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Abstract Gravity is understood as a geometrization of spacetime. But spacetime
is also the manifold of the boundary values of the spinless point particle in a varia-
tional approach. The manifold of the boundary variables for any mechanical system,
instead of being a Riemannian space it is a Finsler metric space such that the varia-
tional formalism can always be interpreted as a geodesic problem on this manifold.
This manifold is just the flat Minkowski spacetime for the free relativistic point par-
ticle. Any interaction modifies its flat Finsler metric. In the spirit of unification of
all forces, gravity cannot produce, in principle, a different and simpler geometriza-
tion than any other interaction. This implies that that the basic assumption that what
gravity produces is a Riemannian metric instead of a Finslerian one is a strong re-
striction so that general relativity can be considered as a low velocity limit of a more
general gravitational theory.

1 The geodesic interpretation of the variational formalism

Let us consider any mechanical system of n degrees of freedom described by a
Lagrangian, L(t,qi,q

(1)
i ). The variational approach means that the path followed by

the system makes stationary the action functional

A [q(t)] =
∫ t2

t1
L(t,qi,q

(1)
i )dt,

between the initial state x1 ≡ (t1,qi(t1)) and final state x2 ≡ (t2,qi(t2)). If the evolu-
tion is described in parametric form t(τ), qi(τ) in terms of some arbitrary parameter
τ , then q(1)i (τ) = q̇i/ṫ, the variational approach will be written as [1]
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2 Martin Rivas∫ τ2

τ1

L(t,qi, q̇i/ṫ)ṫdτ =
∫ τ2

τ1

L̃(x, ẋ)dτ, L̃ = Lṫ,

L̃ is independent of τ and is a homogeneous function of first degree of the derivatives
ẋ. L̃2 is a positive definite homogeneous function of second degree of ẋ. Therefore
L̃2 = gi j(x, ẋ)ẋiẋ j, and the definite positive metric gi j are computed as [2, 3]

gi j(x, ẋ) =
1
2

∂ 2L̃2

∂ ẋi∂ ẋ j = g ji. (1)

The variational formalism looks now∫ τ2

τ1

L̃(x, ẋ)dτ =
∫ τ2

τ1

√
L̃2(x, ẋ)dτ =

∫ τ2

τ1

√
gi j(x, ẋ)ẋiẋ jdτ =

∫ x2

x1

ds,

where ds is the arc length on the X manifold w.r.t. the metric gi j. The variational
statement has been transformed into a geodesic problem with a Finsler metric.

The relativistic point particle of mass m has a kinematical space spanned by time
t and the position of the point r, so that the free Lagrangian L̃0 = ±mc

√
c2ṫ2 − ṙ2,

is a homogeneous function of first degree of the derivatives ṫ and ṙ.

2 Examples of Finsler spaces

In the case of a uniform gravitational field g, the dynamical equations dp/dt = mg,
come from the Lagrangian

L̃g = L̃0 +mg · rṫ. (2)

It corresponds from (1) to an evolution in a spacetime with the Finsler metric:

g00 = m2c2 +m2(g · r)2/c2 − m2c(g · r)
(c2 −u2)3/2 (2c2 −3u2),

g11 =−m2c2+
m2c(g · r)
(c2 −u2)3/2 (c

2−u2
y −u2

z ), g22 =−m2c2+
m2c(g · r)
(c2 −u2)3/2 (c

2−u2
x −u2

z ),

g33 =−m2c2 +
m2c(g · r)
(c2 −u2)3/2 (c

2 −u2
x −u2

y),

g01 =− m2u2(g · r)
(c2 −u2)3/2 ux, g02 =− m2u2(g · r)

(c2 −u2)3/2 uy, g03 =− m2u2(g · r)
(c2 −u2)3/2 uz,

g12 =
m2c(g · r)
(c2 −u2)3/2 uxuy, g23 =

m2c(g · r)
(c2 −u2)3/2 uyuz, g13 =

m2c(g · r)
(c2 −u2)3/2 uxuz.

If the velocity is negligible with respect to c, the nonvanishing coefficients are
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g00 = m2c2
(

1− g · r
c2

)2
, gii =−m2c2

(
1− g · r

c2

)
, i = 1,2,3,

where g00 is the same as the component of the Rindler metric.
The dynamics of a point particle in a Newtonian potential and its Lagrangian

dp
dt

=−GmM
r3 r, L̃N = L̃0 +

GmM
cr

cṫ.

and from (1) the metric coefficients are

g00 = m2c2 +
G2m2M2

c2r2 − Gm2Mc
r(c2 −u2)3/2 (2c2 −3u2),

g11 =−m2c2 +
Gm2Mc3

r(c2 −u2)3/2 −
Gm2Mc(u2

y +u2
z )

r(c2 −u2)3/2 ,

g22 =−m2c2 +
Gm2Mc3

r(c2 −u2)3/2 −
Gm2Mc(u2

x +u2
z )

r(c2 −u2)3/2 ,

g33 =−m2c2 +
Gm2Mc3

r(c2 −u2)3/2 −
Gm2Mc(u2

x +u2
y)

r(c2 −u2)3/2 ,

g01 =− Gm2Mu2ux

r(c2 −u2)3/2 , g02 =−
Gm2Mu2uy

r(c2 −u2)3/2 , g03 =− Gm2Mu2uz

r(c2 −u2)3/2 ,

g12 =
Gm2Mcuxuy

r(c2 −u2)3/2 , g23 =
Gm2Mcuyuz

r(c2 −u2)3/2 , g31 =
Gm2Mcuzux

r(c2 −u2)3/2 ,

It is a Finsler metric, which in the case of low velocities it becomes

g00 = m2c2
(

1− GM
c2r

)2

, gii =−m2c2
(

1− GM
c2r

)
, i = 1,2,3.

This corresponds to the static and spherically symmetric Riemannian metric(
1− GM

c2r

)2

c2dt2 −
(

1− GM
c2r

)
(dr2 + r2dΩ 2).

This metric is not a vacuum solution of Einstein’s equations, so that it cannot be
transformed into the Schwarzschild metric in istropic coordinates.

In all the examples, the free Lagrangian L̃0 of the spinless particle, has been
transformed by the interactions in the Finsler metric

L̃2
0 = m2c2ηµν ẋµ ẋν ⇒ L̃2 = gµν(x, ẋ)ẋµ ẋν . (3)

The low velocity limit produces a Riemannian approximation which does not give
rise to the usual dynamical equations.
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However, General Relativity states that gravity modifies the metric of spacetime
producing a new (pseudo-)Riemannian metric gµν(x), which is related through Ein-
stein’s equations to the energy momentum distribution T µν . The motion of a point
particle is a geodesic on spacetime, and therefore can be treated as a Lagrangian
dynamical problem with a Lagrangian

L̃2
g = gµν(x)ẋµ ẋν . (4)

In the spirit of unification of all interactions, one is tempted to extend the formula-
tion of gravity (4) to (3) by allowing the metric to be also a function of the deriva-
tives. Otherwise, to assume only a Riemannian metric is to consider that gravity pro-
duces a different geometrization than any other interaction. In a region of a uniform
gravitational field, the Lagrangian dynamics is equivalent to a geodesic problem
where the metric is necessarily a Finsler metric. The elimination of the velocities in
the metric coefficients could be interpreted as a low velocity limit of a more general
gravitational theory.

3 Conclusions

The manifold of the boundary variables of any Lagrangian system is a Finsler space.
Any variational approach is equivalent to a geodesic statement on this manifold. The
metric, is a function of the x ∈ X and ẋ, depends on the interaction, and to assume
that gravitation only produces a modification of the metric which is only a function
of the x, is a restriction of a more general formalism.

In all examples we have seen the Finsler structure of spacetime under differ-
ent gravitational interactions, although the metrics are obtained by pure Lagrangian
statements and not by any field equations. The new metrics are true Finsler metrics
which in the case of v/c → 0, resemble the metrics obtained in a general relativ-
ity formalism but they are not strict vacuum solutions of Einstein’s equations. This
could suggest some relationship between general relativity and the low velocity limit
of the corresponding Finsler structure of the gravitational problems.
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