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The classical variables that define the state of a classical elementary particle are con-
tained in the kinematical group of space-time transformations related to the Relativity
Principle. Classical spin observables are expressed in terms of the velocity and orientation
and their derivatives, the acceleration and angular velocity of the charge, whose motion
around the center of mass produces the magnetic moment of the particle and also an os-
cillating electric dipole. Quantum mechanical spin operators also depend on the velocity
and orientation variables and are differential operators with respect to these magnitudes.
The spin structure of the photon and electron will be shown.

1 Introduction

Although it is possible to produce a quantum mechanical analysis of a system
without reference to a previous classical description, it is clear that a richer classical
analysis will produce a more detailed quantum mechanical description, because
the quantum mechanical operators will inherit their differential structure from the
classical variables we use. In general, the final theoretical description should be
different if instead of producing a quantization of a point particle and afterwards
we introduce its spin, for instance like in Pauli’s equation, we produce first a classical
description of a spinning particle and finally quantize this system. It is this second
way we have taken to develop a classical description of elementary particles and
their spin structure.

2 The classical and quantum mechanical interpretation of spin

We can find in the literature a classical and quantum mechanical interpretation
of spin. From the classical viewpoint, according to Bargmann, Michel and Telegdi,
BMT for short [1], the electron has an intrinsic spin S and a magnetic moment µ

where both vector magnitudes are related by

µ = g
e

2m
S,

where g is the gyromagnetic ratio. In the presence of an external electromagnetic
field it satisfies

dS

dt
= µ ×B. (1)
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BMT equation is the relativistic generalization of this equation. This classical spin
and its absolute value are constants of the motion for a free particle. Even with
interaction S2 is conserved.

In Dirac’s theory the total angular momentum of the electron, is [2]

J = r×P + S, (2)

where

S =
h̄

2

(

σ 0
0 σ

)

in terms of Pauli matrices σ. For a free particle, J and P are constants of the
motion and thus, taking the time derivative of (2) we get

dS

dt
= P × v, (3)

where v = cα is Dirac’s velocity operator.
Dirac’s spin operator is not a constant of the motion for a free particle. Only

its absolute value remains constant.
It is clear from the dynamical viewpoint (1) and (3), that the quantum mechan-

ical Dirac’s spin operator represents a different observable than the classical BMT
spin.

We shall review in what follows an alternative description of spin which is based
on a formalism for describing classical elementary particles. The aim is to produce
a group theoretical description of elementary particles as close as possible as the
quantum mechanical one. Once the elementary particle is defined we shall see its
spin structure and we will be able to identify spin observables related to both Dirac
and BMT spin observables.

3 Kinematical theory of elementary particles

The kinematical theory of elementary particles developed by the author [3] de-
fines a classical elementary particle as a Lagrangian system whose kinematical space
is a homogeneous space of the kinematical group of space-time transformations re-
lated to the special Relativity Principle. The main highlights of the mentioned
approach are:

– The classical variables that characterize the initial and final state of a classical
elementary particle in a Lagrangian approach are precisely the parameters of
the kinematical group of space-time symmetries or of any of its homogeneous
spaces. Since any element of the Poincaré group can be parametrized in terms
of the time and space translation and the relative velocity and orientation
among inertial observers, then the most general relativistic spinning particle
is described by the variables time t, position r, velocity v and orientation α.
We shall call these variables kinematical variables and the manifold they span
the kinematical space of the system.
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– A classical spinning particle is thus described as a point with orientation. The
particle moves and rotates in space. The point r describes the position of the
charge, which is a different point than its center of mass q and it describes a
harmonic motion around it.

– When expressed the Lagrangian in terms of the kinematical variables it be-
comes a homogeneous function of first degree in terms of the derivatives of the
kinematical variables and consequently it also depends on the acceleration of
point r and on the angular velocity ω. It turns out that it can be written as

L = T ṫ+ R · ṙ + V · v̇ + W · ω, (4)

where T = ∂L/∂ṫ, R = ∂L/∂ṙ, V = ∂L/∂v̇ and W = ∂L/∂ω.

– For a free relativistic particle, when analyzing the invariance under the dif-
ferent one-parameter subgroups of the Poincaré group, Noether’s theorem
determines the usual constants of the motion which take the following form
in terms of the above magnitudes: Energy,

H = −T − v ·
dV

dt
,

linear momentum,

P = R−
dV

dt
, (5)

kinematical momentum

K =
H

c2
r −Pt−

1

c2
S × v, (6)

and angular momentum
J = r ×P + S. (7)

where the observable S, takes the form

S = v ×V + W. (8)

– The linear momentum (5) is not lying along the velocity v of point r. Point
r does not represent the center of mass position. If in terms of the last term
in (6) we define the position vector

k =
1

H
S× v,

then the center of mass position can be defined as q = r − k, such that the
kinematical momentum can be written as

K =
H

c2
q −Pt.
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Observable k is the relative position of point r with respect to the center
of mass. Taking the time derivative of this expression leads for the linear
momentum to

P =
H

c2
dq

dt
,

which is the usual relativistic expression of the linear momentum in terms of
the center of mass velocity.

– The observable S is the classical equivalent of Dirac’s spin operator, because
it satisfies the free dynamical equation

dS

dt
= P × v.

– The structure of the spin observable (8) is twofold. One, v × V, is related
to the dependence of the Lagrangian on the acceleration which produces a
separation between the center of mass and center of charge. The motion of
the charge around the center of mass is known as the zitterbewegung. The
other part W is related to the rotation of the particle.

– The classical equivalent of BMT spin observable is the angular momentum of
the system in the center of mass frame, or

SBMT = J − q×P = k ×P + S.

If P = 0, both spin observables coincide. Therefore the difference between
BMT and Dirac spin is the orbital angular momentum of the motion of point
r with respect to the center of mass.

– The magnetic moment of the particle is produced by the charge motion and
is thus related to the zitterbewegung part of the spin. It is because the spin
has another contribution coming from the rotation that a pure kinematical
interpretation of the gyromagnetic ratio has been given [4].

4 The classical structure of the electron

– The classical system that when quantized satisfies Dirac’s equation[5] corre-
sponds to a particle whose charge is moving at the speed of light, and therefore
if v = c is constant its acceleration is always orthogonal to the velocity.

– if we take in (6) the time derivative of this expression and afterwards its scalar
product with vector v, since v = c we get the relationship

H −P · v −
1

c2

(

S×
dv

dt

)

· v = 0

which is the classical equivalent of Dirac’s equation. This expression is rel-
ativistically invariant and therefore to obtain a linear relation between H
and P it is not necessary to perform any square root of the Klein–Gordon
operator.
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– The center of mass observer is defined by the conditions P = 0 and K = 0.
For this observerH = mc2 and from (7) the total angular momentum reduces
to the spin S which is a constant of the motion. From (6) we get

mr =
1

c2
S× v,

so that the charge of the particle is describing circles at the speed of light in
a plane orthogonal to S. The radius of this motion is

Ro =
S

mc
.

The frequency of this motion is

ω =
mc2

S
=

2mc2

h̄
= 1.55× 1021 s−1.

– It turns out that although the particle is pointlike, because of the zitterbe-
wegung it has a localized region of influence of size 2Ro. For the electron
S = h̄/2 and therefore 2Ro ' 7.6 × 10−11cm is Compton’s wave length. The
latest LEP experiments establish an upper bound of 10−17cm for the radius
of the charge of the electron, which is consistent with this pointlike interpre-
tation, while its quantum mechanical behaviour is produced for distances of
its Compton wave length, six orders of magnitude larger.

– The magnetic moment of the electron is not an intrinsic property like the
charge. It is produced by the motion of the charge and therefore is orthogo-
nal to the zitterbewegung plane. But at the same time, the electron has an
oscillating electric dipole of magnitude eRo lying on the zitterbewegung plane.
Its time average value vanishes and in low energy interactions we can neglect
the effect of this electric dipole but in high energy physics we have to take into
account the detailed position of the interacting charges and thus the electric
dipole contribution is not negligible. This electric dipole is not related to a
loss of spherical symmetry of some charge distribution. The charge distribu-
tion is spherically symmetric because it is just a point. It is the instantaneous
electric dipole with respect to the center of mass.

As an approximation we can consider the electron as a point, its center of mass,
where we also locate the charge, but at the same time we have to assign to this
point two electromagnetic vector quantities, a magnetic moment lying along the
spin direction and an oscillating electric dipole on a plane orthogonal to the spin.

5 The classical structure of the photon

– Since the photon is moving at a constant speed, the V · v̇ term does not
appear in the general Lagrangian (4). Therefore H = −T , P = R and only
S = W. The spin is produced by the rotation of the body frame that lies
along the velocity v.
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– A general Lagrangian for describing the photon is given by

L = ε
S

c

ṙ · ω

ṫ
,

where S = h̄ is the magnitude of spin and ε = ±1 is its helicity.

– It turns out that S = W = εh̄v/c, and therefore the spin is not tranversal.
The energy H = −T = S ·ω/ṫ, and being definite positive implies that S and
ω have the same direction and thus h̄ω = hν. The frequency of a photon is
the frequency of its rotational motion along the direction of motion.

– The linear momentum P = R = εh̄ω/ṫ = h̄k, where k is the wave number.

The classical photon is thus a point moving in a straight line at a constant
velocity c which is rotating with some angular velocity along the direction of motion
leftwards (ε = −1) or rightwards (ε = +1), with the spin and angular velocity
pointing in the same direction although they are not directly related because S is
an invariant property while ω is not.

6 Quantization

Feynman’s quantization of the above Lagrangian formalism leads to the follow-
ing conclusions

– The wave function is a complex squared integrable function defined on the
kinematical variables, ψ(t, r,v,α).

– The angular momentum of the system is

J = r×
h̄

i
∇ + S, (9)

where quantum mechanical spin operator S, equivalent to Dirac’s spin oper-
ator, takes the form

S = v ×
h̄

i
∇v + Dα = Sv + Sα. (10)

∇v is the gradient operator with respect to the velocity variables and Dα

is a linear differential operator of first order with respect to the orienta-
tion variables. Its explicit form depends on the particular parametrization
of the rotation group we use to characterize the orientation of the system.
For instance, if we parameterize every rotation of angle θ by the three-vector
α = n tan θ/2, where n represents a unit vector along the rotation axis, Sα

is written as

Sα =
h̄

2i
[∇α + α ×∇α + α(α · ∇α)] .
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∇α is the gradient operator with respect to α variables. The first part of
(10), Sv, has integer eigenvalues because it has the form of an orbital angular
momentum in terms of the v variables. Half-integer eigenvalues come only
from operator Sα.

The first term that depends on the velocity variables is related to the zitter-
bewegung while the second, Sα, takes into account the change of orientation,
i.e., the rotation of the particle.

– The quantum mechanical structure of spin operator (10) only involves the
variables v and α and linear differential operators on these variables. We see
in fact that these variables are the additional variables we use to distinguish
this particle from the point particle case.

7 Electron motion in Dirac’s theory

It is convenient to remember some of the features that Dirac obtained for the
motion of a free electron [6]. Let point r be the position vector on which Dirac’s
spinor ψ(t, r) is defined. When computing the velocity of point r, Dirac arrives to:

1. The velocity v = i/h̄[H, r] = cα, in terms of α matrices and says, ‘. . . a

measurement of a component of the velocity of a free electron is certain to

lead to the result ±c’.

2. The linear momentum does not have the direction of this velocity v, but
must be related to some average value of it: . . . ‘the x1 component of the

velocity, cα1, consists of two parts, a constant part c2p1H
−1, connected with

the momentum by the classical relativistic formula, and an oscillatory part,

whose frequency is at least 2mc2/h, . . .’.

3. About the position r: ‘The oscillatory part of x1 is small, . . ., which is of the

order of magnitude h̄/mc, . . .’.

And when analyzing in his original 1928 paper [2], the interaction of the
electron with an external electromagnetic field, after performing the square
of Dirac’s operator he obtains two new interaction terms:

eh̄

2m
Σ · B +

ieh̄

2mc
α ·E,

where the total electron spin is written S = h̄Σ/2 and E and B are the
external electric and magnetic fields, respectively. He says:

4. ‘The electron will therefore behave as though it has a magnetic moment eh̄

2m
Σ

and an electric moment ieh̄

2mc
α. The magnetic moment is just that assumed in

the spinning electron model’ (Pauli model). ‘The electric moment, being a pure

imaginary, we should not expect to appear in the model.’ It is surprising this
Dirac attitude concerning the electric dipole when compared with his attitude
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about the negative energy states of the electron. Both electric and magnetic
moments are obtained on an equal footing, simmilarly as the positive and
negative energy states. In this latest case the acceptance of negative energy
states lead to the interpretation of these states as the states of the antiparticle.
However considering that the electron has an electric dipole it seems to be a
loss of spherical symmetry in its charge distribution.

It is this electric dipole which in addition to the magnetic moment we claim
is justified by the zitterbewegung and has a clear classical interpretation.
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