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Abstrsct A non-relativistic  Lewis-Tolman-like  paradox 
is  proposed.  It  is  checked by direct  calculation that  the 
paradox  disappears if linear and angular  momenta  are 
attached  to  the  static  electromagnetic  field.  The  storage 
of linear  momentum in the  electromagnetic  field  during 
the  assembling  process  is  also  analysed.  Finally a naive 
model of the  electron  suggested by this  system  is  pro- 
posed. 

1. Introdmetion 
In systems in which the internal forces do not obey 
Newton’s third law (the  action  equals  reaction  prin- 
ciple), it is necessary, in order  to maintain the 
linear  and  angular  momentum and energy  conser- 
vation laws, to assign these magnitudes to  the in- 
teraction fields, giving rise to Poynting’s theorem in 
electrodynamics, and in general to  the energy- 
momentum  tensor formalism (Mprller 1972);  other- 
wise two kinds of apparent paradoxes could appear. 

In  the first kind we have systems in which the 
mechanical linear and/or angular  momentum of the 
system can vary with time while the net  external 
force  and torque  are zero. To this kind belongs the 
paradox  proposed by Feynman  (1964). In the sec- 
ond kind, while the mechanical linear  and angular 
momenta  remain  constant in time, the  net external 
force and/or  torque  do not necessarily cancel out, 
giving rise to  the well known Lewis-Tolman (1909) 
paradox,  among others. 

In the frame of the relativistic theory of continu- 
ous media, von Laue (1924) analysed examples of 
both kinds of paradox.  But  even in the non- 
relativistic approach of electromagnetism  those 
paradoxes appear.  In this way  we have proposed 
and analysed (Aguirregabiria  and Hernandez  1981, 
to be  referred to as AH ) a simplified model of 
Feynman’s paradox. 

In the present work we analyse a  paradox of the 
second kind, based upon the same device as used in 
AH. It has to be  remarked that while this paradox is 
not strictly relativistic, not only the total torque of 
external forces is different from zero (as occurs in 
the Lewis-Tolman case) but also the total  external 

Laburpem Lewis-Tolman-enaren  antzeko  paradoxa 
ez-erlatibista bat aurkezten  da.  Eremu  elektromagnetiko 
estatikoari  momentu  lineala  eta  angeluarra  egokitzen 
bazaizkio,  paradoxa  desagertu  egiten  dela  ikusten da, 
kalkulu  zuzenaren  bidez.  Gainera  dispositiboaren 
eratze-prozesuan  zehar,  momentu  lineala  eta  angeluarra 
nola  metatzen  diren ere  aztertzen  da.  Azkenik,  sistema 
honek  iradokitako  elektroiaren  eredu  bakun  bat  aurkez- 
ten da. 

force is non-zero. Another difference with the 
Lewis-Tolman paradox  mentioned is that this 
paradox  appears in its own rest  frame  without 
considering a second moving observer or even how 
the forces transform. 

In 92 the problem is exposed. In 93 it will be 
checked that  the paradox  disappears by the explicit 
calculation of the linear  momentum associated to 
the static  electromagnetic field. Section 4 is devoted 
to comments  and discussions and in 95 a naive 
model of the electron, suggested by the analysed 
device, is proposed. 

2. The problem 
Let us briefly describe the model. A thin plastic 
circular disc of radius a is at rest in the X Y  plane 
of a  coordinate  frame with its symmetry axis along 
OZ. At  the origin, the disc has a little hole in which 
a small circular ring is centred, rigidly attached to 
the disc. 

Let us assume that  the ring is made  up of a 
superconducting  material  and that a  constant  cur- 
rent is flowing in it,  generating  a magnetic moment 
of the form m = mk, where k is the unit vector 
along the OZ axis. The ring is assumed to be small 
enough to  be considered  point-like. 

A  charge q is located at  the point with coordi- 
nates (a, 0,O) on  the edge of the disc. The system is 
initially static since the fields do not depend  on 
time and  there  are no forces acting on  the charge 
and  the ring. 

Let us assume that  the magnetic  moment starts 
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decreasing  at  a small rate m = dm/dt,  due  to, for 
instance,  a small increase of temperature which 
gives rise to  the  appearance of a  non-zero resistiv- 
ity in the ring. We shall accept that this process is 
slow enough to neglect radiation, relativistic and 
retarded effects. 

The electric field induced by the changing 
magnetic field, acts on the charge,  and in order  to 
leave it at  rest, an external  force F,,, opposite to 
that of the field, of value (AH) 
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must be exerted on  it; j is a unit vector along the 
OY axis. Since during the ring demagnetisation no 
force is done  on  the magnetic  dipole, Fext is the 
total external  force acting on  the system. 

We  are facing a  situation in which a  force  and 
also its torque with respect to  the origin are acting 
on a system and the mechanical linear  and  angular 
momenta do not vary with time,  in apparent 
contradiction with classical mechanics theorems. 

The total impulse of external  force  during the 
dipole  annihilation is 

and  the angular impulse of the  torque of F,,, with 
respect to  the origin is 

J,,,= aXF,,,dt = -- I Poqm k. 
4aa (3) 

3. Explanation of the paradox 
The linear  momentum  theorem holds if we add to 
the mechanical momentum of the system the linear 
momentum associated to  the electromagnetic field. 

In the initial stationary  situation, this linear 
momentum of the electromagnetic field is 

P., = jRl E,$ x B d V  (4) 

where E and B are  the electric  and  magnetic fields 
respectively. 

In our case. 

E(r )  = - - q r-a 
4TEo Ir -aI3 

( 5 )  

and B =Vx A where A is the magnetic vector 
potential 

A(r)=-mx-.  P O  r 
47r r3 

With the help of the vector identities (Panofsky and 
Phillips 1975) 

Vx(CxD)=C(V.D)-D(V.C) 
+(D V)C- (C .V)D (7) 

v x ( @ c ) = @ v x c - c x v @  (8)  

and 

(9) 

P,, can be expressed as 

P,, = - r -a 

+% j Vx (4a) R 3  r-a1 
d V  (10) 

1 

where 63(r) is the Dirac delta. 

can be  transformed in the surface integral 
The second  term on  the right-hand side of (10) 

where S(R)  is a sphere of radius R centred  at the 
origin. The functional structure of this integrand 
guarantees the vanishing of the integral,  and finally 

In static  situations the linear  momentum  as- 
sociated with the electromagnetic field of point 
charges and currents can be written according to 
Calkin (1966) in the form 

with Ai the vector potential  at the location of qi, 
in agreement with the result (12). 

Furry (1969), making use of a different method 
from ours,  and assuming a magnetic dipole with 
internal structure, obtains the same  formula. 

The angular electromagnetic  momentum has 
been obtained  before (AH) and is 

L,, = qa x A(a). (13) 
In  the final situation when the dipole has vanished, 
we have  a  stationary system with a  point  charge  at 
rest  and an electromagnetic field without  linear  and 
angular  momenta.  Consequently the change in the 
electromagnetic  linear  momentum in the demag- 
netisation process is -Pe,,, which is just the impulse 
(2). Similarly the change in the electromagnetic 
angular  momentum is -L,, given  by (3) (see AH). 
Remarking that  the mechanical linear and angular 
momenta  are zero,  before,  during  and  after the 
demagnetisation process, we see explicitly that 
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assigning momenta to  the electromagnetic field 
alllows the classical theorems on the impulse 
of external  forces  and  torques still to hold. 

4. Comments  and discussions 
One intuitive way  of checking the existence of 
linear  and  angular  momenta  stored in the static 
electromagnetic field is to consider a possible as- 
sembling process of the system, starting from a 
situation in which charge  and  dipole are  far enough 
apart and the density of the linear  electromagnetic 
momentum, given  by Poynting’s vector, is zero. 

Let us assume that the point  charge is taken from 
infinity along the OX axis to a point in the neigh- 
bourhood of the dipole,  at  a  constant  speed U = vi 
( v  < 0 )  sufficiently small to accept the non- 
relativistic approach. 

The charge  creates  a  magnetic field  which  is zero 
at every point on  the OX axis, and in particular  at 
the point  where the dipole is,  giving no torque on it 
but  the force is non-zero due  to a non-vanishing 
gradient of the magnetic field. 

In this non-relativistic approach, the magnetic 
field created by a  point  charge q located at the 
point  xi and moving with the constant  speed U is 
given  by 

and the force F,,, on the magnetic dipole will be 
according to Jackson (1975) 

F,=V(m *B)=”- - - j -  j CLoqmv 
4 7rx 

where v = dx/dt. 
This force is equal  to  the force F,  exerted on the 

charge by the magnetic field of the dipole (AH). We 
have in this situation  a very clear violation of 
Newton’s third law. 

In  order  that  the charge and  the dipole do not 
accelerate, two forces -F,  = - F ,  must be applied 
respectively on them. In this way the total impulse 
exerted on  the system will be 

which is independent of U and also of the  path 
followed, as can easily be  proved. According to  the 
classical theorem on the impulse of external forces, 
and knowing that when the charge  and the dipole 
were  far apart  the electromagnetic  linear  momen- 
tum was zero, at  the  end of the process a  linear 
momentum given by (16) will be  stored in the 
electromagnetic field, i.e. precisely the P,, of (12) .  

Similarly, the same conclusion is obtained  about 

the impulse of the external torque and the angular 
momentum (AH). 

If a vector of value P,, is supposed to be located 
at the point  charge, the electromagnetic  angular 
momentum can be  written 

L,, = a X Pe,. 

5. A naive  model of the  electron 
The system analysed above suggests a naive model 
of a particle just by taking the zero limit of the 
parameter a; this gives rise to a point-like particle 
with a  charge  and  a  magnetic  moment as is the case 
of the  electron, for instance. 

However, as usually happens, the electromagne- 
tic linear  and  angular  momenta diverge because of 
the point-like character of the model. In order  to 
avoid this difficulty one usually assumes that  the 
particle is a small sphere of radius Ro. Let us 
imagine that it has  a  surface  charge density U = 
q/47rRi and in its centre  a  point-like magnetic 
dipole m = mk.  The electric and magnetic fields are 

E=O for r < R o  

The electromagnetic  angular  momentum with re- 
spect to  the origin will be given by 

where the integral is extended to  the  outer region 
of the  sphere since the electric field is zero inside. 
By symmetry considerations we see that  the angu- 
lar  momentum will be along the direction of m. In 
fact,  computing the integral of (20) in spherical 
coordinates we arrive at 

It is also easy to see by symmetry considerations 
that  the total  electromagnetic  linear  momen- 
tum calculated according to (4) is zero, concluding 
that  the angular  momentum  does not depend  on 
the reference  point. 

For an elementary  particle, the magnetic  moment 
m is related to its intrinsic angular momentum 
(spin) S by 

m = g - S  4 
2 M  
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where M is the mass and g the gyromagnetic ratio 
which depends on  the internal  structure of the 
particle. 

If we identify the spin S with the electromagnetic 
angular  momentum (21), and  take  for R. the well 
known classical radius of the electron  (Rohrlich 
1965) 

we see that  the gyromagnetic ratio takes the value 
g = 3. If another internal structure is assumed, for 
instance if the charge  and  magnetic  moment are 
uniformly distributed inside the  sphere we get the 
value g = 2.5. 
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