
NOTES AND DISCUSSIONS

Putting things on the energy shell
George Csanak, L. A. Collins, and D. P. Kilcrease
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

�Received 17 June 2008; accepted 18 July 2008�
�DOI: 10.1119/1.2968865�
In a recent paper Morrison and Feldt1 �MF� discussed the
ambiguities that occur during the practical implementation of
scattering theories. They specifically mentioned the some-
times ambiguous implementation of the relationship between

the Ŝ and T̂ operators �defined by MF �4� and MF �26�,
respectively�. The correct relationship is given �in matrix
form� by MF �28�, which is sometimes written in the form

Ŝ=1̂−2�iT̂ �MF �31��. MF write: “This operator form im-
plies that the momentum-space T-matrix elements must con-
tain �in the second term� both the delta function ��Ek�−Ek�
and the on-shell restriction.”

As an example, we draw attention in this Note to such an
ambiguity in a standard reference text by Blum, Density Ma-
trix Theory and Applications,2 which has played a histori-
cally significant role as a basic reference for coherence pa-
rameter studies in atomic collision physics in the last
25 years. A reader with a general knowledge of scattering
theory could follow Blum’s prescription for constructing
cross sections from his definition of the T operator and reach
an untenable formula for the differential cross section as well
as the matrix elements of the density operator �matrix� de-
scribing the scattered state. On pp. 78–81 and in Appendix
E, Blum’s definition of the S operator �via his Eq. �E1�� and

MF’s definition of Ŝ �See MF �5�� are identical. Subsequently
Blum2 defines his T operator via the relation T=S−1
�Blum’s Eq. �E3��. It is at this point where the ambiguity
occurs. As pointed out by MF when the matrix elements of
such an operator are taken, they will contain the delta func-
tion in the energy differences �see MF �32a��. However, sub-
sequently Blum takes the matrix elements of the above op-
erator and equates them to the scattering amplitudes, Blum’s
Eq. �3.5.4�, whose magnitude squared is then equated to the
differential cross section in Blum’s Eq. �3.5.5�. As a result
Blum’s most important Eq. �3.5.6� contains some unresolved
ambiguities.

The situation can be resolved by proceeding along the
lines outlined by MF, if one unites some of the features of
MF �5�, MF �20�, and MF �28�. Because we are interested in
inelastic processes also, our treatment will be somewhat
more general than that of MF. We shall use the notation of
Bransden.3

For the initial state we have

��
in�E�� = N�eik��.r�X��x�� , �1�

where r� is the space vector of the incident particle �treated as

a distinguishable particle from the target particles �electrons�,

1070 Am. J. Phys. 76 �11�, November 2008 http://aapt.org/ajp
k�� is the wave vector of the incident particle, and X��x��
refers to the target state of quantum number � with x� refer-
ring to the space and spin coordinates of all target particles.
N� is a normalization constant. This state was denoted as ��

by Bransden �see Eq. �4-7� in Bransden�.3 The final state
wave vector will be given in the form

��
out�E�� = S��

in�E�� , �2�

where S is the scattering operator. Following Bransden3 we
will write S in the form

S = 1 − iT . �3�

�We will interpret this as a simple operator equation, with no
implied delta-function factorization, it is quite obvious that
this is Bransden’s interpretation too; compare his Eq. �4-21a�
and �4-21b�.� If we introduce now the matrix elements of T
by the definition �see Ref. 3, p. 127�

T�,� = ���
in�T���

in� , �4�

then Eq. �2� �via using Eqs. �3� and �4�� can be written in the
form

���
out�E��� = ���

in�E��� − i�
�

T�,����
in�E��� . �5�

The generalization of this equation for partially coherent
states is Blum’s Eq. �3.5.6�.2

Following Ref. 3 �pp. 128–129� we shall introduce the
transition operator, T, with matrix elements, T���E�� via the
equation

S�� = ��� − 2�i��E� − E��T���E�� . �6�

The T�� matrix element is “on the energy shell” �Ref. 3, p.
132�, i.e., it is the matrix element of the T operator with
wave functions ��

in and ��
in whose energies are equal.

If we use now the assumption that the ���
in�E��� states

form a complete set, then Eqs. �1�, �2�, and �4� give

���
out�E��� = ���

in�E��� − 2�i�
��
	 dE���E� − E��T���E��

����
in�E���, �7�

where �� refers to all the other quantum numbers incorpo-
rated into � besides the energy E�, i.e., we introduced the

notation
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� = ���,E�� . �8�

This is an important point which can be easily lost in some
‘hand-waving arguments.’ S, T, and T are operators and the
quantum numbers used for their matrix representation:
� ,� ,� are to some extent arbitrary as long as they com-
pletely describe the states defined by Eq. �1�. But now, we
will choose the total energy of the states E� ,E� ,E� , . . .. as
one of the quantum numbers and the rest of the quantum
numbers: �� ,�� ,�� , . . .. will give a complete description of
the state along with the total energy.

Equation �5� can be immediately reduced to the form

���
out�E��� = ���

in�E���

− 2�i�
��

T�,��E� = E�����
in�E� = E��� . �9�

If we now introduce the notation

t��,���E�� = 2�T�,��E� = E�� , �10�

then Eq. �7� has the form

���
out�E��� = ���

in�E��� − i�
��

t��,�����
in�E� = E��� . �11�

Now, we can immediately see that Eq. �11� is exactly of the
same form as Eq. �5� except the t matrix elements do not
�,�

stretched and the two bodies move on a smooth surface with
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contain the ambiguous delta functions, and they are “on the
energy shell.” These steps were summarized succinctly by
Coester and Jauch4 by saying: “To simplify the notation it
will be convenient to drop the �-function with respect to the
energies and have it understood that the matrix elements are
functions of the energy.” Unfortunately, even such a succinct
statement is missing from Blum’s book.2 The comment by
Coester and Jauch indicates that the procedure described here
was already well known in the 1950s, however, the exact
details of it were lost as demonstrated by the comments of
MF and by the documented procedure of Blum.2

Finally, we want to point out that an equation analogous to
our Eq. �11� for elementary particle reactions was derived by
Saenger and Schmidt,5 �Eq. �5.26�� which they called Von
Neumann’s formula.

1M. A. Morrison and A. N. Feldt, Am. J. Phys. 75, 67 �2007�. In this Note
the equations of Morrison and Feldt will be quoted by their equation
number preceded by MF and this reference will be referred to as MF.

2K. Blum, Density Matrix Theory and Applications �Plenum, New York,
1981�.

3B. H. Bransden, Atomic Collision Theory �W.A. Benjamin, New York,
1970�.

4F. Coester and J. M. Jauch, “Theory of angular correlations,” Helv. Phys.
Acta 26, 1–16 �1953�.

5R. Saenger and W. Schmidt, “Polarization measurements at high energy,”
Ann. Phys. �N.Y.� 54, 307–349 �1969�.
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I. INTRODUCTION

In introductory physics courses students are taught that
inelastic collisions between two bodies are analyzed by
means of conservation of linear momentum, rather than en-
ergy conservation, because some kinetic energy is transferred
to internal energy1 in the form of vibrational energy of the
bodies’ constituents.2 Some models for inelastic collisions
have been discussed and compared to experimental
results.3–7 The purpose of this note is to discuss a simpler
model for the transfer of energy that can be used in introduc-
tory physics courses. Our goal is to help students gain insight
into the loss of kinetic energy in inelastic collisions by study-
ing a simple physical system which can be analyzed with
straightforward mathematics and for which the energy of the
elastic modes can be an explicitly evaluated.

II. THE MACROSCOPIC VIEW OF THE COLLISION

We consider two identical deformable bodies with internal
structure. Each body has internal components of mass m1
=m and m2=�m, which interact through a massless spring of
stiffness k and natural length L. Initially the springs are un-
opposite velocities ẋ1= ẋ2=−v, as depicted in Fig. 1. To take
into account the symmetry of the system and to simplify the
notation the positive direction of coordinates and velocities
is chosen to the left for the left-hand body and its compo-
nents and to the right for the body on the right. We neglect
air resistance and energy loss by acoustic waves.

The collision between the two components of mass m is
assumed to be elastic, as is the case for collisions between
the microscopic components of macroscopic bodies. Just af-
ter the collision these components move with velocity ẋ1
=v while the components of mass �m still have velocity ẋ2
=−v. As a consequence the center of mass of each body
moves after the collision with the constant velocity

Fig. 1. Coordinate definitions and initial motion of the two bodies with

internal structure. Note the choice of positive direction for each body.
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V =
m1ẋ1 + m2ẋ2

m1 + m2
=

1 − �

1 + �
v , �1�

as long as no further collision occurs �see the following�.
Because each body initially moves with velocity −v, the co-
efficient of restitution is given by

e = 
V

v

 = 
1 − �

1 + �

 . �2�

As expected, the collision is completely inelastic when all
masses are equal ��=1� because in this case the entire ki-
netic energy is transferred to the internal mode: Each center
of mass remains at rest from now on, and there is only os-
cillations about the center of mass �until a new collision
happens�. The final kinetic energy of the center of mass of
each body increases monotonically for decreasing �, so that
an elastic collision is recovered when �=0 and the compo-
nents of mass �m effectively disappear from the model. The
energy of each body transferred from the initial translational
mode to the elastic mode excited by the collision is

T − T� =
1

2
�1 + ��mv2 −

1

2
�1 + ��mV2 =

2�mv2

1 + �
, �3�

where T�1 /2�m1+m2�v2 and T��1 /2�m1+m2�V2 are the
kinetic energies of the center of mass of each body before
and after the collision.

III. THE INTERNAL MODE

The analysis in Sec. II is independent of the details of the
interaction between the two components of each body. We
now use the model to account for the internal energy of each
body. To study the internal motion after the collision we can
either use a reference frame moving with the center of mass
of each body or analyze the relative motion of the two com-
ponents. We choose the latter approach because the calcula-
tion is somewhat more direct and provides an example of the
usefulness of the reduced mass.

After the collision the equations of motion for the compo-
nents of each body are given by Newton’s and Hooke’s laws

mẍ1 = k�x2 − x1 − L� , �4a�

�mẍ2 = − k�x2 − x1 − L� . �4b�

We divide Eq. �4b� by 1+�, multiply Eq. �4a� by � / �1+��
and subtract the results to obtain the equation of motion for
the difference r=x2−x1−L between the relative position of
the body’s components and the natural length of each spring

�r̈ = − kr , �5�

where the reduced mass is

� �
m1m2

m1 + m2
=

�m

1 + �
. �6�

Equation �5� is equivalent to the equation of motion in one
dimension of a single body of mass � attached to a spring of
constant k. Therefore, the frequency of the oscillations is 	
��k /�. We see that the relative motion of the components
of each body can be interpreted as oscillations whose con-
served mechanical energy �which is the energy of the internal

vibrational mode� is given by
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Eint =
1

2
�ṙ2 +

1

2
kr2 = 2�v2 =

2�mv2

1 + �
, �7�

taking into account the initial conditions immediately after
the collision: r=0 and ṙ= ẋ2− ẋ1=−2v. By using Eq. �7� we
can write Eq. �3� as T=T�+Eint, which shows explicitly how
the total energy of each body is conserved. Initially it equals
the kinetic energy T. After the collision it is divided into the
translational kinetic energy T� corresponding to the motion
of each body as a whole and the internal energy Eint given by
Eq. �7�. We obtain the oscillation amplitude by setting ṙ=0 in
Eq. �7�,

A =
2v
	

= 2v� �m

�1 + ��k
. �8�

We can also obtain the evolution of x1 and x2 after the col-
lision by integrating Eq. �4� with the initial conditions x1
=0, x2=L, ẋ1=v, and ẋ2=−v.

IV. COMMENTS

We have implicitly assumed that the spring deformations
are perfectly elastic. Of greater consequence is the assump-
tion that the internal components collide only once. This as-
sumption is not necessarily valid as can be seen when �=1.
Just after the first collision takes place the springs are un-
stretched and the velocities of the inner and outer compo-
nents are ẋ1=v and ẋ2=−v, respectively. Each body oscillates
in place and when the springs return to their natural length,
the components move with velocities ẋ1=−v and ẋ2=v. Then
the inner components collide again and all the components
start moving with constant velocity ẋ1= ẋ2=v while the
springs remain unstretched. As a result, the entire energy is
transferred in the second collision back from the �internal�
oscillatory mode to the translational mode. Although the first
collision is fully inelastic �in our macroscopic interpretation�,
the entire process is completely elastic.

For other values of � the condition x1=0 for secondary
collisions leads to a transcendental equation, so that we have
to use numerical methods to solve it and to show that for
�
0.697. . ., the inner components collide at least twice, and

One collision Two collisions Three collisions Four collisions
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Fig. 2. Coefficient of restitution e. The lower curve is the value of e after the
first collision, as given by Eq. �2�. For �
0.697. . ., additional collisions
occur between the components of mass m; the final value of e is the upper
curve. The dashed vertical lines indicate the values of � where the number
of those collisions increases by one. e reaches a minimum at these values of

� and then rises sharply.
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the solution we have discussed is valid only until the second
collision. The motion after the second collision is an inter-
esting problem on its own and may be simulated
numerically.8,9 �It could be an oversimplified model for two
identical cars of mass �m with spring-mounted bumpers of
mass m.� The final value of the coefficient of restitution is
depicted in Fig. 2, along with the value given by Eq. �2� and
the number of collisions, which increases with � �more
bumper collisions are required to reverse the motion of
heavier cars�.
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