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The concept of elementary particle rests on the idea that it is a physical system with no
excited states, so that all possible states of the particle are just kinematical modifications
of any one of them. In this way instead of describing the particle attributes it amounts to
describe the collection of consecutive inertial observers who describe the particle in the
same kinematical state. The kinematical state space of an elementary particle is a homo-
geneous space of the kinematical group. By considering the largest homogeneous spaces of
both, Galilei and Poincaré groups, it is shown how the spin structure is related to the dif-
ferent degrees of freedom. Finally, the spacetime symmetry group of a relativistic particle
which satisfies Dirac’s equation when quantized, is enlarged to take into account addi-
tional symmetries like spacetime dilations and local rotations. An interaction Lagrangian
invariant under this enlarged group is proposed and the compound system of two Dirac
particles is analyzed.
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1 Introduction

We are going to discuss within the kinematical formalism developped by the
author, the interaction Lagrangian for two spin 1/2 Dirac particles. In order to
make the contribution selfcontained we shall describe in section 2 the main theo-
retical considerations which lead to the definition of a classical elementary particle.
This definition also applies to the spinless point particle but in general describe
systems which contain some more variables, such that the usual classical mechanics
machinery will produce the definition of spin in terms of these additional variables.
The formalism is a variational formalism which is quantized under Feynman’s path
integral method. It makes a prediction concerning the electromagnetic dipole struc-
ture of particles and antiparticles in such a way that spin and magnetic moment
must have the same relative orientation for matter and antimatter. Two plausible
experiments are proposed to determine this relative orientation.

In section 3 we discuss the enlargement of the spacetime symmetry group to
include also spacetime dilations and local rotations and the relationship of the
new spacetime symmetry group with the standard model. Finally, in section 4 we
describe the interaction Lagrangian for a system of two interacting Dirac’s particles
which is obtained under the assumption that the intrinsic structure of an elementary
particle is not modified by any interaction. With this Lagrangian we analyze the
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interaction of two particles and the possibility of formation of bound pairs of equal
charged particles provided some boundary conditions are fulfilled.

2 Kinematical formalism

We call the present approach a kinematical formalism because the spacetime
symmetry group of the theory, the kinematical group, not only supplies the sym-
metries, and therefore the conserved observables of the system, but also its group
parameters, compact and non compact, will be transformed into the classical vari-
ables we need to describe the elementary systems [1]. Classical elementary particles
are localized and orientable systems. By this we mean that the position of the
particle is described by the evolution of a geometrical point where all the particle
charges responsible for its interaction are located, and the orientation is described
by attaching a comoving cartesian frame which describes the particle rotation. Nev-
ertheless the position of that point is not the center of mass for a spinning particle,
so that the motion of the charge around the center of mass produces the dipole
structure. For a Dirac particle the charge moves at the speed of light so that it is
never at rest for any inertial observer and this justifies the coupling of the particle
current with the external potentials. The particle is characterized by two kinds
of classical variables. Non-compact variables like time t, position r and compact
variables like the orientation variables α. The spin 1/2 structure of elementary
particles will be related to compact variables and, therefore, mathematical theo-
rems on compact groups will play an important role in the quantum mechanical
structure of spin.

The dynamics is based upon a variational formalism. The initial and final states
of the classical variational formalism, characterized by what will be called kine-
matical variables, will correspond with the initial and final states of the quantum
dynamical formalism. We have to find solutions passing through the end points so
that we have to give a protagonism to the kinematical variables. The Lagrangian
must be rewritten in terms of these variables, instead of the independent degrees
of freedom.

We also accept the atomistic hypothesis. Matter cannot be divided indefinitely.
After a finite number of steps we reach a final and indivisible object, i.e., an ele-
mentary particle. Real matter does not satisfy the hypothesis of the continuum. An
elementary particle is a mechanical system without excited states. We can destroy
it but we can never modify its structure. All its possible states are only kinematical
modifications of any one of them. If the state of an elementary particle changes, it
is always possible to find another inertial observer who describes the particle in the
same state as in the previous instant.

Any elementary system is thus a Lagrangian system whose initial and final states
can be characterized by a finite number of variables. By the above consideration
on the states of an elementary particle the kinematical variables necessarily span a
homogeneous space of the kinematical group associated to the restricted Relativity
Principle. The variables which characterize the classical states of an elementary
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particle are thus the variables which characterize the possible parameterizations of
the kinematical group of space-time transformations.

For any generalized Lagrangian system L(t, qi, q
(1)
i , . . . , q

(k−1)
i , q

(k)
i ), of n degrees

of freedom qi, and whose Lagrangian depends on the derivatives up to a finite order
k-th, the kinematical variables are

x ≡ t, qi, q
(1)
i , . . . , q

(k−1)
i .

If, instead of time t we use an arbitrary evolution parameter τ

∫ t2

t1

L(t, qi, q
(1)
i , . . . , q

(k−1)
i , q

(k)
i )dt =

∫ τ2

τ1

L(xj , ẋj)dτ,

where ẋ = dx/dτ , q(1) = dq/dt = q̇/ṫ, q(2) = dq(1)/dt = ˙q(1)/ṫ, etc., dt = ṫdτ , and
the Lagrangian becomes a homogeneous function of first degree of the τ−derivatives
of the kinematical variables ẋj ,

L(x, ẋ) =
∂L

∂ẋj
ẋj = Fj(x, ẋ)ẋj . (1)

Noether’s theorem implies that the different constants of the motion can be ex-
pressed only in terms of the functions Fj and their time derivatives.

The generalized coordinates are qi, q
(1)
i , . . . , q

(k−1)
i , and their canonical conju-

gate momenta

pis =
k−s∑
r=0

(−1)r dr

dtr
F(r+s−1)n+i, i = 1, . . . , n, s = 1, . . . , k

and the Hamiltonian is
H = pisq

(s)
i − L

where Fj(x, ẋ) are given in (1), and thus the phase space is of dimension 2kn.
If G is a r−parameter symmetry group of parameters gα, α = 1, . . . , r, which

leaves invariant the Lagrangian and transforms infinitesimally the kinematical vari-
ables in the form

x′j = xj + Mjα(x)δgα, j = 0, 1, . . . , kn, α = 1, . . . , r,

the r conserved Noether’s observables are given by

Nα = HM0α(x)− pisM{(s−1)n+i}α(x), i = 1, . . . , n, s = 1, . . . k.

The advantage of this formulation is that we can obtain general expressions for
the conserved quantities in terms of the above Fi(x, ẋ) functions, and their time
derivatives, which are homogeneous functions of zero-th degree of the variables ẋi

and of the way the kinematical variables transform Mjα(x).
The quantization leads to the following results:[2]
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1. If x are the kinematical variables of the variational approach, Feynman’s
kernel K(x1, x2) which describes the probability amplitude for the evolution
of the system between the initial point x1 to the final point x2, is only a
function (more properly a distribution) of the end point kinematical variables.

2. The wave function of the quantized system is a complex squared integrable
function of these variables Φ(x), with respect to some suitable invariant mea-
sure over the kinematical space.

3. The wave function transforms under the kinematical group

Φ′(x) = U(g)Φ(x) = Φ(g−1x)e−iα(g−1;x)/h̄

with a projective unitary irreducible representation of the kinematical group.

4. If G is a symmetry group of parameters gα, which transform infinitesimally
the kinematical variables in the form:

x′j = xj + Mjα(x)δgα,

the representation of the generators is given by the self-adjoint operators
(h̄ = 1)

Xα = −iMjα(x)
∂

∂xj
.

5. Quantum theory is not a hidden variable theory because it describes the
quantum states in terms of a wave function which depends on exactly the
same classical variables as the classical mechanics does.

x → Φ(x)

and thus no classical information is lost in the proccess of quantization.

In our model of the Dirac particle, the kinematical variables are time t, the
position of the charge r, the velocity of the charge u with the constraint u = c, and,
finally the orientation of the particle α described by a suitable parameterization
of the rotation group and which describes the orientation of a local body frame
attached to the point r. According to the homogeneity condition (1) the general
form of the Lagrangian is

L = T ṫ + R · ṙ + U · u̇ + W · ω, (2)

where T = ∂L/∂ṫ, R = ∂L/∂ṙ, U = ∂L/∂u̇ and W = ∂L/∂ω. All conserved
quantities obtained by applying Noether’s theorem, will be expressed in terms of
these functions and their time derivatives.
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We see that the Lagrangian depends up to the acceleration of the point r and
therefore dynamical equations for the motion of this point are fourth order dif-
ferentail equations [4]. The general expressions of the ten conserved Nother’s ob-
servables are

H = −T + u · dU
dt

, P = R− dU
dt

,

K =
1
c2

Hr−Pt +
1
c2

u× S, J = r×P + u×U + W = L + S,

which are called respectively, energy, linear momentum, kinematical momentum
and angular momentum. We see the twofold structure of the spin observable which
depends on the term Z = u ×U or zitterbewegung part and the rotational part
W. The center of mass position is defined by

q = r− 1
H

S× u,

which is always different from r, whenever the spin is not zero. The time derivative
of the conserved J brings for the spin the dynamical equation

dS
dt

= P× u, (3)

which is not conserved because P and u are not collinear vectors. This is the same
dynamical equation satisfied by Dirac’s spin operator in the quantum case. We thus
see that our spin observable S represents the angular momentum of the particle
with respect to the charge position r and not with respect to the center of mass
q. This is one of the reasons why this magnitude is not a conserved one even for a
free particle. Is is only conserved in the centre of mass frame, where P = 0.

The wave function becomes a complex squared integrable function defined on
the kinematical space Φ(t, r,u, α). The Poincaré group unitary realization over the
corresponding Hilbert space has the usual selfadjoint generators. They are repre-
sented by the differential operators, with respect to the kinematical variables, in
three-vector form (h̄ = c = 1):

H = i∂/∂t, P = −i∇,

K = ir∂/∂t + it∇+ u× S, J = −ir×∇+ S = L + S.

The spin operator S is given by

Si = −iεijkuj∂/∂uk + Wi, or S = −iu×∇u + W = Z + W.

∇u is the gradient operator with respect to the ui variables and the W operator
involves differential operators with respect to the orientation variables. Its structure
depends on the selection of the variables which represent the orientation and which
correspond to the different parameterizations of the rotation group. In the normal
or canonical parameterization of the rotation group, every rotation is characterized
by a three vector α = αn, where n is a unit vector along the rotation axis and α
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the clokwise rotated angle. If we represent the unit vector n by the usual polar and
azimuthal angles (θ, φ), θ ∈ [0, π] and φ ∈ [0, 2π], then every rotation is parameter-
ized by the three dimensionless variables (α, θ, φ). In this parameterization the Wi

spin operators become:

W1 =
1
2i

[
2 sin θ cos φ

∂

∂α
+

(
cos θ cosφ

tan(α/2)
− sinφ

)
∂

∂θ
−

(
sin φ

tan(α/2) sin θ
+

cos θ cosφ

sin θ

)
∂

∂φ

]
, (4)

W2 =
1
2i

[
2 sin θ sin φ

∂

∂α
+

(
cos θ sin φ

tan(α/2)
+ cos φ

)
∂

∂θ
−

(
cos θ sinφ

sin θ
− cosφ

tan(α/2) sin θ

)
∂

∂φ

]
, (5)

W3 =
1
2i

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)
∂

∂θ
+

∂

∂φ

]
, (6)

The Zi = −iu × ∇u operators are expressed in terms of the direction θ̃, φ̃ of the
velocity u in the form:

Z1 = i sin φ̃
∂

∂θ̃
+ i

cos θ̃

sin θ̃
cos φ̃

∂

∂φ̃
, Z2 = −i cos φ̃

∂

∂θ̃
+ i

cos θ̃

sin θ̃
sin φ̃

∂

∂φ̃
,

Z3 = −i
∂

∂φ̃
.

and therefore is eigenvectors are the spherical harmonics Y m
l (θ̃, φ̃). They satisfy the

commutation relations

[Lj , Lk] = iεjklLl, [Zj , Zk] = iεjklZl, [Wj ,Wk] = iεjklWl,

[Li, Zj ] = [Li,Wk] = [Zi,Wk] = 0.

and thus

[Jj , Jk] = iεjklJl, [Ji, H] = [Ji, D] = 0, [Jj , Pk] = iεjklPl.

We thus clearly see that the structure of the quantum mechanical spin operator S
only takes derivatives with respect to the compact kinematical variables θ̃, φ̃, α, θ, φ.

The classical expression that leads to Dirac equation when quantizing the system
comes from the conserved kinematical momentum K.

K =
H

c2
r−Pt− S× u

c2
, ⇒ dK

dt
= 0 =

H

c2
u−P− d

dt

(
S× u

c2

)

?6 Czech. J. Phys. 56 (2006)



Kinematical theory of spinning particles: Interaction Lagrangian

a subsequent scalar product with the velocity leads to

H = P · u +
1
c2

S ·
(

du
dt
× u

)
. (7)

This is a linear relationship between H and P, where the velocity u should be
replaced by Dirac’s velocity operator cα and the last term corresponds to βmc2 in
terms of Dirac’s β matrix. In the center of mass frame the absolute value of the
acceleration is c2/R, so that taking into account the value of R we get that this
term reduces to ±mc2, the positive value for the particle and the negative one for
the antiparticle.

Taking into account that the spin dynamical equation, even for a free particle is
(3), we arrive to the classical expression of the spin in terms of the internal motion

S =
H −P · u
|du/dt|2

(
du
dt
× u

)
, (8)

so that classical Dirac’s spin observable is always orthogonal to the velocity and
acceleration of the charge.

For the center of mass observer K = P = 0, the spin is a constant of the motion,
H = mc2 and thus

K =
H

c2
r−Pt− 1

c2
S× u = 0, ⇒ r =

1
mc2

S× u,

so that point r is moving in circles, at the speed of light, on a plane orthogonal to
the constant vector S as shown in Fig.1. Classical mechanics does not restrict the
value of the constant spin S which can be any positive real number. Its true value
will be uniquely fixed after quantization. The radius of this circle is R = S/mc and
the angular velocity of this internal motion or zitterbewegung is ω = mc2/S.

In fact, in the center of mass frame, it is a system of three degrees of freedom.
The coordinates x and y of the point r and the phase α of the rotation of the body
frame. This phase is the same as the phase of the orbital motion. The motion is at a
constant velocity c, then the system is reduced to a single degree of freedom system.
It is a one-dimensional harmonic oscillator of frequency ω = mc2/S, without excited
states. The ground state energy of this system when quantized, is h̄ω/2 = mc2 which
implies that the classical parameter S = h̄/2.

The negative energy particle corresponds to the time reversed motion with the
same spin S. But the formalism does not fix the sign of the charge.

2.1 Chirality and PCT invariance

Matter is lefthanded and antimatter is righthanded when we consider the motion of
the charge with respect to the spin direction. Matter moves counterclockwise when
looking along the direction of spin. Antimatter moves in the opposite direction.
If we assume that the positive energy particle is of negative charge we obtain the
dipole structure of the particle and antiparticle as depicted in Fig.2. If the particle is
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Fig. 1. Motion of the charge of the electron in the center of mass frame. The magnetic
moment is produced by the motion of the charge and the particle also has an oscillating

electric dipole moment of value d = er.

of positive charge we obtain the opposite relative orientation. This indefiniteness in
the sign of the charge of matter is also present in Dirac’s formalism. This prediction
is consistent with the known structures formed by a particle and the corresponding
antiparticle. The positronium is an unstable bound state between an electron and
a positron. The ground state, the singlet parapositronium state, is of zero spin
and zero magnetic moment, thus justifying that particle and antiparticle have the
same relative orientation between the spin and magnetic moment. In the case of
the bound system qq̄ betweeen two quarks we have the π0 which is a zero spin and
zero magnetic moment particle which is represented as a linear combination of uū,
and dd̄ quarks and antiquarks.

Nevertheless, the theory does not predict the relative orientation because does
not fix the sign of the charge of the particle, as in Dirac’s formalism. This has to
be measured experimentaly. In our opinion this feature has not been measured and
we propose two plausible experiments to establish their relative orientation.

2.2 Two plausible experiments

We propose an experiment for the measurement of the relative orientation between
S and µ for an electron bound in a Rb atom. Rb87 atom has a 5s outer electron.
Its nucleus has spin 3/2 and the ground state of the atom corresponds to a system
of total spin 1, with the spin of the outer electron opposite to that of the nucleus.
The magnetic moment of the atom is basically the magnetic moment of the outer
electron. Ultracold atoms in an external magnetic field will orient their magnetic
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Fig. 2. Matter is lefthanded and antimatter is righthanded, as far as the motion of the
charge is concerned once the spin direction is fixed. Particle and antiparticle have the
same mass and spin and also the same electric and magnetic dipole with the same relative
orientation with respect to the spin. The antiparticle in b) is the PCT transformed of the

particle a)

moments along the direction of the field.

If we send in this direction circularly polarized photons of such an energy to
produce the hyperfine transition which flips the spin of the electron to the opposite
orientation, and therefore the atom goes into a total spin 2 state, then only those
photons with a spin opposite to the outer electron will be absorbed.

Another experiment is the measurement of the preccession direction of the spin
of e+ and e− and of µ+ and µ− in a storage ring. If e+ and e− and µ+ and µ− have
the same relative orientation between spin and magnetic moment, then the torque
and thus the preccession will be the same.

µ×B =
dS
dt

Nevertheless, if we inject into the accelerator particles and antiparticles with the
spin up, and because the magnetic field of the ring has to be reversed for the antipar-
ticle, then the preccession direction of both beams will be opposite to each other.
If it is possible to detect the precession direction this will confirm the prediction
and also the relative orientation between spin and magnetic moment.
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3 More spacetime symmetries

The wave function is a function of the kinematical variables

Φ(t, r; θ̃, φ̃, α, θ, φ) =
i=4∑

i=1

ψi(t, r)Φi(θ̃, φ̃, α, θ, φ)

If the system has spin S and mass m we can define a length scale R = S/mc and
a time scale T = S/mc2, so that the 9 kinematical variables of a Dirac particle
can be taken dimensionless from the classical point of view. The length scale is the
radius of the internal motion and the time scale the time taken during a complete
turn of the charge.

This means that this system, in addition to the Poincaré group, it also has as a
symmetry group the space-time dilations which do not change the speed of light

t′ = eλt, r′ = eλr, u′ = u, α′ = α.

the generator of the unitary representation of this U(1) group is

D = it
∂

∂t
+ ir · ∇ = tH − r ·P.

The enlarged group is the Weyl group, denoted here by W.
The Poincaré group P has two Casimir operators expressed in terms of the

four-momentum Pµ and the Pauli-Ljubansky operator Wµ, in the form

C1 = PµPµ = H2 −P2 = m2, C2 = −WµWµ = m2s(s + 1)h̄2.

The enlarged Weyl group W has only one Casimir operator which for massive
systems (C1 is invertible) is reduced to

C =
C2

C1
= s(s + 1)h̄2.

The spin is the only intrinsic property of this elementary particle.
The rotation group acts on the kinematical variables in the way:

t′ = t, r′ = R(µ)r, u′ = R(µ)u, R(α′) = R(µ)R(α).

But the orientation variables α are arbitrary, so that we can also have another local
rotation body frame transformations

t′ = t, r′ = r, u′ = u, R(α′) = R(β)R(α).

This corresponds to the active rotation of the body frame ei, i = 1, 2, 3. The
generators of these rotations are the spin projections on the body frame, i.e. the
Ti = ei · W operators. These operators commute with the whole W group. So
that the new space-time group is W ⊗ SO(3) and becomes in the quantum case
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W ⊗ SU(2). It has two Casimir operators S2 and T2. But because T2 = W2 the
eigenvalues of T2 are only 1/2.

The Ti operators are differential operators with respect to the compact orien-
tation variables α, θ, φ, and are given by

T1 =
−i

2

[
2 sin θ cosφ

∂

∂α
+

(
cos θ cos φ

tan(α/2)
+ sin φ

)
∂

∂θ
−

(
sin φ

tan(α/2) sin θ
− cos θ cosφ

sin θ

)
∂

∂φ

]
, (9)

T2 =
−i

2

[
2 sin θ sin φ

∂

∂α
+

(
cos θ sin φ

tan(α/2)
− cos φ

)
∂

∂θ
−

(
−cos θ sin φ

sin θ
− cos φ

tan(α/2) sin θ

)
∂

∂φ

]
, (10)

T3 =
−i

2

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)
∂

∂θ
− ∂

∂φ

]
. (11)

The Ti are related to the Wi by changing α into −α, and satisfy the commutation
relations

[Ti, Tj ] = −iεijkTk

wich corresponds to an active rotation.[3]
Because the spin has the form S = Z+W and quantizes with s = 1/2 while W

quantizes with w = 1/2, the zitterbewegung part Z quantizes with z = 0 or z = 1.
There are thus two kinds of Dirac’s particles according to the two possible Z

eigenvalues.

3.1 Standard model?

If we interpret the new SU(2) local rotation group as representing isospin and
the zitterbewegung angular momentum Z as representing color, the above Dirac
particle with the W ⊗ SU(2) as its space-time symmetry group is:

– A particle of spin 1/2 and of isospin 1/2 of arbitrary nonvanishing mass and
arbitrary charge.

– it can be a colourless particle z = 0 (lepton?), or a coloured one z = 1
(quark?). The last one can also be in one of the three Z3 states 1, 0,−1
but the Z3 is unobservable because the four basic Φi(θ̃, φ̃, α, θ, φ) spinors are
eigenvectors of Z2, S2 and T2 but not of Z3 for z = 1 case.

The Φi spinors for the z = 0 case are in the notation |0; s3, t3 >

Φ1 = |0; 1/2,−1/2 >= i
√

2 sin(α/2) sin θeiφ, (12)

Φ2 = |0;−1/2,−1/2 >=
√

2 (cos(α/2)− i cos θ sin(α/2)) (13)

Φ3 = |0; 1/2, 1/2 >= −
√

2 (cos(α/2) + i cos θ sin(α/2)) , (14)

Φ4 = |0;−1/2, 1/2 >= −i
√

2 sin(α/2) sin θe−iφ. (15)
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They form an orthonormal set with respect to the normalized invariant measure
defined on SU(2)

dg(α, θ, φ) =
1

4π2
sin2(α/2) sin θ dα dθ dφ,

α ∈ [0, 2π], θ ∈ [0, π], φ ∈ [0, 2π].
∫

SU(2)

dg(α, θ, φ) = 1.

For the z = 1 case in the notation |1; s3, t3 >, we represnt them by Ψi and they are

Ψ1 = |1; 1/2, 1/2 >=
1√
3

(
Y 0

1 (θ̃, φ̃)Φ1 −
√

2Y 1
1 (θ̃, φ̃)Φ2

)
, (16)

Ψ2 = |1;−1/2, 1/2 >=
1√
3

(
−Y 0

1 (θ̃, φ̃)Φ2 +
√

2Y −1
1 (θ̃, φ̃)Φ1

)
, (17)

Ψ3 = |1; 1/2,−1/2 >=
1√
3

(
Y 0

1 (θ̃, φ̃)Φ3 −
√

2Y 1
1 (θ̃, φ̃)Φ4

)
, (18)

Ψ4 = |1;−1/2,−1/2 >=
1√
3

(
−Y 0

1 (θ̃, φ̃)Φ4 +
√

2Y −1
1 (θ̃, φ̃)Φ3

)
. (19)

where the Φi are the same as the ones in (12-15) and the spherical harmonics
Y i

1 (θ̃, φ̃) are

Y 1
1 = −

√
3
8π

sin(θ̃)eiφ̃, Y 0
1 =

√
3
4π

cos(θ̃), Y −1
1 =

√
3
8π

sin(θ̃)e−iφ̃. (20)

The four spinors Ψi are orthonormal with respect to the invariant measure

dg(α, θ, φ ; θ̃, φ̃) =
1

4π2
sin2(α/2) sin θ sin θ̃ dα dθ dφ dθ̃dφ̃

α ∈ [0, 2π], θ̃, θ ∈ [0, π], φ̃, φ ∈ [0, 2π].

We clearly see that the Ψi are eigenvectors of Z2 with eigenvalue z = 1, but they are
not eigenvectors of Z3 because they are linear combinations of spherical harmonics
of different z3 values.

3.2 Larger kinematical space

Once we have a larger kinematical group we can have a larger kinematical space.
The new kinematical variable β associated to the spacetime dilation corresponds
to half the phase of the internal zitterbewegung motion.

The Lagrangian is now, instead of (2), of the general form

L0 = ṫT + ṙ ·R + u̇ ·U + ω ·W + Bβ̇,
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Now the conserved quantity under spacetime dilations is D = Ht−P ·r−B, where
B = ∂L0/∂β̇. If we take the time derivative of this expression and compare with
Dirac’s equation (7), it results that in the center of mass frame

dB

dt
= ±mc2, B(t) = B(0)± 1

2
h̄ωt.

We nedd the extra variable β of the enlarged kinematical group in order to still
satisfy Dirac’s equation.

4 The interaction Lagrangian

The kinematical space of two Dirac particles is spanned by the variables

{ta, ra, βa,ua,αa}, a = 1, 2.

We assume that the Lagrangian which describes the compound system is of the
form L = L1 + L2 + LI .

Because the spin is the only intrinsic property of an elementary particle and
cannot be modified by any interaction, the interaction Lagrangian LI cannot be a
function of u̇a and of α̇a or equivalently ωa. If it is going to be invariant under
the local SU(2) group of local rotations, then it has to be also independent of αa.
Otherwise the spin definition of each particle will be modified. If it is also invari-
ant under spacetime dilations, must be independent of the βa. The spin definition
remains the same as in the free case

Sa = ua × ∂La

∂u̇a
+

∂La

∂ωa
= Za + Wa, a = 1, 2.

The interaction Lagrangian will thus be a function of

LI = LI(ta, ra, ṫa, ṙa),

and because of (1) a homogeneous function of first degree of the derivatives ṫa, ṙa,
a = 1, 2. If it is going to be invariant under W ⊗ SU(2), if we call xµ

a ≡ (ta, ra),
then we get

LI = g

√
ηµν ẋµ

1 ẋν
2

ηµν(xµ
1 − xµ

2 )(xν
2 − xν

1)
= g

√
ṫ1ṫ2 − ṙ1 · ṙ2

(r2 − r1)2 − (t2 − t1)2

where ηµν is Minkowski’s metric tensor and g is a coupling constant with dimensions
of action. Incidentaly we can also see that the Lagrangian is also invariant under
the interchange 1 ↔ 2.

4.1 Synchronous time description

Once an inertial observer is fixed it can make a synchronous time description, i.e.
to use as evolution parameter the own observer’s time t which is the same as the
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two time variables t1 and t2. In this case

LI = g

√
1− u1 · u2

(r2 − r1)2
= g

√
1− u1 · u2

r

where r = |r1 − r2| is the instantaneous separation between the corresponding
charges in this frame. We thus have an action at a distance interaction in terms of
a single evolution parameter τ .

An average over the charge position and velocity in the center of mass of one
of the particles imply that the interaction becomes the instantaneous Coulomb
interaction, between the center of mass of the first particle (which is also the average
position of its charge) and the charge position of the other. The average over the
other then corresponds to the interaction of two spinless point particles when the
spin structure is neglected.

It is suggesting that g ∼ ±e2 in terms of the electric charge of each particle.
Then the requirement of invariance under the enlarged W⊗SO(3) group produces
a generalization of the instantaneous electromagnetic interaction between spinning
particles.

4.2 Analysis of a 2-particle system

The dynamical equation of a free Dirac particle is a fourth-order differential equa-
tion for the position of the charge which can be separated into a system of coupled
second order differential equations for the center of mass q and center of charge r
in the form:[4]

q̈ = 0, r̈ =
1− q̇ · ṙ
(q− r)2

(q− r)

In the case of interaction the second equation remains the same because it corre-
sponds to the definition of the center of mass position which is unchanged by the
interaction. The first equation for particle a is going to be replaced by dpa/dt = Fa

where pa is the corresponding linear momentum of each particle expressed as usual
in terms of the center of mass velocity

pa = γ(q̇a)mq̇a, γ(q̇a) = (1− q̇2
a)−1/2,

and the force Fa is computed from the interaction Lagrangian

Fa =
∂LI

∂ra
− d

dt

(
∂LI

∂ua

)

For particle 1 takes the form:

F1 = −g
r1 − r2

|r1 − r2|3
√

1− u1 · u2 +
d

dt

(
gu2

2|r1 − r2|
√

1− u1 · u2

)

where there are velocity terms which behave like 1/r2 and acceleration terms which
go as 1/r in terms of the charge separation r = |r1 − r2|.
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Then the system of second order differential equations to be solved are

q̈a =
α

γ(q̇a)
(Fa − q̇a(Fa · q̇a)) (21)

r̈a =
1− q̇a · ṙa

(qa − ra)2
(qa − ra), a = 1, 2 (22)

where α = g/m is the fine structure constant in the case of electromagnetic inter-
action and once all the variables are dimensionless.

Fig. 3. The trajectories of the centers of mass and charge of two spinning particles of the
same charge, with an initial center of mass velocity v = 0.1 and a small impact parameter.

We see in Fig.3 the sccatering of two equal charged particles with parallel spins.
The trajectory of each center of mass basically corresponds to the trajectory of a
spinless particle coming from the same initial position as the corresponding center
of mass, provided the two particles do not approach each other below Compton’s
wavelength. For higher energy proccesses the sccatering of the spinning particles
shows a more detailed structure which depends also on the relative phases of the
internal motion of each charge.

In Fig.4 we also depict the bound motion of the two equal charged particles with
parallel spins. The initial position is below Compton’s wavelength. The velocity of
each particle must be less than 0.01c and the phases have to be opposite to each
other. If we try to produce this bound state by a pure collision we need a greater
kinetic energy to overcome the repulsion and the bound state is unstable. But if we
think in two conducting electrons in a lattice, the repulsion is smeared out by the
background electrostatic field of the ions and this is a plausible mechanism for the
formation of a bosonic condensate. This feature of formation of metastable bound
states can also be obtained by pure electromagnetic interaction between the two
Dirac particles, instead of using the obtained Lagrangian. Below Compton’s wave-
length a repulsion between charges can be transformed into an atraction between
the centers of mass.
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Fig. 4. Bound motion of the centers of mass and charge of two spinning particles of the
same charge, with parallel spins and with a center of mass velocity v ≤ 0.01, for an initial

separation between the centers of masses 0.2×Compton’s wavelength.
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