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Abstract. It has been recently shown that the spacetime symmetry group of a
Dirac particle is larger than the Poincaré group. It also contains spacetime di-
lations and local rotations. In this work we obtain the interaction Lagrangian
for two Dirac particles, which is invariant under this enlarged spacetime
group. We analyze the interaction between two particles, and show that it
is possible the existence of metastable bound states for two particles of the
same charge, provided some initial conditions are fulfilled.

1 Introduction

The variational formalism for describing elementary spinning particles [1]
determines that the kinematical variables which define the initial and final
states of the evolution necessarily span a homogeneous space of the kine-
matical group of spacetime symmetries of the theory. The Lagrangian for
describing these systems will depend on these kinematical variables and their
next order time derivative. If the evolution is described in terms of some in-
variant evolution parameterτ , then the Lagrangian is a homogeneous func-
tion of first degree of theτ−derivatives of all kinematical variables.

For a relativistic particle the spacetime symmetry group is the
Poincaŕe group. In a recent work [2] we have shown that this spacetime
symmetry group can be enlarged to include also spacetime dilations and lo-
cal rotations of the body frame of the particle. This group for the classical
particle isS = W ⊗SO(3)L, whereW is the Weyl group andSO(3)L is the
group of local rotations of the body frame, which commutes withW . The
Lagrangian for a free Dirac particle is invariant under this groupS .

The kinematical variables of a Dirac particle are timet, position of a
point r , which is the location of the charge, its velocityu with the constraint
u= c, the orientationα which can be interpreted as the orientation of a local
frame with origin atr and, finally, the phaseβ of the internal motion of the
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Figure 1. Motion of the charge of the particle, in the centre of mass frame. The total
spinS is the sum of the orbital partZ and the rotational part of the body frameW.
It is not depicted the local body frame, with origin at pointr, which rotates with an-
gular velocityω. The motion of the charge, with respect to the fixed spin direction,
is left-handed. The phaseβ corresponds to the phase of the circular motion.

charge around the center of mass. The spinning particle has a center of mass
q, which is always different than the pointr , such that, for the center of mass
observer, the pointr is moving in circles at the speed of light, around the
pointq in a flat trajectory contained in a plane orthogonal to the spinS. The
kinematical variableβ describes the phase of this internal orzitterbewegung
motion. The rotation subgroup ofP transforms the kinematical variables
r , u and α among the inertial observers, and the local rotation subgroup
SO(3)L only affects to the local change of particle frame, i.e., to the variables
α. Because the Weyl group has no central extensions [3], in the quantum
representation the symmetry group becomes̃S = W ⊗SU(2)L.

2 The interaction Lagrangian. Synchronous description

The Casimir operators of the groupS are the Casimir operator of the Weyl
groupW which is the spin of the particleS and the Casimir of theSO(3)L

part,I which corresponds to the spin projection on the body frame. We make
the assumption that the structure of an elementary particle is not modified
by any interaction so that its intrinsic properties, the spinS and the spin
projection on the body frameI cannot be altered by the interaction with an
external field or by the presence in its neigbourhood of any other particle.

Let us consider a compound system formed by two spinning particles
with the same kind of kinematical variables. Then the kinematical space of
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the compound system is spanned by the variables(ta, ra,ua,αa,βa),a= 1,2.
The Lagrangian of the system will beL = L1+L2+LI , where theLa, a= 1,2,
are the free Lagrangians of each particle andLI is the interaction Lagrangian
we are looking for. BothLa are invariant under the enlarged groupS and
we are going to find an interaction LagrangianLI also invariant underS .
The general structure of the free LagrangianLa of each particle, which only
depends on the corresponding kinematical variables, is

La = Taṫa +Ra · ṙa +Ua · u̇a +Wa ·ωa +Baβ̇a

where Ta = ∂La/∂ ṫa, Ra = ∂La/∂ ṙa, Ua = ∂La/∂ u̇a, Wa = ∂La/∂ωa

and Ba = ∂La/∂ β̇a, because of the homogeneity ofLa in terms of the
τ−derivatives of the kinematical variables. The spin and the spin projec-
tion on the body frame for each particle, are

Sa = ua×Ua +Wa, Iai = eai ·Wa

whereeai , i = 1,2,3 are three orthogonal unit vectors with origin at pointra.

The interaction Lagrangian between these two particlesLI will be in
general a function of the kinematical variables of both particles and of their
τ−derivatives. If both intrinsic propertiesSa andIa of each particle are not
modified by any interaction then the interaction Lagrangian cannot be a func-
tion of the derivatives of the kinematical variablesu̇a andωa, a= 1,2. In this
case the functionsUa andWa, which give rise to the definition of the spin,
are obtained only from the corresponding free LagrangianLa.

Then, as far as theτ−derivatives of the kinematical variables are con-
cerned, the interaction LagrangianLI will only depend on the variableṡta, ṙa

andβ̇a, a = 1,2. In addition to this, it will also be a function of the kinemat-
ical variablesta, ra, ua andβa, but not ofαa because the general dependence
of the Lagrangian on the orientation variables is only through the dependence
on the corresponding angular velocity, which is absent in the interaction La-
grangian. The phaseβa is the phase of the orbital motion and of the oriented
body frame, then the interaction Lagrangian is also independent ofβa. The
interaction Lagrangian will thus be a function of

LI = LI (ta, ra, ṫa, ṙa),

and a homogeneous function of first degree of the derivativesṫa, ṙa, a = 1,2.
If it is going to be invariant underW ⊗SU(2), if we call xµ

a ≡ (ta, ra), then
we get

LI = g

√
ηµν ẋµ

1 ẋν
2

ηµν(xµ
1 −xµ

2 )(xν
2−xν

1)
= g

√
ṫ1ṫ2− ṙ1 · ṙ2

(r2− r1)2− (t2− t1)2
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where g is a coupling constant with dimensions of action andηµν is
Minkowski’s metric tensor. Incidentaly we can also see that the Lagrangian
is also invariant under the interchange1↔ 2.

Once an inertial observer is fixed it can make a synchronous time de-
scription, i.e. to use as evolution parameter the own observer’s timet which
is the same as the two time variablest1 andt2. In this case

LI = g

√
1−u1 ·u2

(r2− r1)2 = g

√
1−u1 ·u2

r
(1)

wherer = |r1− r2| is the instantaneous separation between the correspond-
ing charges andua = ṙa the velocity of the charge of particlea.

An average over the charge position and velocity in the center of mass
of one of the particles implies that the interaction becomes the instantaneous
Coulomb interaction between the center of mass of the first particle (which
is also the average position of its charge) and the charge position of the other.
The average over the other then corresponds to the interaction of two spin-
less point particles. This average about the internal motion is equivalent to
neglect the spin structure and it suggests thatg∼±e2.

3 Analysis of a two-particle system

The dynamical equation of a free Dirac particle is a fourth-order differential
equation for the position of the charge which can be separated into a system
of coupled second order differential equations for the center of massq and
center of charger in the form:[4]

q̈ = 0, r̈ =
1− q̇ · ṙ
(q− r)2(q− r)

In the case of interaction the second equation remains the same because it
corresponds to the definition of the center of mass position which is un-
changed by the interaction. The first equation for particlea is replaced by
dpa/dt = Fa wherepa is the linear momentum of particlea and the forceFa,
computed from the interaction Lagrangian (1) takes the form:

F1 =−g
r1− r2

|r1− r2|3
√

1−u1 ·u2 +
d
dt

(
gu2

2|r1− r2|
√

1−u1 ·u2

)
.
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Figure 2. (a) The trajectories of the centers of mass and charge of two spinning
particles with initial center of mass velocityv= 0.1and a small impact parameter.(b)
Bound motion of the centers of mass and charge of two spinning particles with
parallel spins and with a center of mass velocityv≤ 0.01, for an initial separation
between the centers of masses0.2×Compton’s wavelength.

Then the system of differential equations to be solved are

q̈a =
α

γ(q̇a)
(Fa− q̇a(Fa · q̇a)) (2)

r̈a =
1− q̇a · ṙa

(qa− ra)2(qa− ra), a = 1,2 (3)

whereα = g/m is the fine structure constant in the case of electromagnetic
interaction and once all the variables are dimensionless. All terms of equa-
tion (2) which depend on the acceleration of the charges have to be replaced
by the expressions of (3).

See in figure 2(a) the sccatering of two equal charged particles with
parallel spins and in figure 2(b) the bound motion of both electrons when
their centers of mass are separated below Compton’s wavelength.
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