

Then the external force F (x), is constant and directed leftwards in the region x ∈ (−a, 0)
and rightwards for x ∈ (0, b), vanishing outside these regions.
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Figure 6.8: Triangular potential barrier.

Potentials of this kind can be found for instance in the simple experiment depicted in Figure
6.9 in which an electron beam, accelerated with some acceleration potential Va, is sent into the
uniform �eld region of potential V0 contained between the grids or plates A, C and B.

Figure 6.9: Electron beam into a potential barrier. A classical spinless electron never
crosses the dotted line. A spinning particle of the same energy might cross the barrier.

In Figure 6.9 from a strict classical viewpoint a spinless electron stops at the dotted line
and is rejected backwards. But a classical spinning electron can cross the barrier provided its
kinetic energy is above some minimum value, although below the top of the potential. This
minimum value depends on the separation between plates.

Let us assume for simplicity that the spin is pointing up or down in the z direction such
that the point charge motion takes place in the XOY plane. Let qx, qy and qz = 0, be the
coordinates of the center of mass and x, y and z = 0, the position of the charge.

The dynamical equations are

d2qx
dt2

=
1

m
F (x),

d2qy
dt2

= 0, (6.11)
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d2x

dt2
+ ω2(x− qx) = 0,

d2y

dt2
+ ω2(y − qy) = 0, (6.12)

where

F (x) =


−eV0/a, for x ∈ (−a, 0),
eV0/b, for x ∈ (0, b),
0, otherwise.

Equations (6.11) are nonlinear and we have not been able to obtain an analytical solution
in closed form. We shall try to �nd a numerical solution. To make the corresponding numerical
analysis we shall de�ne di�erent dimensionless variables. Let R be the average separation
between the center of charge and center of mass. In the case of circular internal motion, it
is just the radius R0 of the zitterbewegung. Then we de�ne the new dimensionless position
variables:

q̂x = qx/R, q̂y = qy/R, x̂ = x/R, ŷ = y/R, â = a/R, b̂ = b/R.

The new dimensionless time variable α = ωt is just the phase of the internal motion, such
that the dynamical equations become

d2q̂x
dα2

= A(x̂),
d2q̂y
dα2

= 0,

d2x̂

dα2
+ x̂− q̂x = 0,

d2ŷ

dα2
+ ŷ − q̂y = 0,

where A(x̂) is given by

A(x̂) =


−eV0/âmω2R2, for x̂ ∈ (−â, 0),
eV0/b̂mω

2R2, for x̂ ∈ (0, b̂),
0, otherwise.

In the case of the relativistic electron, the internal velocity of the charge is ωR = c, so that
the parameter e/mc2 = 1.9569× 10−6V−1, and for potentials of order of 1 volt we can take the
dimensionless parameter eV0/mω2R2 = 1.9569× 10−6.

If we choose as initial conditions for the center of mass motion

q̂y(0) = 0, dq̂y(0)/dα = 0,

then the center of mass is moving along the OX axis. The above system reduces to the analysis
of the one-dimensional motion where the only variables are q̂x and x̂. Let us call from now on
these variables q and x respectively and remove all hats from the dimensionless variables. Then
the dynamical equations to be solved numerically are just

d2q

dα2
= A(x),

d2x

dα2
+ x− q = 0, (6.13)

where A(x) is given by

A(x) =


−1.9569× 10−6 a−1V0, for x ∈ (−a, 0),
1.9569× 10−6 b−1V0, for x ∈ (0, b),
0, otherwise.

(6.14)

Numerical integration has been performed by means of the computer package Dynamics
Solver. 15 The quality of the numerical results is tested by using the di�erent integration
schemes this program allows, ranging from the very stable embedded Runge-Kutta code of
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Figure 6.10: Kinetic Energy during the crossing for the values a = b = 1.

eight order due to Dormand and Prince to very fast extrapolation routines. All codes have
adaptive step size control and we check that smaller tolerances do not change the results.

With a = b = 1, and in energy units such that the top of the barrier is 1, if we take an
initial kinetic energy K below this threshold, K = mq̇(0)2/2eV0 = 0.41 we obtain for the center
of mass motion the graphic depicted in Fig. 6.10, where is shown the variation of the kinetic
energy of the particle K(q), with the center of mass position during the crossing of the barrier.
There is always crossing with a kinetic energy above this value. In Fig. 6.11, the same graphical
evolution with a = 1 and b = 10 and K = 0.9055 for a potential of 103 Volts in which the
di�erent stages in the evolution are evident. Below the initial values for the kinetic energy of
0.4 and 0.9 respectively, the particle does not cross these potential barriers and it is rejected
backwards.

If in both examples the parameter a is ranged from 1 to 0.05, thus making the left slope
sharper, there is no appreciable change in the crossing energy, so that with a = 1 held �xed we
can compute the minimum crossing kinetic energies for di�erent b values, Kc(b).

Figure 6.11: Kinetic Energy during the crossing for the values a = 1, b = 10.

To compare this model with the quantum tunnel e�ect, let us quantize the system. In the
quantization of generalized Lagrangians developed in the Chapter 3, the wave function for this
system is a squared-integrable function ψ(t, r,u), of the seven kinematical variables and the
generators of the Galilei group have the form:

H = i~
∂

∂t
, P = −i~∇, K = mr − tP + i~∇u, J = r × P +Z, (6.15)

15 J.M. Aguirregabiria, Dynamics Solver, computer program for solving di�erent kinds of dynamical systems,
which is available from his author through the web site <http://tp.lc.ehu.es/jma.html> at the server of the
Theoretical Physics dept. of The University of the Basque Country, Bilbao (Spain).
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where ∇u is the gradient operator with respect to the u variables. These generators satisfy
the commutation relations of the extended Galilei group, 16 and the spin operator is given by
Z = −i~u×∇u.

One Casimir operator of this extended Galilei group is the Galilei invariant internal energy
of the system E , which in the presence of an external electromagnetic �eld and with the minimal
coupling prescription is written as,

E = H − eV − 1

2m
(P − eA)2, (6.16)

where V and A are the external scalar and vector potentials, respectively.
In our system A = 0, and V is only a function of the x variable. It turns out that because

of the structure of the above operators we can �nd simultaneous eigenfunctions of the following
observables: the Casimir operator (6.16), H, Py, Pz, Z2 and Zz. The particle moves along
the OX axis, with the spin pointing in the OZ direction, and we look for solutions which are
eigenfunctions of the above operators in the form:(

H − eV (x)− 1

2m
P 2

)
ψ = Eψ, Hψ = Eψ, Pyψ = 0, Pzψ = 0, (6.17)

Z2ψ = s(s+ 1)~2ψ, Zzψ = ±s~ψ, (6.18)

so that ψ is independent of y and z, and its time dependence is of the form exp(−iEt/~). Since
the spin operators produce derivatives only with respect to the velocity variables, we can look
for solutions with the variables separated in the form:

ψ(t, x,u) = e−iEt/~ϕ(x)χ(u),

and thus (
~2

2m

d2

dx2
+ E − eV (x)− E

)
ϕ(x) = 0, (6.19)

Z2χ(u) = s(s+ 1)~2χ(u), Zzχ(u) = ±s~χ(u), (6.20)

where the spatial part ϕ(x), is uncoupled with the spin part χ(u), and E−eV (x)−E represents
the kinetic energy of the system. The spatial part satis�es the one-dimensional Schroedinger
equation, and the spin part is independent of the interaction, so that the probability of quantum
tunneling is contained in the spatial part and does not depend on the particular value of the
spin. If the particle is initially on the left-hand side of the barrier, with an initial kinetic energy
E0 = E−E , then we can determine the quantum probability for crossing for a = 1 and di�erent
values of the potential width b.

The one-dimensional quantum mechanical problem of the spatial part for the same one-
dimensional potential depicted in Fig. 6.8 is: 17

ϕ(x) =


eikx +Re−ikx, x ≤ −a,
C1Ai(D(1−G+ x

a ) + C2Bi(D(1−G+ x
a ), −a ≤ x ≤ 0,

C3Ai(L(1−G− x
b
)) + C4Bi(L(1−G− x

b
)), 0 ≤ x ≤ b,

Teikx, x ≥ b,

(6.21)

where x is the same dimensionless position variable as before, and the constants

k =

√
E

2mc2
, D =

3

√
eV0a2

2mc2
, L =

3

√
eV0b2

2mc2
, G =

E

eV0
. (6.22)

16 J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory and its applica-
tions, Acad. Press, NY (1971), vol. 2, p. 221.

17 L. Landau and E. Lifchitz, Mécanique quantique, Mir Moscow (1988), 3rd. edition.
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Functions Ai(x) and Bi(x) are the Airy functions of x. The six integration constants R, T , and
Ci, i = 1, 2, 3, 4, can be obtained by assuming continuity of the functions and their �rst order
derivatives at the separation points of the di�erent regions. The coe�cient |R|2 represents the
probability of the particle to be re�ected by the potential and |T |2 its probability of crossing.

Figure 6.12: Classical and Quantum Probability of crossing for di�erent potentials.

Computing the T amplitude for a = 1 and di�erent values of the potential width b, and
for energies below the top of the barrier eV0, we show in Fig. 6.12, the average probability for
quantum tunneling for four di�erent potentials V0 of 102, 103, 104 and 105 Volts. This average
probability has been computed by assuming that on the left of the barrier there is a uniform
distribution of particles of energies below eV0.

If we consider for the classical spinning particle the same uniform distribution of particles,
then, the function P (b) = 1−Kc(b), where Kc(b) is the minimum dimensionless kinetic energy
for crossing computed before, represents the ratio of the particles that with kinetic energy below
the top of the potential cross the barrier because of the spin contribution.

This function P (b), is also depicted in Fig. 6.12. We see that for the di�erent potentials
shown in that �gure the classical average probability of crossing is smaller than the quantum
one, but for stronger potentials this classical probability, coming from the spin contribution,
becomes relatively important.

Because the tunnel e�ect is a function of ~ and the spin of elementary particles is also
of order of ~ it is very di�cult to separate from the outcome of a real experiment involving
elementary particles, which part is due to a pure quantum e�ect and which is the contribution
to crossing coming from the spin structure. From (6.19) and (6.20) it is clear that the quantum
probability of tunneling is independent of the spin.

To test experimentally this contribution, it will be necessary to perform separate experiments
with particles of the same mass and charge but with di�erent values of the spin. Thus, the
di�erence in the outcome will be related to the spin contribution. This can be accomplished for
instance, by using ions of the type A++ that could be either in a singlet, (s = 0) state or in a
triplet (s = 1) state.

But if there exists a contribution to crossing not included in the usual quantum mechanical
analysis we have to modify the quantum mechanical equations. To be consistent with the above
analysis the Schroedinger-Pauli equation should be modi�ed to include the additional electric
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dipole term. A term of the form −eER cosωt, where E is the external electric �eld and R the
radius of the zitterbewegung, should be considered to solve the corresponding quantum wave
function. This term is of the order of the separation R between the center of mass and center
of charge, which is responsible for the classical crossing. This additional electric dipole term is
already included in Dirac's equation but is suppressed when taking the low velocity limit, as
it corresponds to this low energy example. Nevertheless, although this is a low energy process
and the time average value of the electric dipole vanishes, there are very high �eld gradients.

We see that the separation between the center of mass and center of charge that gives rise to
the spin structure of this particle model justi�es that this system can cross a potential barrier
even if its kinetic energy is below the top of the potential.

6.4.1 Spin polarized tunneling

I like to point out the following ideas to discuss whether they can be useful in connection
with the interpretation of the giant magnetoresistance of polycrystaline �lms18. This is known
in the literature as the spin polarized tunneling. 19

The main feature of the �classical� spin polarized tunneling we have seen in the previous
section is not a matter of whether tunneling is classical or not, because this is a nonsense
question. Matter at this scale is interpreted under quantum mechanical rules. But if we use a
model of a classical spinning particle that, when polarized orthogonal to the direction of motion,
produces a crossing that is not predicted by the Schroedinger-Pauli equation, it means that this
quantum mechanical equation is lacking some term. The coupling term −µ · B, between the
magnetic moment and magnetic �eld that gives rise to the Pauli equation, is inherited from
Dirac's electron theory. But Dirac's equation also predicts another term −d ·E, of the coupling
of an instantaneous electric dipole with the electric �eld. It is this oscillating electric dipole
term that we believe is lacking in quantum mechanical wave equations. In general, the average
value of this term in an electric �eld of smooth variation is zero. But in high intensity �elds
or in intergranular areas in which the e�ective potentials are low, but their gradients could be
very high, this average value should not be negligible.

The conduction of electrons in synterized materials is completely di�erent than the con-
duction on normal conductors. The material is not a continuous crystal. It is formed by small
grains that are bound together by the action of some external pressure. If we can depict roughly
the electric current �ow, this is done by the jumping of electrons from grain to grain, through
a tunneling process in which there is some estimated e�ective potential barrier con�ned in the
gap between grains. Therefore these materials show in general a huge resistivity when compared
with true conductors.

The form of this potential is unknown. The simplest one is to assume a wall of thickness d,
the average separation between grains, and height h. But it can also be estimated as one of the
potentials of the former example. What we have shown previously is that for every potential
barrier, there is always a minimum energy, below the top of the potential, that electrons above
that energy cross with probability 1 when polarized orthogonal to the motion, even within a
classical interpretation. But this e�ect is not predicted by �normal� quantum mechanics because
tunneling is spin independent.

Now, let us assume that we are able to estimate some average e�ective potential barrier in
the intergranular zone of this polycristaline material. If the corresponding minimum crossing
energy of this barrier for polarized electrons is below the Fermi level, then, when we introduce
a magnetic �eld in the direction of the �lm and the magnetic domains in the grains become

182007 Nobel Prize of Physics to Albert Fert and Peter Grünberg for the discovery in 1988 of Giant Magne-
toresistence.

19 V.N. Dobrovolsky, D.I. Sheka and B.V. Chernyachuk, Surface Science 397, 333 (1998); P. Raychaudhuri,
T.K. Nath, A.K. Nigam and R. Pinto, cond-mat/9805258, preprint.
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polarized, all electrons above that minimum energy of crossing will �ow from grain to grain as
in a good conductor, with a classical probability 1. That's all. Here the di�culty is to estimate
properly this potential barrier and therefore the corresponding classical crossing energy.

It can be argued that the presence of the magnetic �eld to polarize electrons produces a
change in the energy of particles. Nevertheless, even for a magnetic �eld of the order of 1 Tesla
and in a potential barrier of 1 Volt, the magnetic term −µ · B contributes with an energy of
order of ±5.7× 10−5eV, which does not modify the quantum probability of crossing.

6.5 Formation of a bound state of two electrons

We have seen in section 2.6.2 that the dynamical equation of a free Dirac particle and for
any inertial observer is a fourth-order di�erential equation for the position of the charge r which
can be separated into a system of coupled second order di�erential equations for the centre of
mass q and centre of charge r in the form (2.187):

q̈ = 0, r̈ =
1− q̇ · ṙ
(q − r)2

(q − r),

where now the dot means time derivative. The �rst equation represents the free motion of
the centre of mass and the second a kind of relativistic harmonic oscillation of point r around
point q which preserves the constant absolute value c of the velocity ṙ. In fact, if q̇ ≪ ṙ = 1,
|q − r| ∼ 1 and the equation is just the harmonic motion r̈ + r ≃ q, of point r around q.
The factor (1− q̇ · ṙ)/(q − r)2 prevents that when we take the boundary value ṙ(0) = 1, the
solution does not modify this absolute value of the velocity of the charge.

In the case of interaction this second equation remains the same because it corresponds to
the de�nition of the centre of mass position which is unchanged by the interaction, because it
only involves the U and W functions. The �rst equation for particle a is going to be replaced
by dpa/dt = F a where pa is the corresponding linear momentum of each particle expressed as
usual in terms of the centre of mass velocity

pa = γ(q̇a)mq̇a, γ(q̇a) = (1− q̇2a)
−1/2,

and the force F a is computed from the interaction Lagrangian (4.70)

F a =
∂LI

∂ra
− d

dt

(
∂LI

∂ua

)
For particle 1 it takes the form:

F 1 = −g r1 − r2
|r1 − r2|3

√
1− u1 · u2 +

d

dt

(
gu2

2|r1 − r2|
√
1− u1 · u2

)
(6.23)

where it contains velocity terms which behave like 1/r2 and acceleration terms which go as 1/r
in terms of the separation of the charges r = |r1 − r2|. In this new notation ua = ṙa.

Then the system of second order di�erential equations to be solved are

q̈a =
α

γ(q̇a)
(F a − q̇a(F a · q̇a)) (6.24)

r̈a =
1− q̇a · ṙa
(qa − ra)2

(qa − ra), a = 1, 2 (6.25)

where α is the �ne structure constant once all the variables are taken dimensionless. For that,
we take the space scale factor R = ~/2mc and the time scale as T = ~/2mc2. All terms of
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equation (6.24) which depend on the acceleration of the charges have to be replaced by the
expressions of (6.25).

It would be desirable to �nd analytical solutions of the above equations (6.24-6.25). Never-
theless we have not succeded in �nding such a goal. However we shall analyse di�erent solutions
obtained by numerical integration. We are going to use the computer program Dynamics Solver
20. The quality of the numerical results is tested by using the di�erent integration schemes
this program allows, ranging from the very stable embedded Runge-Kutta code of eighth order,
due to Dormand and Prince, to very fast extrapolation routines. All codes have adaptive step
size control and we check that smaller tolerances do not change the results. Another advan-
tage is that it can be prepared to analyse solutions corresponding to a wide range of boundary
conditions, automatically.

Figure 6.13: The trajectories of the centres of mass and charge of two spinning particles
with an initial centre of mass velocity q̇a = 0.1 and a small impact parameter.

See in �gure 6.13 the scattering of two equal charged particles with parallel spins. The
centre of mass motion of each particle is depicted with an arrow. If the two particles do not
approach each other too much these trajectories correspond basically to the trajectories of two
spinless point particles interacting through an instantaneous Coulomb force. By too much we
mean that their relative separation between the corresponding centres of mass is always much
greater than Compton's wavelength. This can be understood because of the above discussion
about the Coulomb behaviour of the averaged interaction Lagrangian, if the average position
of each charge is far from the other. For high energy interaction the two particles approach
each other below that separation and therefore the average analysis no longer works because
the charges approach each other to very small distances where the interaction term and the
exact position of both charges, becomes important. In this case new phenomena appear. We
can have, for instance, a forward scattering like the one depicted on �gure 6.14, which is not
described in the classical spinless case, or even the formation of bound pairs for particles of the
same charge, which we shall analyse in what follows.

In �gure 6.15 we represent an initial situation for two equal charged particles with parallel
spins such that the corresponding centres of mass are separated by a distance below Compton's
wavelength. Remember that the radius of the internal motion is half Compton's wavelength.

20See reference15
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Figure 6.14: Forward scattering of two spinning particles of the same charge with an
initial separation 2qa(0) = 10, centre of mass velocity |q̇a(0)| = 0.18 and a very small impact
parameter. The two centres of mass cross very close to each other, with a small deviation.

We locate the charge labels ea at the corresponding points ra and the corresponding mass
labels ma to the respective centre of mass qa. We depict in part (a) the situation when the
two particles have the same phase β1 = β2. The forces F a, on each particle a = 1, 2, are
computed in terms of the positions, velocities and accelerations of both charges, according to
(6.23), and are also depicted on the corresponding centres of mass as a consequence of the
structure of the equations (6.24). We see that a repulsive force between the charges produces
also a repulsive force between the centres of mass in this situation. However, in part (b) both
charges have opposite phases β1 = −β2, and now the repulsive force between the charges implies
an atractive force between the corresponding centres of mass. If the initial situation is such
that the centres of mass separation is greater than Compton's wavelength, the force is always
repulsive irrespective of the internal phases of the particles.

In �gure 6.16 we have another situation of opposite phases and where the initial separation
between the centres of mass is larger but still smaller than Compton's wavelength.

To analyse this situation, which is going to produce bound motions, we proceed as follows:
We start the numerical integration by imposing the boundary condition that both centres of
mass are at rest and located at the origin of the reference frame qa(0) = q̇a(0) = 0. For particle
2 we take the initial phase β2(0) = 0 and for β1 we start with β1(0) = 0 and, will be increased
step by step in one degree in the automatic process, up to reach the whole range of 2π radians.
The boundary values of the variables ra(0) and ṙa(0), with the constraint |ṙa(0)| = 1, are taken
as the corresponding values compatible with these phases. The whole system is analysed in
its centre of mass frame, so that for subsequent boundary values these variables are restricted
to q1(0) = −q2(0) and q̇1(0) = −q̇2(0). The automatic integration is performed in such a
way that when the two particles separate, i.e., when their centre of mass separation is above
Compton's wavelength, the integration stops and starts again with a new boundary value of
the phase β1(0) of one degree more, and the new values of the variables ra(0) and ṙa(0). If the
two particles do not separate we wait until the integration time corresponds to 106 turns of the
charges around their corresponding centre of mass, stop the process, keep record of the phases
and initial velocities, and start again with new boundary values. This corresponds, in the case of
electrons, to a bound state leaving during a time greater than 10−15 seconds. For some particular
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Figure 6.15: Boundary values for two Dirac particles with parallel spins and with a separa-
tion between the centres of mass below Compton's wavelength. The dotted lines represent
the previsible clockwise motion of each charge. In (a) both particles have the same phase
and the repulsive force between charges produces a repulsive force between their centres of
mass, while in (b), with opposite phases, the force between the centres of mass is atractive.

Figure 6.16: (a) Another situation of two charges with opposite phases which produce an
atractive force between the centres of mass provided they are separated below Compton's
wavelength. In part (b), after half a cycle of the motion of the charges, the force becomes
repulsive between the centres of mass, but its intensity is much smaller than the atractive
force in (a) so that the resulting motion is also a bound motion.
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boundary values, with opposite phases, we have left the program working during a whole week
and the bound state prevails. This represents a time of life of the bound state greater than
10−9 seconds. Leaving the computation program running for a year will only increase this lower
bound in two orders of magnitude. The general feeling is that the bound states are su�ciently
stable, because even the possible numerical integration errors do not destroy the stability. This
process is repeated again and again by changing slightly the initial values of the centre of mass
variables qa(0) and q̇a(0), in steps of 0.0001 in these dimensionless units and with β2(0) = 0,
and the same procedure with β1(0), as above. To test the acuracy of the integration method,
we check every 103 integration steps that the velocities of the charges of both particles remain
of absolute value 1, within a numerical error smaller than 10−20.

The whole process is repeated by changing the initial β2(0) phase to any other arbitrary
value. We are interested to see whether di�erent results are produced depending on the values
of the phase di�erence β2(0) − β1(0) and of the centre of mass variables qa(0) and q̇a(0). We
collect all data which produce bound motions, and �nd the following results:

1. The initial velocity of their centres of mass must be |q̇a(0)| < 0.01c. Otherwise the bound
motion is not stable and the two particles, after a few turns, go o�.

2. For each velocity |q̇a(0)| < 0.01c there is a range ∆ of the pase β1(0) = β2(0) + π ± ∆
for which the bound motion is stable. The greater the centre of mass velocity of each
particle the narrower this range, so that the bound motion is more likely when the phases
are opposite to each other.

3. We have found bound motions for an initial separation between the centres of mass up to
0.8 times Compton's wavelength, like the one depicted in �gure 6.16, provided the above
phases and velocities are kept within the mentioned ranges.

In �gure 6.17 we show the bound motion of both particles when their centres of mass
are initially separated q1x = −q2x = 0.2×Compton's wavelength, q̇1x = −q̇2x = 0.008 and
q̇1y = −q̇2y = 0.001, β2 = 0 and β1 = π. Now the force between the charges is repulsive but
nevertheless, if the internal phases β1 and β2 are opposite to each other, it becomes an atractive
force between their centres of mass in accordance to the mechanism shown in �gure 6.15 (b).

This possibility of formation of low energy metastable bound pairs of particles of the same
charge is not peculiar of this interaction Lagrangian. By using the electromagnetic interaction or
even the instantaneous Coulomb interaction between the charges of two spinning Dirac particles
we found in 21 also this behaviour. This bound motion is not destroyed by external electric
�elds and also by an external magnetic �eld along the spin direction. Nevertheless, a transversal
magnetic �eld destroys this bound pair system.

When we make the average of the position ra it becomes the centre of mass qa and the
repulsive force between the charges is also a repulsive force between the corresponding centres
of mass and therefore when we suppress the zitterbewegung spin content of the particles there
is no possibility of formation of bound pairs.

Although this result produces a classical mechanism for the formation of a spin 1 bound
system from two equal charged fermions we must be careful about its conclusions. First, it is a
classical description and although the range of energies which produce this phenomenon is a wide
one it does not mean that two electrons can reach that binding energy. This Dirac particle is a
system of 7 degrees of freedom: 3 represent the position r, another 3 the orientationα and �nally
the phase β. If we accept the equipartition theorem for the energy, then for the maximum kinetic
energy which produces a bound motion mv2/2 = 7κT/2, where κ is Boltzmann's constant and
v = 0.01c the maximum velocity of the center of mass of each particle, then it means that a

21M. Rivas J. Phys. A: Math. Gen. 36 4703 (2003), (Preprint physics/0112005)
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Figure 6.17: Bound motion of the centres of mass and charge of two spinning particles
with parallel spins and with a centre of mass velocity v ≃ 0.0082, for an initial separation
between the centres of mass of 0.2×Compton's wavelength.

gas of polarized electrons (like the conducting electrons in a quantum Hall e�ect) could form
bound states up to a temperature below T = 8.47 × 105K, which is a very high temperature.
In a second place, matter at this level behaves according to quantum mechanical rules and
therefore we must solve the corresponding quantum mechanical bound state to establish the
proper energies and angular momenta at which these bound states would be stationary. This
problem has not been solved yet, but the existence of this classical possibility of formation of
bound pairs justi�es an e�ort in this direction. If the phases of the two particles are the same
(or almost the same) there is no possibility of formation of a bound state. The two fermions
of the bound state have the same spin and energy. They di�er that their phases and linear
momenta are opposite to each other. Is this di�erence in the phase a way to overcome at the
classical level, the Pauli exclusion principle?

6.6 The kinematical group

The most general di�erential equation satis�ed by a point in three-dimensional space is of
fourth order and given in (6). Its general solution involves 12 integration constants. If this family
of solutions corresponds to the evolution of the point by the di�erent inertial observers, this
implies that the kinematical group of spacetime transformations associated to the Restricted
Relativity Principle is a 12-parameter Lie group. If what we are describing is the center of
charge of the elementary particle, we have seen that this point necessarily moves at the speed
of light, and this velocity is not changed by any interaction. The constraint |r(1)| = c, for
the physical solutions holds, so that only 11 parameters are necessary to describe its allowed
solutions, so that the family of allowed motions is a 11-parameter family. The kinematical group
also has to contain the existence of a velocity unreachable for all inertial observers.

This suggests that the 11-parameter group of spacetime transformations between inertial
observers is the Weyl group, which is compound of the 10 transformations of the Poincaré
group (4 translations+3 rotations+3 pure Lorentz transformations or boosts), and the spacetime
dilations which preserve the speed of light. They are the scale transformations of normal or
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canonical parameter λ, t′ = eλt, r′ = eλr.
This group implies that an elementary particle has at most 7 degrees of freedom, i.e., it is

characterized by a point r, a local Cartesian frame linked to this point parameterized by the
three rotation parameters α, and also a dimensionless variable λ, which represents a kind of
internal phase or gauge.

If the symmetry group of a free Lagrangian is the Weyl group, its homogeneous spaces are
the possible kinematical spaces. In addition to the kinematical group we also have as symmetry
group the local rotation group SO(3)L which transforms locally the associated local frame,
which commutes with the Weyl group, and also the gauge group of phase transformation {R,+}.
Therefore, the symmetry group in the quantum case reduces to the group W ⊗ SU(2)⊗ U(1).

The Casimir operators of this complete symmetry group are S2, the angular momentum of
the particle with respect to the center of mass, which the only Casimir operator of Weyl group
W, T 2 the projection of the angular momentum associated to the rotation into the body axis.
Finally, the generator Q of the group U(1), such that its physical meaning as a kind of charge,
electric, leptonic, colour charge, is not yet determined.
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