gin (the maternity ward) to events « and B separated the
twins by L; each twin was moving at speed v, which we
shall, in a moment, assume to be very small. The twins sub-
sequent stationary ‘‘motion’’ is represented by the vertical
segments, which—far in the future—will lead them to rocket
ships.

The times ¢, and ¢4, of events a and S, as observed by the
uncle, are easily found from the Lorentz transformations, and
from the known coordinates of the events in the Mom and
Dad frame:

to=Yta—vx,]=Y[(L/205)—vL/2]. )

For event B the x coordinate is xz=—L/2 so the t' coordi-
nate for the event is

tp=y(L/2v)+vL/2]. (4)

The time difference, as measured by the uncle, will therefore
be

At'=tp—t,=yuL. 5)

This result is independent of v ; the time difference ob-
served by the uncle remains, no matter how slowly Dick and

Jane move. The result is, of course, the result we have al-
ready noted as the uncle-measured time difference between
the birthdays of Dick and Jane.

We have given different answers to the question ‘‘where
does the differential aging occur?’’: (i) It all occurs during
the twins’ rocket trip. (ii) Some occurs in the twins early
(prerocket) years. The lack of a unique answer shows the
lack of meaning of the question. Age differences in relativity
have a well-defined meaning, but the origin of age differ-
ences cannot be assigned to any specific part of a worldline.

3

1S. P. Boughn, ““The case of the identically accelerated twins,”” Am. J.
Phys. 57, 791-793 (1989). Other references to the twin paradox are listed
in this paper.

Here and elsewhere we use words like ‘“‘see’’ and ‘‘view”” somewhat
inappropriately. We do not mean that the uncle makes observations of
distant events by collecting light signals from those events. Rather, we
mean that observations are made according to the usual procedure in rela-
tivity. Here, that would mean that an observer who is part of the uncle’s
special relativity reference system, but is located right at an event being
observed (such as the igniting of a rocket engine), notes the position and
time of that event.

3
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The electric and magnetic fields for a hollow conducting sphere located in a slowly varying uniform
electric field background are computed to first-order in a power series expansion in the field
frequency. These results are used to define an equivalent RC circuit and to test the circuit approach
which is often used in electromagnetic compatibility (EMC). The case of an infinite cylindrical
conducting tube under the influence of the same external field is also analyzed. © 1996 American

Association of Physics Teachers.

I. INTRODUCTION

The knowledge of the penetration of the electric and mag-
netic fields in electronic equipment is important to properly
protect these ever increasingly sensitive devices from exter-
nal influences. In fact, the shielding of a receptor set from a
source of electrical disturbance is an interesting subject of
research in electromagnetic compatibility (EMC), which is
defined by IEEE as ‘‘the ability of a device, equipment or
system to function satisfactorily in its electromagnetic envi-
ronment without introducing intolerable electromagnetic dis-
turbances to anything in that environment.’’!

The physicist’s approach to evaluating the electromagnetic
shielding is based upon the solution of Maxwell’s equations
with appropriate boundary conditions on the shielding sur-
faces, but the mathematical machinery is so complex that,
even when the calculations can be carried out, the physical
insight is often missed.>™* As a consequence, from an engi-
neering point of view, to estimate in practice the electromag-
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netic field inside the shielding enclosure, it is always neces-
sary to use a simplified theory of electromagnetic shielding.

Among the techniques developed so far in EMC to deal
with this kind of calculation we will consider here the so-
called “‘circuit approach’’ in which the actual physical sys-
tem is replaced by an equivalent RC circuit. This approach is
based upon the fact that the external electromagnetic field
will induce on the shielding enclosure a charge distribution
which will vary in time because the external field is oscillat-
ing. This will produce a current flow in the conductor and it
seems rather natural to substitute for the conductor an
equivalent electric circuit whose characteristics are defined
on heuristic grounds because in general they cannot be com-
puted accurately, not even by numerical simulation.*

The main goal of this paper is to analyze a couple of
simple but interesting examples in which explicit (although
approximate) expressions for these phenomena may be easily
computed. In this way we can illustrate and compare the
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approaches that a physicist (starting from Maxwell’s equa-
tions) and an engineer (by using the circuit approach) would
choose to analyze these problems.

We use a simple perturbative method to obtain, to first
order in a power series expansion in the frequency, the elec-
tric and magnetic fields in the interior of a hollow conducting
sphere and cylinder when these bodies are located in a
slowly varying uniform electric field background. We com-
pare these results with those obtained by means of the alter-
native method of using an equivalent circuit model, which is
often used in EMC.

The paper is organized as follows. In Sec. II we compute
the first-order approximation to the electric field inside,
within, and outside of a hollow conducting sphere under the
influence of an outer uniform electric field that varies sinu-
soidally at a low frequency. In Sec. III the first-order contri-
bution to the magnetic field in the above three regions is
calculated, and in Sec. IV the energy balance is checked by
calculation of the first and second-order Poynting vector. The
energy dissipation is used to calculate in Sec. V the resis-
tance of an equivalent RC-circuit model to obtain the electric
field in the spherical cavity. In Sec. VI the same problem is
solved but by replacing this time the sphere by an infinite
hollow conducting cylinder. Some final comments about the
accuracy of the approximation method are collected in the
last section.

II. THE ELECTRIC FIELD

Let us consider a hollow conducting sphere of ohmic ma-
terial of resistivity 7. Its external radius is a and the internal
radius b. The sphere is immersed in a uniform external elec-
tric field,

E(t)=E cos wtk, 1

where E and w are constants and k is a unit vector along OZ
axis.

We shall assume that w is small enough so that we may
consider the situation to be quasistatic. In fact we shall ex-
pand all physical quantities in terms of a dimensionless pa-
rameter proportional to w. The coefficient of w in the exact
definition of this expansion parameter will appear in a natu-
ral way when performing the actual computation in the dif-
ferent contexts, as we will discuss in Sec. VII. Let us only
mention here that in the case of a thin sphere of thickness d
this parameter appears as wa’/cd or €ynwa/d, depending
on the quantity being expanded. If the thickness is not neg-
ligible the parameter is wa/c or €nw. In this approach only
the leading terms of these expansions will be kept. An upper
index in each quantity will indicate its expansion order.

In the quasistatic approximation, the external electric field
(1) generates on the sphere’s surface a charge density that to
lowest order is given by’

%(a,8)=3¢€y(E cos wt)cos 6, 2)

where @ is the usual polar angle (see Fig. 1).

To this approximation, the electric field E° and magnetic
field B? vanish inside the sphere. In the outer region B also
vanishes, and for the electric field we get®

a3
E%r,0)=E cos wt[( 1+ —;3—) cos 6r

03 .
—| 1= 73 sin 68|, r=a, (3)
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(1)
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Fig. 1. Hollow sphere under the influence of an external electric field E.

where  and @ are unit vectors. Since the external electric
field is changing in time, the charge density ¢°(a,6) will also
change and consequently a current flows in the conductor;
the radial component of the current density at the surface
must satisfy the following continuity equation at this lowest
order:

do’(a,0) 1

T—Jr(a,0)=0, “4)
which implies

j}(a,0)=—3 ey wE sin wt cos 6. (5)

Notice that both terms in Eq. (4) are of first order because the
time derivative of Eq. (2) produces an extra w factor. This
will have to be taken into account very often in what follows:
A time derivative will increase by one unit the expansion
order.

If the conductor is Ohmic, the radial component of the
electric field at the outer surface is given by

E}(a,0)=17j}(a,0)=—3eow7;E sin wt cos 6, (6)
while at the inner surface it must vanish:
E}(b,6)=0, )

because o°(b,6)=0.
The general expression for the electric field in terms of the
scalar and vector potentials

oA
E=-V¢-—, ®

can be written at first order as E'=—V¢', because E! has
zero curl, since the lowest-order magnetic field vanishes.
Thus, the first-order scalar potential @' must satisfy
Laplace’s equation.

Since the system has axial symmetry, the solution of
Laplace’s equation either inside or outside the sphere can be
expressed as

o«

$'(r.0)= 2 [Ar"+B,r~"TDP,(cos 9), ©)

where A, and B,, are constant coefficients and P, Legendre
polynomials.

The potential ¢' is required to be finite at r =0 and zero at
infinity and thus it turns out that ¢' has the following form in
the different regions:
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Fig. 2. First-order current lines in the sphere.

¢%(r,0)=A0+A1r cos 6,

C
¢%(r,0)=C0+C1r cos 6+ r—zz cos 8, bs<r=a, (10)

1 D,
¢3(r,8)=Dy+ 7 cos 6, r=a.

By assuming the continuity of the potential through the dif-
ferent surfaces and the boundary conditions for the electric
field,

_&_gbé | =
ar r=b ]

(11)

3¢, .
o |,=o=—3€wnE sin t cos 6,

the unknown coefficients are easily calculated. By introduc-
ing the quantity

3 . a’
=5 ewnE sin wi s 12)

one gets

¢%(r,9)=3Ar cos 0, r=<b,

&3(r,0)=A b<r<a, (13)

cos 6,

d):l;(r,0)=A —‘p_"— cos 0, r=a.

The electric field in the different regions can be easily com-
puted to obtain

El(r,0)=—-3Ak, r<b, (14)
(b3 b3 .
E;(r,0)=2A (;3——1)005 or+ E—r—§+1 sin 68|,
bsr=a, (15)
[2a%+ b3 . 2a 3+b3 |
Ei(r,0)=2A 5 cos i+ sin 00,
r=a. (16)
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The field lines corresponding to the field E2, and thus the
current lines inside the sphere, are depicted in Fig. 2 by
making use of a computer program.

To lowest order the surface charge density in the outer
surface is given by Eq. (2) while it vanishes in the inner
surface. The next order contribution can be calculated
through the discontinuity of the normal component of the
next order electric field. Thus, taking into account the above
expressions for this field we get

o'(b,0)=e€[E},(b,0)—E} (b,0)]=3€,A cos 0, (17)
o'(a,0)=€)E;, (a,0)—E; (a,0)]=6€A cos 0, (18)

and in consequence o’ (a,8)=20"(b,6).
If the sphere thickness d=a—b is very small, we can
make in the above expressions the substitution
3

a a 19
a>—b3 3d’ (19)
and the charge densities become
al(b, 0)— €0w7]E sin wt cos 6, (20)
) 3a .
o (a,0)= — eywnE sin ot cos 6. (21)

d

Notice that according to Eq. (14) the electric field in the
sphere cavity is uniform and in the d<€a approximation has
the value:

eqwnE sin wtk, r<b. (22)

3a
2d
In consequence, the internal field and thus the shielding ef-
fect depends linearly on the a/d ratio in this approximation.

Since the electric field inside the sphere in the alternative
circuit approach is not easily calculated at every point, one
often uses instead a mean electric field which by snmpllclty is
taken to be equal to the field at the center of the sphere.” Our
results above support these assumptions.

E((r,0)=~

III. THE MAGNETIC FIELD

Because of the axial symmetry of the problem, the mag-
netic field, B=B y4(r, 6) ¢, has a single nonvanishing compo-
nent which is independent of ¢. By making use of the
Ampere—Maxwell law at first order we get:

SE°
* Bl'dlzﬂof j1+€0 —_ 'dS, (23)
c s at

where S is a spherical cap concentric with the sphere and
whose border is the circle C, defined by constant values of
the variables r and 6 (see Fig. 3).

It is easy to conclude that the magnetic field vanishes in-
side the sphere:

Bi,(r,0)=0, r<b. (24)

In the bulk of the sphere E’=0 and thus the displacement
current vanishes, and the Ampere—Maxwell law is written as

8
Bé¢27rr sin 0=,u,0f ji(r,a)an'r2 sin a da, (25)
0
and leads to
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Fig. 3. Integration surface S and boundary circuit C to compute the mag-
netic field. .

. 3wE sinwt a® (b |\
Bz¢(r,0)= ZCT a3_bﬁ3 ;2""7' sin 0,
b<r=a. (26)
Notice that on the inner surface, r=>b, one gets

B} 4(b,6)=0.

In the outer region, r=a, the current density is zero and
only the displacement current has to be taken into account on
the nght hand side of (23). Since in our case the electric field
E° is given by (3), the magnetic field is

1 oFE sin ot 2a%\
B3¢(r,0)=——2€-2— r+—r—2— sin 8, r=a. (27)

It is easily checked that B§¢(a,0)=B%¢(a,0) in accor-
dance with the continuity conditions for the magnetic field.

IV. ENERGY BALANCE

The first terms in the expansions for the electric and mag-
netic fields are

E=E’+E!, B=B!+B? (28)

and the Poynting vector N=EXB/u, can be written as
N=N'+N2, where

N1=i E'xB!, N2———- Ele1+ — E"xB?.  (29)
Mo Mo Mo

We shall check Poynting’s theorem with the energy bal-
ance in the volume enclosed by the outer spherical surface p3
of radius a. Because this is a quasistatic situation, E is or-
thogonal to the surface of the sphere, and thus N! and the
second term of N? are tangent to the sphere and it turns out
that the only contribution to the incoming energy flux is due
to the first term of the field N2,

On the surface we have

3eqwnE sin wt(2a3+b3)

E;O(a’6)= 2(a3_b3)

sin 6, (30)

B;d,(a,ﬁ)— —3eymowak sin wt sin 6, (31)
and the flux of vector N? is
30 3 13
2a°+b
§2N2-ds= — 67 ne;w’E? sin® wt ———(—3——7)-3——)— (32)

where the minus sign shows that the flux is incoming.
The rate of dissipation of energy by Joule heating within
the sphere will be
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1y2
W=J‘j1.E1 dV=f E) dav, (33)

where E1 is given in (15) The volume element is
dV=2mr?sin §dr d0 so that the power dissipated is

2 202 3 a’(2a*+b?)
W=6mne;w°E* sin Wt ——3 1> (34)

which is equal and opposite to Eq. (32) as expected.

V. CIRCUIT APPROACH

An alternative way to calculate the shielding effectiveness
is to replace the actual system by an equivalent alternating
current electric circuit, as we shall discuss in what follows.

The sphere under the action of the external electric field
(1) can be represented by an RC circuit, whose different
elements are as follows.

(a) An external potential V,=V cos wt, where Vy=Ez, z
is being some effective length to be defined properly.

(b) A current I which equals the total current crossing the
sphere through the equatorial plane.

(c) In the usual EMC approach the resistance R is intro-
duced on heuristic grounds. Here we can take advan-
tage of our previous energy balance calculation to
choose for R the value that will reproduce the energy
dissipated in the sphere by Joule heating.

(d) A capacitance C such that the circuit with impedance
1/wC satisfies the a.c. Ohm’s law.

In the equatorial plane 6=m/2 the current density is

E20 a3 3

j20—7—3€0wE sin wt —3——53- 1+ 2_-3- (35)

and thus the current crossing through the equatorial plane
and considered positive in the increasing direction of z is

a
I=—f jag2mr dr=—1I sin wt, (36)
b

where Iy=3mwe,wEa’. 1t is interesting to remark that I does
not depend on the thickness of the sphere.

This current is shifted forward 90 deg with respect to the
external potential Vcos wt. In consequence we shall as-
sume that the circuit impedance is basically capacitive:
R<1/wC. In Sec. VII we shall discuss the restrictions im-
posed by this assumption on the vahdlty range of our analy-
sis. The root-mean-square current is IO/\/Z and the power
d1s51pated in the resistance R is given by RI%/2. By identify-
ing this with the mean value of Eq. (34), we obtain

_ 27(2a3+b3)
- 37m(a3—b3)’ (37)

and when b=gq this expression becomes

R~71— (38)

in terms of the sphere thickness d=a—b.

Finally, to compute C we use the fact that Vy=1,/wC and
thus

IO a2

C—'—V;-—37T60 PR (39)
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in terms of an effective length z whose exact definition will
be discussed below.
Ohm’s law gives the following estimate for the average
internal field:
RI 2eqwnEa(2a’+b%)
=5 =" @ =59 sin wft, (40)

in such way that in the low thickness approximation we get

2eqwnEa’
E,=- g sin wt. (41)
If we consider that this average electric field in the circuit
E,; represents the field inside the sphere, then by comparing
(41) with (22) we see that the actual effective length of the
sphere is

z=13a, (42)

which leads to the following expression for the circuit ca-
pacitance:

C=3meqa. 43)

In EMC, the circuit characteristics are selected on heuris-
tic grounds rather than based on results from a perturbative
calculation as in our previous analysis. Bridges® takes an
effective length z=a and obtains C=3meya, while
Franceschetti’ by using z=2a arrives to the value C= 7e,a.
In both cases the criteria used to compute the circuit param-
eters are very different from ours.

The electric shielding effectiveness (SE) is defined as?

_ |Ei|
SE=—20 logy, T (44)
For a conducting sphere of thickness d<%a this gives rise to
3eqwna
SE=—20logg —_— (45)

This result coincides with the value given by Bridges.?

V1. A HOLLOW CONDUCTING CYLINDER

Instead of a sphere we shall apply the above method to the
case of an infinite hollow conducting cylinder under the in-
fluence of the same varying external uniform electric field.
Let us assume that the cylinder is of external and internal
radius a and b respectively and directed along the OZ axis,
which is the cylinder symmetry axis. The material resistivity
is 7 and the external electric field is orthogonal to the cylin-
der axis and given by the formula

E(t)=E cos ott, (46)

where 1 is the unit vector along the OX axis.
The lowest-order surface charge density on the cylinder
outer surface is®

o%a,p)=2¢€,E cos wt cos ¢, 47)

where ¢ is the polar angle in cylindrical coordinates.

In the following we simply collect the main results we
have obtained by the same method as in the case of the
sphere. Inside the cylinder the first-order electric field is

X 4a? . A
El=- e eownE sin wtt, r=b, (48)

while the magnetic field B} vanishes.

The first-order charge density is the same in the interior
and exterior surfaces:
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1 . 4e,§w1]a2
o (a,p)=0(b,¢)= —1r E sin wt cos ¢. (49)

The power dissipated per unit length by Joule heating is
given by

B 4ma*(a*+b?) 5

P eowz nE? sin® wt, (50)
while the current per unit length through the plane ZOY is
I=—4aeywE sin wt (51)

and it does not depend on the thickness, exactly as it happens
in the case of the sphere.

By means of the same criteria we used in the previous
example we obtain the following values for the equivalent
circuit parameters when considering a cylinder portion of
length [:

B wy(a’+b?) B 16€ga’l B m(a®+b?)
T M@ U wa ) T 4
(52)
If d<<a these parameters become

Tna 8epl a

R~%a = T 53)
and the shielding effectiveness SE is

2eqwna

VII. COMMENTS AND DISCUSSION

In order to estimate the accuracy of the approximate
method used in Secs. IL, III, and V let us compute the electric
dipole moment of the sphere at orders 0 and 1.

The first two orders of the dipole moment are

P’=4ma’ e E cos wt, (55)
5 243+ b3
P1=67'ra360w77 T E sin ot. (56)

In the case of small thickness, the ratio between the maxi-
mum values of these moments is

= (57)

A necessary condition for the validity of the method used
in Sec. II to evaluate the electric field in the interior of the
sphere is to have a small ratio:

1
P"ﬂ«. (58)

max

Now, this condition is equivalent to the R<1/wC assump-
tion, that is used in the circuit approach because

3egwna
<
2d L,

thus justifying that the capacitive impedance dominates over

wRC= (59)

On the other hand, by inspection of expressions (14), (15),
and (16) we realize that the dimensionless expansion param-
eter for the electric field is €w for finite thickness and
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€wna/d when the thickness d is very small. The smallness
of the later quantity is equivalent to condition (59). For the
magnetrc field we see in (26) and (27) that the effective
expansion parameter is wa/c, or wa?/cd. The last quantity is
small for w<10° s™! if we assume a/d=10".

Notice that for instance, in the case of a copper sphere
7=1.7-10"% Om, of radius a=1m, thlcknessd 10~3 m and
frequency values of order w<105 , the skin depth & is
much larger than the thickness d:

27
6= >d. (60)
MHo@

0

It must be observed that the first-order electric field does
depend on the resistivity 7, while the magnetic field does
not. Inside the sphere the electric field is proportional to the
time derivative of the external field, a result that agrees with
the one obtained for the electric field by Franceschetti,> who
considers that the sphere is under the influence of an electric
and magnetic field which change simultaneously in time, or
more precisely, under the influence of a plane wave.
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In this paper, we introduce a classical model for the behavior of the outer electron of a Rydberg
helium atom in both static and time-dependent electric fields; we contrast the behavior of this
dynamical system with the behavior of the classical model for highly excited hydrogen atoms in
similar fields; and we show that these classical models recover many features of the system that
would seem to be purely quantal in origin. Perhaps the most surprising of these is the apparent
presence of ‘‘classical avoided crossings’’ in the Stark energy level structure of the classical helium
model. Finally, we compare the behavior of our helium model to experimental data obtained by
Koch, Mariani, and co-workers in their investigations of the ionization of highly excited helium
atoms in a microwave field, and we note the agreement between experiment and theory. © 1996

American Association of Physics Teachers.

L. INTRODUCTION

The experiments of Koch et al. on the 1omzatron of highly
excited hydrogen atoms in microwave fields' have been ex-
tensively discussed in the literature over the past decade. One
of the important issues that has been raised is the signifi-
cance of classical mechanics—particularly chaotzc classrcal
mechanics—in the explanation of the Koch data.>*® Not so
well known are the data that Koch’s group has obtained on
the ionization of Rydberg helium atoms in microwave
fields.*~® The behavior of helium atoms with one electron in
a highly excited Rydberg state (with quantum number #) in a
strong microwave field differs significantly from the behav-
ior of highly excited hydrogen atoms with the same ». This
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discrepancy in the dynamics stems from the non-Coulombic
core potential seen by the Rydberg electron in helium. This
paper is an investigation of the classical dynamics of the
Rydberg electron in an excited helium atom. We present a
classical model for Rydberg helium in which the core elec-
tron is modelled as an effective potential and illustrate the
interesting dynamics of the classical helium Rydberg atom in
several configurations of applied electric fields. In particular,
we have used this model as the basis for a Monte Carlo
calculation of the ionization of Rydberg helium in a micro-
wave field and compared our results to the experimental data
of Mariani et al.*~® Since the classical description of an elec-
tron in a highly excited helium atom cannot be reduced to a
single degree of freedom, we cannot use a one-dimensional
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