Falling elastic bars and springs
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We analyze the initial motion of an elastic bar that is suddenly released after being hung from one
end. The analytical solutions uncover some unexpected properties, which can be checked with a
digital camera or camcorder in an alternative setup in which a spring is substituted for the bar. The
model and the experiments are useful for understanding the similarities and differences between the
elastic properties of bars and springs. Students can use the simple experiments to improve their
understanding of elastic waves. © 2007 American Association of Physics Teachers.
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I. INTRODUCTION

Undergraduate physics students sometimes have difficul-
ties realizing that the useful but idealized conceptual limit of
rigid bodies can be misleading if applied to the analysis of
some problems, for instance, the “pole and barn paradox”1
and the “detonator paradox”2 in special relativity. In both
cases one has to realize that the parts of the object do not
stop all at the same time.

To avoid the difficulty of the relativity of simultaneity, let
us consider a simple problem in elasticity. A long thin elastic
bar is vertically suspended from one end by a string. After
equilibrium is attained, the string is suddenly cut. Will all
points on the bar have the same acceleration just after the
string is cut? Most students will quickly answer that all
points will fall with acceleration g, and it takes some time to
convince them that although the tension in the upper end
disappears when the string is cut, it will take a finite time
before the tension and the deformation change occurs at
other points. The change will propagate along the bar in the
form of a wave, so that initially the lower end does not move
at all.

We will show that the theoretical analysis for a metallic
bar is elementary, but the deformation would be too small
and the change too fast to be seen, except with a sophisti-
cated experimental setup. Instead we used a plastic spring,3
which when stretched behaves much like the elastic bar, but
has elastic properties that change completely when the loops
are in contact with each other. Spring deformations are large
and change slowly enough to be recorded with a digital cam-
era. In our first try4 we could easily see that the lower end
did not start falling until the deformation change reached it.

We might think that if the center of mass moves with
acceleration g while the points at the lower end are still at
rest, the upper points must move with greater acceleration.
We will see that this motion is not the case with the bar: what
happens is simpler but (probably) less intuitive. We can go
beyond the qualitative analysis and calculate the evolution
from the string being cut to the deformation change reaching
the lower end with minimal mathematics by using concepts
known to students in introductory physics courses. The
analysis of Sec. II shows that after the deformation change
has reached a point, it will start moving with a velocity in-
dependent of position and time, that is, without acceleration.
This result is a consequence of assuming that the force ex-
erted by the string vanishes instantaneously; this assumption
is a good approximation in other appropriate cases. To check
the theoretical prediction we extracted some consecutive
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frames from our video® and obtained results such as in Fig. 1,
where we can see that the upper end moves with a more or
less constant velocity, while the lower end remains at rest
until the elastic wave reaches this point.

Except for the first few frames in Fig. 1, there was not
good agreement with the theoretical analysis because the up-
per coils quickly became completely compressed and
touched one another. The reason for the disagreement can be
understood by using the model we will discuss in Sec. III:
matter quickly moves faster than the elastic wave and the
dynamical problem changes completely (see Ref. 6).

We can obtain better agreement between the theory of
elastic waves and our experiments with the spring by modi-
fying the problem by attaching a mass on top of a bar and
spring. As described in Sec. IV, some properties of the solu-
tion for the bar change qualitatively however small the mass,
and we are able to apply the theoretical model of the bar for
longer times.

Several loosely related groblems with falling chains have
been considered recently7’ using analytical mechanics, and
some experimental results have been obtained by means of
high-speed photography.9 Our mechanical system is simpler
and can be used by undergraduates to illustrate elasticity and
waves by using only elementary results. Simple illustrative
experiments can be performed with no laboratory equipment
other than a digital camera.

II. THE FALLING BAR

We label each point P on the bar by the distance x mea-
sured from end A when the bar is not strained, as shown in
Fig. 2(a). At time 7 the distance between the suspension point
and P is x+u(t,x), where u(t,x) is the deformation field.

For times <0 the bar is at rest hanging from its end A as
shown in Fig. 2(b), so that the distance AP is x+uy(x) in
terms of the initial deformation field u, which we will now
calculate. The tension 7y is readily found by writing the equi-
librium condition for PB using the fact that the tension van-
ishes at the free end B: 7,(L)=0. We obtain

7o(x) = pg(L - x), (1)

where p is the mass density. Hooke’s law and the boundary
condition uy(0)=0 (which states that A is at the suspension
point) allow us to calculate the deformation:
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Fig. 1. Consecutive frames from a video sequence (Ref. 4) of an elastic
spring hanging from one end and then released. The six black tags show that
the coils remain at rest for a duration depending on their distance to the
upper end.

To=EE, (2)

which implies that
8
o) = 555 (2Le =), G)
c

where E is Young’s modulus and c:\/ﬁp is the speed of
sound in the bar. We are assuming that the strain duy/dx is
sufficiently small to satisfy Hooke’s law, which implies that
gL/c?<1.

At =0 the string is cut so that the tension at A disappears
instantaneously, and a stress discontinuity starts propagating
along the bar with speed c. It is not difficult to use Newton’s
second law and Hooke’s law to find the wave equation sat-
isfied by the deformation field u(z,x):

Fu L Fu

W = czﬁ +g. (4)
It will probably be easier for students to understand the cal-
culation in a reference frame falling with the center of mass,
where the deformation field is

u=u- %gt2. (5)
In such a frame matter appears weightless and the remaining
forces are of elastic origin, so that the longitudinal equation

is the homogeneous wave equation that is discussed in el-
ementary physics courses,

—F =c7. (6)

The solution of Eq. (6) is taught to students in d’ Alembert’s
form, that is, as a sugerposition of two waves propagating in
opposite directions:'

u'(t,x) = flx—ct) + h(x +ct). (7)
[Using Eq. (5) after solving Eq. (6) is the standard math-
ematical technique for solving an inhomogeneous linear
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Fig. 2. Elastic bar (a) without strain, (b) hanging, and (c) released.

equation such as Eq. (4), but the reasoning here is more
physical and can be presented to students before they study
partial differential equations.]

At time ¢ the perturbation, which propagates with velocity
c, has not yet reached points x> ct, so that for these points "
is still given by Eq. (5) after replacing u by the initial defor-
mation field u, of Eq. (2). Because all points with x<<ct are
already moving, the equation of motion there will be Eq. (6),
and we have to use one of the solutions given by Eq. (7).
Hence for times t<<L/c, that is, before the wave reaches the
lower end, we seek a piecewise solution in the form

1 2
% uplx) — 5817, x> ct,
W)= O 28 (8)
flx=c)+h(x+ct), x<ct<L.

We now have to calculate the functions f and h, which is
easily done by using the following two physical conditions:

(1) The bar does not break, so that u is continuous at the
wavefront x=ct where the two pieces of Eq. (8) must
match. If we let x=ct in Eq. (8) and remember Eq. (2),
this condition may be written in the form:

- %Zx(Zx ~2L) = £(0) + h(2x), 9)
C
which implies that

8

hx) = 4c?

x(2L - %) £(0). (10)

As a consequence of Eq. (10), any value for f(0) will be
canceled in the sum f(x—ct)+h(x+ct), because only the dif-
ference f(x—ct)—f(0) appears. Thus, there is no restriction
on taking f(0)=0.
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(2) In the free-falling reference frame the center of mass is
at rest by definition, so that its velocity, given by the

mean value
1 au’ (s, 1t “
ZJ; %dx:zfm (_gt)dx+§fo [A'(x+ct)
—f(x=ct)] dx (11)
=%f(— ct) - ﬁt(ZL —ct), (12)

must vanish, which gives the functional form for f by replac-
ing —ct in Eq. (12) by the generic variable x:

flx)=- —x(2L +X). (13)

We substitute Egs. (9) and (13) into the solution (8), use the
inverse of the transformation (5), and obtain our main result
in the laboratory frame:

8 2Lx— x2 x> ct,
u(t,x) = (14)
2¢% | 2Lct — X2, x<ct<lL.

The stress is then calculated by applying Hooke’s law us-
ing Eq. (14):

E L—x, x> ct, 5
7(t.x) = pg - X, x<<ct<lL. (13)
As expected, at the two free ends A and B we have 7(r,0)
=7(t,L)=0 for all 0<t<L/c. The tension is discontinuous
and becomes a compression at the wavefront x=ct, so that its
value in Eq. (15) at the lower end x=L goes to —pgL as t
— L/c, which shows that a reflected wave must appear to
make sure that 7(r,L) always vanishes. We are not interested
here in this reflected wave, because it cannot be seen in our
experiment.
The surprise arises when we calculate the velocity of each
point by again using Eq. (14):

du gL{O, x> ct,

i+ ult _ 2t _ &=
[x u(t,0)]= 1, x<ct<L.

ot (16)

All points outside the wavefront x=ct move without accel-
eration, but as time increases more and more points start
moving with velocity gL/c, which, as stressed after Eq. (2),
is smaller than the sound velocity ¢, so that the center of
mass moves with increasing velocity gt. That is, at the wave-
front x=ct the velocity is discontinuous and thus the accel-
eration diverges. In terms of Dirac’s delta function,11

we can
write the acceleration as

Fu

a——gLﬁ(x ct), t<lLlc. (17)

We now see that the answer to the question proposed at
the beginning of Sec. I is that, in the limit in which the string
is cut instantaneously, all points initially move without accel-
eration, except for those points lying at the wavefront, which
have infinite acceleration. This problem illustrates a rather
unusual way for a system of interacting particles to gain
more and more linear momentum under an external force.
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III. A SOFT SPRING

The analysis of the elastic bar can be done with elemen—
tary physics using the first example of a wave equatlon *In
our experiment we needed bigger deformations and slower
propagation velocities, so we considered using a spring. The
study of the latter is more difficult because the deformations
are no longer small, and the elastic properties when stretched
and under compression are qualitatively different. Also,
when hanging from an end it stretches and develops non-
negligible torsion, which changes when moving. However,
we expect that at least some qualitative results would be the
same as in the elastic bar.

Instead of an elastic bar we released a colorful plastic
sprmg with black tags stuck on every third loop. We used a
digital camera to shoot a short video sequence at
30 frames/s. The resulting animation is displayed (at two
different speeds) in Ref. 4. We can clearly see there that the
tags and the lower end remain at rest for a while. To further
explore the animation, we extracted consecutive frames,5
which are shown in Fig. 1.

At first sight we might conclude that the tagged points
start moving with the same constant velocity only when the
elastic wave reaches them, but a simple calculation shows
disagreement between theory and experiment: the upper coils
quickly become completely compressed. The solution calcu-
lated for the bar is approximately applicable to the spring
and was calculated in this context by a somewhat more ad-
vanced mathematical method in Ref. 6 (see also Ref. 13); we
have only to replace ¢ by L\k/m, where m and k are respec-
tively the mass and the elastic constant of the spring. But,
unlike in a metallic bar, in a soft spring the velocity gL/c of
the coils above the wavefront x=ct quickly becomes larger
than the velocity of the wavefront:

d L
E[CH- u(t,ct)] = g?+c—gt. (18)

From t=c/g onward (a bit earlier due to the finite thickness
of the coils) an increasing number of upper coils touch one
another and drop onto the coils below before there is time for
the tension to change there. We have a kind of matter wave
that moves faster than the elastic wave created when the
spring was released. This dynamical problem is completely
different and was analyzed by Calkin.® We can check his
solution in our case, where both the unstretched length and
the minimum compressed length of the spring are L
~6.5 cm, the quotient of the spring constant and mass is
k/m=4 s72, and there is no contact between the coils when
the spring is hanging at rest. Good numerical agreement is
shown in Fig. 3. This problem is interesting, but because we
are more interested in elasticity, we turned to the study of the
problem discussed in Sec. I'V.

From another point of view we can see from the velocity
in Eq. (18) that the solution (14) breaks down at t=c/g pro-
vided that the latter value is less than L/c, which would
never happen for an actual metallic bar. At that moment the
velocity of a point at x+u(z,x) is

&%[xm(t,x)]: - i—f (19)

and becomes negative when reached by the wavefront at x
=ct, which is impossible, because it would mean an inver-
sion of the spatial order of coils.
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Fig. 3. Same frames as in Fig. 1 with the solution in Ref. 6 superimposed
(continuous line).

IV. A FALLING BAR WITH AN ATTACHED
POINTLIKE MASS

Let us consider again the bar of Fig. 2, but let us assume
that a pointlike mass M is attached at the upper end A. The
analysis of Sec. IT changes only beginning with Eq. (12). We
now have to take into account the contribution of M to the
zero velocity of the center of mass in the freely falling ref-
erence frame:

lfl‘ u’(1,x)

(9 *
dx + Mﬂ—”t(t,O) -0, (20)

where we have written u=M/m, m being the bar mass. If we
substitute Egs. (8) and (9) into Eq. (20), we obtain the con-
dition

uLf! (x) = F(x) = 4%2[2@2 20+ wle+a?]. 1)

Equation (21) is a first-order linear equation with constant
coefficients, which can be solved, along with the initial con-
dition f(0)=0 (for example, by integrating with respect to x
after multiplying it by ¢™#L or by using computer algebra),
to give

f)=- fj[x(zux) ~2g,()], (22)

qu(x) = 2uL[(1 + WL ~ 1) = x]. (23)

If we use Egs. (5), (9), (22), and (23), we obtain the de-
formation field in the laboratory frame:

2
u(tox) = 8 2Lx—x 2,
202 | 2Let - x* + qulx—ct),

x>ct,
x<ct<lL.

(24)
Equation (24) reduces to Eq. (14) in the limit w— 0, because

lim,_,oq,(x—ct)=0 for x<ct. At time ¢ the velocity of the
point labeled x is
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Fig. 4. Consecutive frames with a thin slab fixed at the upper end and a
block on top of it. The slab and block immediately separate because they
move with different accelerations.

0, x> ct,

(1 _ e(x—Cl)/}LL){ (25)

1, x<ct<L.

du_g(+p)L
ar c
This velocity is now, unlike in Eq. (16), continuous through
the wavefront x=ct for any mass ratio u>0.
The fact that the behavior is qualitatively different might

seem counterintuitive, but there is a clear physical reason for
it. By applying Hooke’s law to Eq. (24) we obtain the stress

Jdu
mt,x)=E—
ox

x> ct
x<ct<lL,
(26)

L—x,
“PE|_ L —x+ (1 + p)Le¥ VL,

which does not become instantaneously zero at x=0 when
the spring is released at =0, but retains its previous value,
7(0,0)=pgL, because of the attached mass, however small.
For the same reason the points above the wavefront are now
accelerated:

Fu_

1+
g—Me(x_c’)/'“L, x<ct<L. (27)
ar M

According to Eq. (25), the velocity of points at the wave-
front is zero. However, the solution breaks down when

L 1+ L
z=”“—10g(—")2+’f, x<ct<lL, (28)
c mL+x—-clg ¢

provided ¢ is real and less than L/c, as we can see by repeat-
ing the calculation in Eq. (19). We can check that for our
spring this value increases with u, so that we would expect
the analytical solution (24) to be valid for longer intervals
with heavier masses.

Notice that when the elastic wave reaches a point its ac-
celeration is g(1+u)/u, which is greater than g; the same
behavior initially occurs at the upper end A.

Aguirregabiria, Hernandez, and Rivas 586



Fig. 5. Consecutive frames with a wooden block (u=2.35) fixed at the top
end. The superimposed continuous curves are the trajectories of the upper
end and four coils with black tags, as given by Eq. (24).

V. A SOFT SPRING WITH AN ATTACHED MASS

The results of Sec. IV can be clearly seen in our second
experiment4 where a thin wooden slab is fixed at the top end
A. A thicker block is then put on top of it. When the spring is
released, the acceleration of A is greater than that of the
block, which immediately separates from the slab and fol-
lows the familiar free fall trajectory, as displayed in Fig. 4.
We can see that the small mass (=~ 0.22) is enough to en-
sure that the upper coils are stretched for a while. Thus the
early breakdown predicted by our continuous theoretical
model is avoided by making sure the coils do not touch one
another for a longer time.

This time interval is even greater in our third experiment,4
where the thin slab is replaced by a thicker block
(n==2.35). We can see in Fig. 5 that each black tag starts
moving only when the stretching begins to change, that is,
when the elastic wave reaches it. We have also plotted the
trajectories of the top most coil and the first four tags as
calculated using Eq. (24). We obtain good agreement, despite
the simple experiment and the differences between a bar and
a spring.

VI. CONCLUSIONS

We have analyzed by using elementary physical concepts
several problems in elasticity with results that would be dif-
ficult to anticipate. To help students understand elastic waves
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we checked the most striking aspects of the analytical results
in an experiment in which the elastic bar is substituted by a
spring, which allows much larger deformations and slower
wave propagation. The similarities and differences between
the bar and spring can be used in an illustrative discussion in
introductory physics courses.

Because we need only a digital camera (or a video camera)
and some freeware to process the video sequences, the ex-
periments can be easily performed in the classroom and re-
peated at home by interested students.

We can take advantage of the widespread availability of
digital cameras to visually check the solution of other prob-
lems in mechanics. A well-known problem is the motion of
the free end of an articulated arm released from an angle less
than arcsinl/x/g ~35° In this case the acceleration of the
end is always greater than g.14 The use of digital cameras as
measuring devices in other kinds of problems has been re-
cently discussed."
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