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Abstract. The spin structure of an elementary particle shows that the center of mass and
center of charge of the particle are two different points. Dirac’s spin operator is the angular
momentum of the particle with respect to the center of charge. This implies that the addition
of the three Dirac spin operators of the three quarks cannot produce the spin of the proton.
It is necessary to add at least, the angular momenta of the three quarks with respect to their
corresponding center of mass. This lacking term, which is related to the separation between
both points has a clear relationship with Dirac’s electric dipole term.

1. Two centers
Let us think that the following classical analysis was performed before 1920, i.e., before the
emergence of quantum mechanics. The assumption is that the center of mass q and the center
of charge r, of a charged elementary spinning particle are two different points. If this is the case
we can define the angular momentum of the particle with respect to both points. Let us call S
the angular momentum w.r.t. the center of charge (CC for short) and SCM the corresponding
angular momentum w.r.t. the center of mass (CM for short). They are not independent, because
if p is the linear momentum of the particle, then SCM = (r−q)×p+S. But both spins satisfy
two different dynamical equations in the free case and under some external electromagnetic
interaction.

For any arbitrary inertial observer, the total angular momentum of the particle w.r.t. the
origin of observer’s frame can be written either as

J = r × p + S, or J = q × p + SCM .

If the particle is free, J is conserved and thus

dJ

dt
= 0 =

dr

dt
× p +

dS

dt
, or

dJ

dt
= 0 =

dq

dt
× p +

dSCM

dt
,

so that
dS

dt
= p× u, or

dSCM

dt
= 0,

because the conserved p is along the CM velocity v = dq/dt, but not along the CC velocity
u = dr/dt. The CM spin is a conserved observable for a free particle while the CC spin is not.
It is moving in an orthogonal direction to the linear momentum, and only its projection on p,
the helicity S · p, is conserved.



Let us assume now that the particle is under some external electromagnetic force F defined
at the CC position. In this case, J and p are no longer conserved and thus dJ/dt = r ×F and
dp/dt = F .

dJ

dt
= r × F =

dr

dt
× p + r × dp

dt
+

dS

dt
, or

dJ

dt
= r × F =

dq

dt
× p + q × dp

dt
+

dSCM

dt
,

dS

dt
= p× u, or

dSCM

dt
= (r − q)× F .

The CC spin satisfies the same dynamical equation as in the free case, it moves in an orthogonal
direction to the linear momentum, although now p is not conserved. The CM spin satisfies the
usual torque equation: the torque of the external force w.r.t. the CM is the time variation of
this spin.

Both spins can be found in the literature. The Bargmann-Michel-Telegdi spin [1] is the
covariant generalization of the CM spin. The CC spin satisfies the same dynamical equation as
Dirac’s spin operator in the quantum case.

2. Classical model of a Dirac particle
If an elementary spinning particle has two separate centers, the free motion implies that the
CM is moving at a constant velocity v. But, what about the CC motion? If the motion is
free it means that we are not able to distinguish, at two different instants, a different dynamical
behaviour. But if the trajectory of the CC is a regular curve (i.e. a continuous and differentiable
trajectory) it means that the velocity of the CC has to be of a constant modulus, the same at
any time, and the trajectory of a constant curvature and torsion. The CC travels along a helix
at a constant velocity, and this description must be valid for any inertial observer.

This implies that the CC velocity has to be unreachable for any inertial observer. Otherwise,
if some inertial observer is at rest w.r.t. the CC at a certain instant t, because the CC motion
is accelerated, it will have for that observer, a velocity different from zero at a subsequent time,
and thus contradictory with the assumption that the velocity is of constant absolute value for
any inertial observer. The only possibility is that the CC velocity is the speed of light and only
a relativistic treatment is allowed.

Figure 1. Model of a free Dirac
particle, with two separate centers,
showing the precession of the CC
spin S and the conserved CM spin
SCM . The CC moves along a helix
at the speed of light. The CC spin
is always orthogonal to the velocity
and acceleration of the charge and
precesses around p. The separation
between CC and CM is h̄/2mc, half
Compton’s wavelength, and the
frequency of this internal motion,
in the CM frame, is 2mc2/h. It is
described in [2].

This is precisely the main feature of a classical model of an elementary particle, which satisfies
Dirac’s equation when quantized, we have developped [2]. The free motion of this model is
depicted in Figure 1, where we see the straight motion of the CM and the helical motion at the
speed of light of the CC. We also depict the two above mentioned spins, S and SCM .



3. Dirac’s analysis of the electron
In his original 1928 papers [3, 4] Dirac describes an electron in terms of a four-component spinor
ψ(t, r), defined at point r, and a Hamiltonian

H = c(p− eA(t, r)) ·α + βmc2 + eφ(t, r)

where β and α are Dirac’s matrices and φ and A the scalar and vector external potentials, also
defined at the point r.

When computing the velocity of point r, Dirac arrives at: u = i/h̄[H, r] = cα, which is
expressed in terms of α matrices and writes, ‘. . . a measurement of a component of the velocity
of a free electron is certain to lead to the result ±c. This conclusion is easily seen to hold also
when there is a field present’, because it holds even if the external potentials are not vanishing.

The point r oscillates in a region of order of Compton’s wavelength: ‘The oscillatory part of
x1 is small, . . . , which is of order of magnitude h̄/mc, . . .’. This is the amplitude of the motion
of the CC around the CM in our model.

The linear momentum does not have the direction of the velocity u, but must be related to
some average value of it: . . . ‘the x1 component of the velocity, cα1, consists of two parts, a
constant part c2p1H

−1, connected with the momentum by the classical relativistic formula, and
an oscillatory part, whose frequency is at least 2mc2/h, . . .’, the same as in the above classical
model.

The total angular momentum w.r.t. the origin of observer’s frame, takes the form

J = r × p +
h̄

2
σ = r × p + S

where the orbital part r × p and the spin part S = h̄σ/2, are not separately conserved for a
free electron but the spin satisfies,

dS

dt
=

i

h̄
[H, S] = p× cα = p× u.

even under some external interaction. This is the dynamical equation of the CC spin.
The electron, ‘. . . behaves as though it has a magnetic moment given by

µ = g
e

2m
S =

eh̄

2m
σ, g = 2,

an also an instantaneous electric dipole’

d =
ieh̄

2mc
α.

If the previous classical analysis of an elementary particle with two separate centers is taken
into account, it is not difficult to conclude that Dirac’s electron is an object with two centers,
described by a spinor ψ(t, r) which is a function of the CC position r. The linear momentum is
not lying along the velocity of point r, but around some average value of it. Dirac spin operator
is not the angular momentum w.r.t. the CM, but it represents the angular momentum w.r.t. the
CC, even under some external interaction. The magnetic moment is produced by the motion
of the charge, and the separation between these two points defines an electric dipole moment
d = e(r − q).



Figure 2. Model of a proton
as a bound system of three Dirac
particles in a L = 0 angular
momentum state, and in the CM
frame. It is shown the motion of
the CM of each quark, which has
to be a straight trajectory passing
through the CM of the proton.
The Dirac spin operator of each
quark is defined with respect to
the corresponding CC, so that the
addition of the three h̄σ/2 cannot
produce the angular momentum
w.r.t. the CM of the proton.

4. The spin of the proton
Let us assume as usual that the proton is a bound system of three quarks which are in a zero
orbital angular momentum L = 0, w.r.t. the CM of the proton. We also assume, as usual, that
quarks are Dirac particles, i.e., charged particles of spin 1/2 and gyromagnetic ratio g = 2, so
that we can apply to them the same classical model as the above for the electron.

If they move in a L = 0 state, this means literally, when making the analysis in the CM frame
of the proton, that the CM of each quark is moving in a straight trajectory passing through the
common CM of the proton, and therefore all three trajectories are lying on a plane, such that
the total linear momentum is zero. Let us consider that the spin of the proton is the angular
momentum of this system of three quarks w.r.t. the common CM, at rest. As we see in figure
2, the three Dirac spin operators represent the angular momenta w.r.t. the CC of each quark,
so that the addition of the three Dirac spin operators cannot give us the angular momentum of
the proton. We need to add for each quark the corresponding angular momentum (ri−qi)×pi,
i = 1, 2, 3. Taking into account Dirac’s electric dipole moment d = e(r − q) we see that the
lacking term in the proton spin is the addition of the three operators, one for each quark,

ih̄

2mc
α× p =

ih̄

2mc
α× h̄

i
∇ =

h̄2

2mc
α×∇.

This term for each quark is not negligible because when the CM of each quark reaches the CM
of the proton, the average value of p is around 325 MeV/c. If q represents the quark spinor field,
the angular momentum of the proton must contain at least the terms:

3∑

i=1

q†i

(
h̄

2
σi

)
qi +

3∑

i=1

q†i

(
h̄2

2mc
αi ×∇i

)
qi
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