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Quantization of generalized Lagrangian systems suggests that wave functions for 
elementary particles must be defined on the kinematical space rather than on con- 
figuration space. For spinning particles the center of mass and center of charge are 
different points. Their separation is of the order of the Compton wavelength. Spin- 
l/2 particles arise if the classical model rotates but no half integer spins are ob- 
tained for systems with spin of orbital nature. Dirac’s equation is obtained when 
quantizing the classical relativistic spinning particles whose center of charge is 
circling around its center of mass at the speed c. Internal orientation of the electron 
completely characterizes its Dirac’s algebra. 

I. INTRODUCTION 

In previous works”* we have found a Lagrangian formulation of classical spinning particles 
where the spin is produced by the Zitterbewegung and rotational motion of the particle around its 
center of mass. The novelty with respect to other approaches is the definition of a classical 
particle. The usual canonical formulation defines a classical particle as a system whose phase 
space is a homogeneous space of the Poincare group. In our approach it is the kinematical space 
of the system that is required to be a homogeneous space of the kinematical group of space-time 
transformations. The kinematical space of a system is the manifold spanned by the initial (or final) 
boundary variables of the corresponding variational problem in terms of a Lagrangian function. 
This definition of a classical particle implies that a general Lagrangian must depend on the 
acceleration of the particle and thus necessarily we must work within a generalized Lagrangian 
formalism. Section II is devoted to a concise summary of the mentioned references to show the 
spin structure for both relativistic and nonrelativistic particles. One of the salient features for a 
spinning particle is the existence of two position vectors. One defines the center of mass and the 
other is interpreted as the center of charge position. 

Feynman’s quantization of the above generalized Lagrangian systems implies that wave func- 
tions must be squared-integrable functions defined on the kinematical space. This is shown in Sec. 
III. Thus a general wave function will be a function of ten variables: time t, position r, velocity u, 
and orientation LY. 

Some authors3-5 have claimed to consider the dependence of the wave function on time and 
position as well as on orientation variables. To our knowledge is in the work of Bopp and Hagg3 
where for the first time the wave function is allowed to depend on additional angular variables, in 
particular Euler’s angles and they succeeded in obtaining spin-l/2 wave functions. Finkelstein4 
classified the internal structures of a rigid body according to its invariance under the Lorentz group 
and where internal variables bear the generic name of “orientation.” Bacry and Kihlberg’ made 
use of an alternative parameterization to discuss some properties of a certain class of homoge- 
neous spaces of the Poincare group to describe spinning particle wave functions. In the relativistic 
case, Dah16 obtained Dirac’s equation by assuming dependence of the wave function on the 
orientation. 

Sections IV and V analyze different quantized examples for nonrelativistic and relativistic 
particles, respectively. In Sec. V when quantizing the relativistic system of a particle circling 
around its center of mass with velocity c we obtain Dirac’s equation. The Dirac algebra of internal 
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observables is completely determined by the spin components on the spatial and body axes,and by 
the orientation of the particle such that any other internal observable like velocity and acceleration 
can be expressed in terms of them. The way we relate these kinematical variables to the essential 
internal observables leads to different representations of Dirac’s equation. 

II. GENERALIZED LAGRANGIAN SYSTEMS 

Let us consider a classical system for which its Lagrangian is a function of time and of the 
generalized coordinates and their time derivatives up to order k, i.e., L(t,qi ,...,qi”), where 
qj”)=dkqildtk. We can alternatively write the Lagrangian in such a way that it becomes a real 
function L(x’,X’) defined on a manifold X and its tangent space. The manifold X, called the 
kinematical space of the system, is the manifold spanned by the time t, the generalized coordinates 
qi , and their derivatives qjr) up to order k- 1, such that the Lagrangian written in this way is a 
first order homogeneous function of the derivatives of the kinematical variables. 

Then it has the general expression 

L(X,i)=Fj(X,i)i’, (1) 

where the F&x$) = dL/d?, are homogeneous functions of zero degree of the derivatives X’, and 
the dot means differentiation with respect to some invariant evolution parameter r. Because of this 
homogeneity condition, the Lagrangian formalism in terms of the kinematical variables is param- 
eter independent. To obtain from Eq. (1) dynamical equations, the corresponding constraints 
among the kinematical variables have to be considered. 

The relativity principle states that dynamical equations must be independent of the inertial 
observer and this implies that Lagrangians must transform as7 

da(w) 
L(gx,gi)=L(x,i)+7 

Wg;x) 
=Fj(x,f).i’+-g- 2, (2) 

where g is an element of the kinematical group G. Group G defines the class of equivalent inertial 
observers, and cu(g;x> is a gauge function7 defined on the manifold GXX. 

Gauge functions satisfy the identity 

4g’;gx) + 4w) - &‘&TX) = &?‘,g). (3) 

where &g’,g) is an exponent of the group G,8 and g and g’ two arbitrary group elements. 
The mechanical action of the system from xi to x2 is defined as the integral of the Lagrangian 

along the classical path X( 7). It becomes a function A of the end points of the trajectory in X space 

A(x~J,)= c 72 L(i( T)$( T))d7 
such that it transforms among inertial observers according to 

A(gX2,gx1)=A(x2,x1)+~(g;x2)--LY(g;x,), (5) 
with gx( T) being the path followed by the particle as measured by observer 0’. 

End points x1 and x2, are precisely the end points that are held fixed in the corresponding 
variational problem. They are independent as initial and final conditions although there should 
exist differential constraints among the kinematical variables when considered as generalized 
coordinates. 

In Refs. 1 and 2 a classical elementary particle is defined as a classical system for which the 
kinematical space X is a homogeneous space of the kinematical group G. This corresponds to 

J. Math. Phys., Vol. 35, No. 7, July 1994 
Downloaded 12 Sep 2002 to 158.227.5.108. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3382 Martin Rivas: New derivation of Dirac’s equation 

relating the possible inertial free motions with the one-parameter subgroups of G. Since a particle 
is left at xi and reaches x2 freely, there exists a finite group element g E G such that x2 = gx , and 
thus X is a homogeneous space of G. 

All the kinematical groups considered, in particular the Galilei and Poincard groups, are ten 
parameter groups. They are parameterized in an equivalent way in terms of the following param- 
eters (b,a,v,cx), where b and a with dimensions of time and length, represent the time and space 
translation, respectively, v is the relative velocity among observers, and the dimensionless mag- 
nitude LY represents their relative orientation, expressed in terms of a suitable parameterization of 
the rotation group. It turns out that the kinematical space of a particle with the highest structure is 
a ten-dimensional manifold whose variables share the same dimensionality as the above group 
parameterization. This manifold represents a spinning particle whose kinematical variables are 
identified with time t, position r, velocity u=drldt, and orientation (Y. Since the Lagrangian also 
depends on their derivatives, it shows dependence on the angular velocity o as well as on the 
particle acceleration duldt=dr*idt* and this dependence on the second order derivatives of the 
position vector r is why we must necessarily work within a generalized Lagrangian formalism. 
Among the kinematical variables we find that u and CY are translationally invariant and thus 
characterize the internal structure of the system. We shall call them internal variables, to distin- 
guish from t and r, which describe the space-time evolution. 

In this general case, the position of the particle and its center of mass do not coincide, and spin 
is related to the rotation and internal motion (Zitterbewegung) around the center of mass of the 
particle. If the Lagrangian shows no dependence on the acceleration, the spin is only of a rota- 
tional nature, and the position and center of mass position define the same point. Finally if in 
addition to this, the Lagrangian does not depend on the orientation we just have a spinless point 
particle for which the kinematical variables reduce to time and position. 

A. Classical Galilel particles 

The kinematical group is the Galilei group. The kinematical space spanned by variables 
(t,r,u,cu) interpreted as time, position, velocity and orientation, respectively, gives rise to a system 
whose Lagrangian can be written by IQ. (1) as 

L=-Ti+Q.i+U.ti+Z.o, 

with T= - ~G’Lfai, Qi= 3Lld?, Ui= dLldzi’, and Zj= dLl~3o’, the constraint u=drldt=i(r)/i( r), 
and where the angular velocity CI) is a linear function of the derivatives d! of the corresponding 
parameterization of internal orientation. 

Noether’s theorem when applied to the Galilei group leads to the ten constants of the motion 

H=T-u.2, 

P=Q-g , 

G=mr-Pt-U, 

J=rxP+uxU+Z=L+S 

interpreted as usual as the total energy, linear momentum, Galilei or static momentum, and angular 
momentum, respectively. 

We see that total angular momentum is the sum of the orbital part L and the spin S that has 
two terms: One is UXU, related to the dependence of the Lagrangian on the acceleration and the 
other is Z, which comes from its dependence on the angular velocity. If we define U =m k in terms 
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of the magnitude k with dimension of length, then G=O leads to P=md(r-k)/dt and the vector 
q=r-k defines the center of mass position, while k represents the relative position of point r with 
respect to the center of mass. For a free particle, the center of mass moves with constant velocity 
while point r is moving around it, and this internal motion is interpreted as the Zirterbewegung. 

B. Classical relativistic particles 

We shall consider three different homogeneous spaces of the Poincari group. We have first a 
homogeneous space spanned by variables (t,r,u,cu) with the same interpretation as above, but now 
with U-CC. 

The constants of the motion can be written as 

dU 
H=T-y-, 

dU 
P=Q-dt, 

n= -Hr/c+Pct+D, 

J=rxP+uxU+Z=L+S, 

where the different observables in these expressions are obtained from the Lagrangian with the 
same definitions as above but now the generalized angular velocity o is a linear function of both 
dr and ti, and the D function is expressed in a rather involved way in terms of U and S. For explicit 
expressions the reader is referred to Ref. 2. 

If in terms of D we define the position vector k, D=Hk/c, then time differentiation of the 
Poincar6 momentum rr leads to P= (Hlc2)d(r-k)/dt so that q=r-k represents the center of 
mass position and k is again the relative position of point r with respect to the center of mass. 

The nine-dimensional manifold spanned by variables (r,r,u,cu) but now with U=C, is another 
homogeneous space of the Poincak group 9. The constants of the motion have the same general 
expressions as above except that the Poincari momentum in this case reads 

m=-Hrlc+Pct-uxS/c (6) 

and the angular velocity is only expressed in terms of the time derivatives of the orientation cy. The 
relative position vector k comes from -uXS=Hk and again P=(Hlc2)dq/dt, where q=r-k. 

The time derivative of m and the scalar product with u give rise to the Poincari invariant 
relation 

Since usi= the particle describes a circle with velocity c for the center of mass observer, in 
a plane orthogonal to S which is constant in this frame. 

It is the quantization of this system that leads to Dirac’s equation. 
Finally, the homogeneous space X=.9%0(3) spanned by variables (r,r,u) with u > c describes 

particles )vith internal tachyonic motion and no rotation, since for u > c no general homogeneous 
space of .T with angular variables can be defined. 
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C. Two position vectors 

Vector r, transforming as a position vector, is interpreted as the position of the particle. But if 
the Lagrangian depends on the acceleration, a new position vector q has been defined in terms in 
which the total linear momentum can be expressed as P=mdq/dt in the Galilei case and 
P=(Hlc2)dq/dt in the relativistic formulation as seen above. This vector q clearly represents the 
center of mass position. Then, what position does the vector r represent? 

Interaction with some external field suggests to interpret r in certain situations as the charge 
position. In fact, let La(x,i) be the Poincard invariant Lagrangian of a generalized classical 
spinning free particle. If there is some interaction with an external field, we have to add an 
interacting term L,(x,X,~~) depending on the kinematical variables of the system x, their first 
derivatives X, and on some external sources ~i(X,~) which are in general functions of x and X. 
However L, must necessarily be a first order homogeneous function of X. For instance, if we 
assume a minimal coupling we can write L,= - &t,r)i+A(t,r).k, linear in the derivatives and 
where the source functions are only time and position dependent. The interaction Lagrangian L, is 
Poincare invariant if (+,A) transform like a Minkowski four-vector as happens if the source is an 
external electromagnetic field. But the potentials and thus the electric and magnetic fields are 
evaluated not at the center of mass position q but at the position r. In this minimal coupling 
interaction, r seems to be the electric charge position. For arbitrary interactions, there will be 
terms depending on ir and w and the source functions could also be derivative dependent, and 
position r will be related to the position of some other attribute or generalized charge of the 
particle. 

The kind of particle this formalism describes is a rigid rotator. Let us assume a rigid body of 
any shape and mass m. If charged, with total charge e arbitrarily distributed, the center of mass and 
center of charge are not in general coincident points. Rotation can be described by the evolution 
of the corresponding orthogonal frame linked to the body. The free motion of this model is a 
straight line trajectory for the center of mass at constant speed and a rotation of the body fixed 
axis. This rotation can be decomposed into the rotation of the center of charge around the center 
of mass and finally a possible rotation around the direction determined by these two points. When 
interacting with an external electromagnetic field, dynamical equations describe the center of mass 
evolution, but to determine the electromagnetic force it is necessary to know the charge trajectory 
where the external fields are evaluated. It is important to realize that this kind of description is 
independent of the shape and size of the object and in the limit; if there is no multipolar structure, 
what we have are just two position vectors linked, respectively, to m  and e and three orthogonal 
directions to describe orientation. These kinds of objects have obtained a Lagrangian description”2 
in terms of charge position r and orientation a, but allow dependence of the Lagrangian on the 
charge acceleration d2r/dt2, where the center of mass position q is a derived observable. 

For relativistic particles, the center of mass q can never reach the speed of light, but for the 
charge position r we have found2 three separate classes of particles for which the internal charge 
velocity drldt can be less, equal, or greater than c. In fact, it is the quantization of a particle whose 
charge is circling around the center of mass with velocity c that leads to Dirac’s equation, as will 
be shown in Sec. V. 

It is the aim of this contribution to quantize these Lagrangian systems and show the spin 
structure dependence on the internal variables, velocity and orientation. In particular half integer 
spins arise from the dependence of the wave function on the orientation while if spin is related 
only to the Zitterbewegung then half integer spins can never arise. 

Ill. QUANTIZATION OF GENERALIZED LAGRANGIAN SYSTEMS 

Let us consider a generalized Lagrangian system as described above whose evolution takes 
place on the kinematical space between points x1 and x2. 
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For quantizing these generalized Lagrangian systems we shall follow Feynman’s path integral 
method.’ The uncertainty principle is introduced in Feynman’s approach by the condition that if no 
measurement is performed to determine the trajectory followed by the system from xt to x2 then 
all paths are allowed with the same probability. But being that the different paths are interfering 
alternatives, their probabilities must be calculated from a probability amplitude. Thus, to every 
possible trajectory followed by the system, x( 7) in X space, Feynman associates a complex 
number C#J[X( r)] called the probability amplitude of this alternative, given by 

where N is a path independent normalization factor, and where the phase in units of h is the 
classical action of the system A txl(x2 ,x,) along the path x( 7). This probability amplitude is 
clearly a function of the initial and final points x1 and x2 in X space, respectively. 

The total probability amplitude that the system will arrive at x2 coming from x1, i.e., Feyn- 
man’s kernel K(x2 ,x1), is obtained as the sum or integration over all paths of terms of the form of 
Eq. (8). Then Feynman’s kernel K(x2,xI), will be in general a function or more precisely a 
distribution on the XXX manifold. If information concerning the initial point is lost, and the final 
point is left arbitrary, say x, the kernel reduces to the probability amplitude for finding the system 
at point x, i.e., the wave function a(x). By the above discussion we see that wave functions must 
be functions of the kinematical variables. 

To see how the wave function transforms between inertial observers, let 0 and 0’ be two 
inertial observers related by means of a transformation g E G, such that the kinematical variables 
transforms as 

x’i=fi(g,x). 

If points xi and x2 are close enough, then the kernel reduces to the probability amplitude 
along the classical path joining them. If for 0 the system follows path X(r), it follows for 0’ the 
path X’(r) =f(g,$r)) and because the action along classical paths transforms according to Eq. 
(5). then Feynman’s kernel transforms as 

K’(x; ,xl)=K(x2,xl)exp $ (a(g;x,)-a(g;x,)) 
1. I 

and if the information concerning the initial point is lost, the wave function transforms as the part 
related to the variables x2 

Q’(x’(x))=*‘(gx)=@(x)exp 
1. 

i (cu(g;x)+B(g)) 
I 

or in terms of unprimed x variables 

(a’(x) = @ (g-‘x)exp f (cr(g;g-lx) + 8(g)) , 
1. I 

where 8(g) is some function defined on G but independent of x. Since ]@(x)12 d,u(x) where 
dp(x) is the volume element in X space is interpreted as the probability of finding the system 
inside the volume element dp(x) around point x, the probability of finding it anywhere in X must 
be unity, so that 
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Since from Eq. (9) 

I 
xbW)12 d/4x)= 1. 

(W(x’)12= p(x)12 (10) 
it is sufficient for the conservation of probability to assume that the measure p(x) be group 
invariant. Equation (10) implies also that inertial observers measure locally the same probability. 
Consequently, the Hilbert space 2% whose unit rays represent the pure states of the system is the 
space of squared-integrable functions L2(X,p) defined on the kinematical space X, with p(x) 
being an invariant measure such that the scalar product on ~2% is defined as 

(11) 

with Q*(x) being the complex conjugate function of Q(x). 
The relativity principle and Wigner’s theorem”.” imply that to every symmetry g E G of a 

continuous group, there exists a one to one mapping of unit rays into unit rays that is induced on 
28’ by a unitary operator U(g) defined up to a phase that maps a wave function defined on x into 
an arbitrary wave function of the image unit ray in x’ . If we interpret a(x) as the wave function 
that describes the state of the system for the 0 observer and a’(x) for 0 ’ , then we have 

U(g)@(x)=Q,‘(x)=@(g-‘x)exp 
1. 

f a(g;g-‘x)+@(g) . 
I 

Since the 0(g) function gives rise to a constant phase we can neglect it and then we take as 
the definition of the unitary representation of the group G on Hilbert’s space B 

Q’(x)=U(g)@(x)=Q,(g-‘x)exp 
i. 

i cu(g;g-lx) . 
1 

02) 

Since the gauge functions satisfy Eq. (3), the phase term can be replaced by 

because gauge functions can always be chosen such that cu(O;x) = 0 and the group function l(g), 
giving rise also to a constant phase, can be suppressed. 

If the unitary operator is represented in terms of the corresponding self-adjoint generators of 
the group algebra 

U(g)=exp 
i’ I 

f X,ga 

then the self-adjoint operators X, when acting on the wave functions have the differential repre- 
sentation 

xv=; u’,(x) -&Jx), 
where 
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H&X> l&(x) = ____ Wg;x) 
w @ ’ u,(x)=- w g=o’ 

Because of the presence of the U,(X) term in Eq. (13), the X, generators do not satisfy in 
general the commutation relations of the group G, but rather the commutation relations of a central 
extension of G. The group representation is not a true representation but a projective representa- 
tion of G as shown in Ref. 8. 

In fact 

U(g,)@ tx)=W ;‘x)exp 1’ $4gl ;gT’x) I 
acting on the left with U(g2) 

U(g2)U(gl)cD(x)=U(g2)~tg;‘x)exp 
I 

i 4g, x;‘x) 
I 

=@(tg2g~)-ixkxp I t 4g2x;‘x) ev t 4gl ;(g2gd-‘x) , I r I 
while acting on a(x) with U(gagt) 

U(g2sl)Q,(x)=4,(tg2gI)-‘x)exp 
1. 

$4g2g1 ;(g2g*Px) * 
I 

If we define (g2gl)-‘x=z then glz =g; lx and thus since gauge functions satisfy Eq. (3) 

we obtain 

U(g2)U(g,)~tx)=U(g2gl)~tx)exp 
r *I 

k t(g2,gl) 

and if Q,(x) is arbitrary we have a projective representation of the group G. 
For both Galilei and Poincare particles the kinematical space is the ten-dimensional manifold 

spanned by the variables (t,r,u,& t being the time, r the position, u the velocity, and LY the 
orientation of the particle. Thus in the quantum formalism the wave function of an elementary 
particle is a squared-integrable function cP(t,r,u,a) of these kinematical variables. For point par- 
ticles, the kinematical space is just the four-dimensional space-time, so that wave functions are 
only functions of time and position, but spinning particles will have to depend on some additional 
variables like velocity and orientation giving rise to these additional variables to the spin structure. 

IV. NONRELATIVISTIC SPINNING PARTICLES 

Let 5 be the Galilei group. Let us first consider Galilei particles with (anti)orbital spin. This 
corresponds to systems for which X = $‘/SO(3) and thus the kinematical variables are time, posi- 
tion, and velocity. A particular classical example is given by the Lagrangian 

L=;(;)‘-~(;)‘, 

with u=dr/dt. The particle trajectory is 
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r(t)=A+Br+C cos ot+D sin wt=q(t)+k(t), 

where A, B, C, and D are constants. The center of mass q(t) =A +Bt has a straight motion while 
the relative position vector k(t) =C cos or-t-D sin or experiences an elliptic motion of angular 
frequency w around its center of mass, the spin being the consequence of this internal motion. 

The wave functions are functions on X and thus functions of the variables (t,r,u). On this 
kinematical space the gauge function is7 

where v and LY are group parameters, m  defines the mass of the system and thus the ten self-adjoint 
generators of the projective unitary representation of the Galilei group f% are given by 

H=ifL &, P=; v, K=f tV+t VU-mr, J=h r)(V+h 
i i uxV,=L+S, 

V, being the gradient operator with respect to the u variables. 
One Casimir operator of this realization is the internal energy H-P2/2m. We see that the spin 

operator only differentiates with respect to the velocity variables, and consequently commutes 
with H and P, so that we can find simultaneously the eigenstates of the three commuting operators 
H-P212m, S2 and S, . Because the spin operators only affect the wave function in its dependence 
on the u variables we can choose functions with the variables separated in the form 
@(t,r,U)=Zi $i(t,r)xi(U) SO that 

and thus the space-time dependent wave function is uncoupled with the spin part and satisfies 
S&r&linger’s equation. Due to the S2 structure in terms of the u variables, which is that of an 
orbital angular momentum, the spin part of the wave function is of the form 

with f(u) being an arbitrary function of the modulus of u and Yys( 6, r$) the spherical harmonics 
on the direction of u. 

Classical spinning particles with spin of orbital nature do not lead to half integer spin values. 
Another examples of spinning particles are those which have orientation and thus angular 

velocity. For instance, if X= BRZ, Rz being the subgroup of pure Galilei transformations, then the 
kinematical space is spanned by the variables (t,r,cu). This corresponds, for instance, to the La- 
grangian system 

The particle travels at constant velocity while it rotates with constant angular velocity o. The 
spin is just S=Zo, and the center of charge and center of mass represent the same point. 

To describe orientation we can think on the three orthogonal unit vectors e, , i = 1,2;3 linked 
to the body, similarly as in a rigid rotator. If initially they are taken parallel to the spatial Cartesian 
axis, then their nine components considered by columns define an orthogonal rotation matrix 
Rij(~) that describes the triad evolution with the initial condition Rij(r=O) = ~ij. This matrix is 
usually parameterized in terms of Euler’s angles. In this work we shall use two alternative param- 
eterizations: One in terms of a three-vector p=tan(d2)a, with a being a unit vector along the 
rotation axis and (Y the rotated angle, and the normal or canonical representation in terms of 
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another three-vector ay=aa. Rotations around the coordinate axis are treated in these parameter- 
izations in a more symmetrical way. For the normal parameterization and in the laboratory frame 
the body axis has Cartesian components given by 

(ei)j=Rji(a)= Sji COS a+UjUi( 1 -COS a)- Eji&ak Sin (Y, (14) 

and in the p parameterization by 

(ei)j=Rji(P)‘& ((1-p2)Sji+2pjpi-2~jik~k), 

and where the Cartesian components of the rotation axis unit vector a are 

a,=sin 0 cos 4, a2=sin Bsin 4, a3=cos 8, 

where 8 is the polar angle and 4 the usual azimuthal angle. 
On the corresponding Hilbert space, the Galilei generators are given by 

H=ih -$ P=f v, IG; tV-mr, 

(15) 

J=f rxV+i [V,+~XV,+~(~.V,)]=L+S, (17) 

with V, being the gradient operator with respect to the p variables and in the p parameterization 
of the rotation group. 

Here again the spin operator commutes with H and P and the wave function can be separated, 
Q(t,r,p)=Xi qi(t,r)Xi(P), leading to the equations 

(H-P2/2m)+i(t,r)=E$i(t,r), 

(18) 

(19) 

Bopp and Haag3 succeeded in finding s = l/2 solutions for the system of equations (18) and 
(19). They are called Wigner’s functions.12 Solutions of Eq. (18) for arbitrary spin s are but a 
linear combination of the matrix elements of a (2s + 1) X (2s + 1) irreducible matrix representa- 
tion of the rotation group as derived from the Peter-Weyl theorem on finite representations of 
compact groups.‘3*‘4 We shall deal with the s = l/2 functions in the next section where explicit 
expressions will be given. 

V. RELATIVISTIC PARTICLES 

We can similarly quantize classical relativistic particles. We shall pay attention however to the 
kinematical space of particles traveling at the speed of light. 

In Ref. 2, when dealing with Poincare particles, we found a nine-dimensional homogeneous 
space of the Poincare group, spanned by the ten variables (t,r,u,a) similarly as in the Galilei case, 
but now with u restricted to u = c. For this system since u-6=0, they describe particles with a 
circular internal orbital motion at the constant speed c. 

The following Poincare invariant Lagrangian, built from that proposed in Ref. 2 
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FIG. 1. Motion of the center of change of the electron in the center of mass frame. 

L=i mc3 
0.ti 

(du/dt+uxo# 

is defined on this kinematical space where o is the angular velocity of the body conveniently 
expressed in terms of the orientation (Y and its time derivative, u=c is the center of charge 
velocity and du/dt =li/i, the charge acceleration. 

When solved in the center of mass frame, (see Fig. 1) the center of charge describes a circle 
of radius R,=Slmc at the constant speed c, being the spin 

S=uXU+Z=imc3 
duldt+uxw 

(du/dt+ux& ’ 

orthogonal to the charge trajectory plane and a constant of the motion in this frame. 
The angular velocity in this frame has two components: one, ws= mc2/S, in the opposite 

direction to the constant spin S and the other orthogonal to it, wI = 0~12, lying along the direction 
from the center of mass to the center of charge and which is half of the other component. This 
implies that the internal motion is periodic, of frequency 0,/47r, such that when the body comes 
back to its initial position, the center of charge has exactly had two turns around the center of 
mass. Thus, this internal electric current contributes with a two turn loop to the particle magnetic 
moment, supplying a naive interpretation of the g=2 gyromagnetic ratio. 

When quantized, the wave function of the system is a function V!(t,r,u,a) of these kinematical 
variables. For the Poincare group all exponents and thus all gauge functions on homogeneous 
spaces are equivalent to zero, and the Lagrangians for free particles can thus be taken strictly 
invariant. Projective representations reduce to true representations so that the ten generators on the 
Hilbert space are given by 

H=ih &, P=f v, 
hra fi 

K=~;;+~ctv-fuxS, J=qrxV+S, 

where the spin is the differential operator 

s=; uxv.+; (V,+pxV,+p(p.V,))=S,+s, 
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and where the differential operators V, and V, are the corresponding gradient operators with 
respect to the u and p variables as in the Galilei case. 

To obtain the complete commuting set of observables we start with the Casimir invariant 
operator, or Klein-Gordon operator 

such that in the above representation only differentiates the wave function with respect to position 
r and time t. Since the spin only operates on the velocity and orientation variables, it commutes 
with the Klein-Gordon operator (20). Thus, we can find simultaneous eigenfunctions of Eq. (20), 
S2, and Ss . This allows us to try solutions in separate variables so that the wave function can be 
written as 

W l,r,u,p)= C cF/,(f7r)@ i(u,P)9 

where qi(t,r) are the space-time components and the @ ,(u,p) represent the internal spin structure. 
Consequently 

(H2-c2P2-m2c4)(Cli(t,r)=0, (21) 

i.e., space-time components satisfy the Klein-Gordon equation, while the internal structure part 
satisfies 

S2a+(u,p)=s(s+ I)hQqu,p), (22) 

(23) 

To find solutions of Eqs. (22) and (23) we see that the spin can be separated into two 
commuting angular momentum parts S=S, +S,: one, S, , that differentiates with respect to the u 
variables and related to the Zirrerbewegung and the other, S,, that only acts on the orientation 
variables and is thus related to the internal rotational motion. The total spin squared 

S2=S~+S;+2S,.SP (24) 

is expressed as the sum of three commuting terms and its eigenvectors are obtained as the simul- 
taneous eigenvectors of the three commuting operators on the right hand side of Eq. (24). Thus, 
each @ ,(u,p) can again be separated as 

Functions V,(U) are spherical harmonics defined on the orientation of the velocity vector u 
because the S, operator has the structure of an orbital angular momentum in terms of the u 
variables, and thus its eigenvalues are integer numbers. 

For spin-l/2 particles, if we first take for simplicity the eigenfunctions V,(p) of S; with 
eigenvalue l/2, and then since the total spin has to be l/2, the orbital S, part can only contribute 
with spherical harmonics of value I, = 0 and I, = 1. 

Finally if the ~i(U,p) functions have to be eigenfunctions of the operator S,.S, this leads 
through a straightforward calculation to where only the I, = 0 case contributes and it turns out that 
the <pi functions are independent of the velocity variables. 
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Then spin-l/2 functions @ i’2(p) are linear combinations of the four Wigner’s functions’2’15 so 
that the Hilbert space that describes the internal structure of this particle is isomorphic to the 
four-dimensional Hilbert space C?. 

Several parameterizations have been used for these functions. In the work of Bopp and Haag3 
and in Dahl’s contribution,6 they are expressed in terms of Euler’s angles. Bacry and Kihlberg’ use 
another parameterization. In what follows we shall use both the normal or canonical parameter- 
ization of the rotation group (~=aa and the p=tan(42)a parameterization. 

In terms of the parameterization p, the spin operators are given by 

s=; (V,+pxV,+p(pyJ) (25) 

as in Eq. (17) and in the normal parameterization CY by 

s,=; 2sinBcosd$+ 
I ( 

cos e cos (p 

i 

a . 
tan( (u/2) 

-sin C$ 2 

i 
sin q5 a - 

sin e tan( 42) 
+ cos e cos 4 

sin e i I zp 

h 
S2=z 2sinBsin+A+ 

I ( 

cos e sin C$ 

1 

a 
tan( (u/2) 

fcos 4 z 

+ 
i 

cos 4 cos e sin 4 a 
sin e tan( a/2)- sin e i I sip 

s3=k 2 cos e A- 
i 

sin e d d 
da tan(Lu/2) de ‘3 i * 

These operators satisfy the commutation relations 

[Si 7 Sj]=ifi.EijkSk * 

If we define the spin projections on the body axis ei , Zi=ei.S then they satisfy’5 

(26) 

[Zi, Zj]=-ihEijkZk* (27) 

[Zi, Sj]=O (2% 

so that the Zi spin operators satisfy the so-called “anomalous” commutation relations (27) while 
they commute with the spin components Si . They are explicitly given by 

z=; (V,-pxV,+p(p.V,)) 
in the p parameterization and in terms of canonical variables by 

h 
Z,=z 2 sin e cos C$ da 

i 
d+ 

( 

cos e cos 4 
tan( a/2) 

+sin C$ i 
1 

- 
i 

sin C#J cos e cos 4 a 
sin e tan( a/2)- sin e 1 I zj’ 
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ii 
Z2=57 2sinBsin+G+ 

i ( 

cos e sin 4 

i 

a 
tan( a/2) -cos 4 gj 

( 

cos q5 cos e sin CJ!J a 
+ sin e tan(cu/2) + sin e i I Fiji’ 

z3=.!& 2 cos e d- ‘ln ’ 
i 

2-d 
aa tan(a/2) de i a4 * 

If we have two arbitrary directions in space characterized by the unit vectors u and v, respec- 
tively, and S, and S, are the corresponding spin projections S,=UQ!~ and S,=v3, then S-, 
= -S,, and [S,, S,]=ihS,,, . In the case of the anomalous commutation relations, we have, for 
instance, [Zt , Z,] = - itiZs , suggesting that it X6,= -6s and thus Ei vectors behave in the quan- 
tum case as a left handed system. In this case ei vectors are not arbitrary vectors in space, but 
rather vectors linked to the rotating body and thus they are not compatible observables in the sense 
that any measurement to determine, say, the components of ei , will produce a body motion that 
will shadow the measurement of the others. We shall use this interpretation of a left handed system 
later. 

The operator S2=Z2 has the differential representation 

1 
A+ 

tan( (r/2) aa 
a2 cos e a 1 a2 -- 

d82 + sin e de +sin2e if@  II ’ 
(29) 

Wigner’s functions, because Eqs. (28) and (29) can be taken as simultaneous eigenfunctions of 
the three commuting S2, S3, and Z, operators15 

z,Dg,i( LY, e,+) = nhDz,i( a, e, 4) 

are explicitly given by the following functions: 

<PI(a,e,~)=D~:~.,,2(LY,e,~)=JZ(~~~(~/2)+i cos e sin(cr/2)), 

~33(“,e,~)=D~:22,-1,2(a,e,~)=iJZ sin(cu/%)sin Be’+, 

~4(~,e,~)=D1/:,2,-,,2t~,e,~)=JZ(~~~(a/2)-i cos e sin(42)). 

They form an orthonormal set with respect to the normalized invariant measure 

dp(a,e,4)=& sin 0 sin2(a/2)da d8 d+ 

(30) 

such that the scalar product is defined as 
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(cD~O)=/;~ dq5/ov dOj-02v da Q*(a,e,+)Y(a,e,4) & sin e sin2(a/2). 

The matrix representation of any internal observable A is obtained as A, = (ai1 A ~j), i,j 
= 1,2,3,4. Once these four basis vectors are fixed, when acting on the subspace they span, the 
differential operators Si and Zi have the matrix representation 

fL u 0 g=- 
( i 2 0 uv 

a=;(; ;), i2=;(Ti1 b’), i3=;(i “J, 

(31) 

(32) 

where u are the three Pauli matrices and 1 represents the 2X2 unit matrix. 
If we similarly compute the matrix elements of the nine components of the unit vectors (ei)j , 

i,j = 1,2,3 given by Eq. (14) we obtain the nine traceless Hermitian matrices 

+;( L ;), i,=;( -;, a”), 03=;(; :J (33) 

that together with the above six spin componer$s, form anset of 15 traceless linearly independent 
Hermitian matrices. It is easily checked that ii.S=S.&=Zi, and in the quantum case, observables 
pi are not commuting unit vector operators (see Appendix). Even more, their eigenvalues are + l/3. 

We finally write the wave function for spin-l/2 particles in the following form: 

W r,r,u,a)=C M t,rP itce,4>. 

Then, once the Qi functions that describe the internal structure are identified with the four or- 
thogonal unit vectors of the internal Hilbert space C?, the wave function becomes a four- 
component space-time wave function, and the six spin components Si and Zj and the nine vector 
components (&)j, together the 4X4 unit matrix, completely exhaust the 16 linearly independent 
4X4 Hermitian matrices. They form a basis of Dirac’s algebra, such that any other internal 
observable that describes the internal structure, for instance, internal velocity and acceleration, 
must necessarily be expressed as a real linear combination of the mentioned 16 Hermitian matri- 
ces. This is perhaps one of the reasons why in this spin-l/2 system the wave function does not 
show dependence on the velocity u and this variable becomes a function of the orientation. In fact 
the internal electron orientation completely characterizes its internal structure (see Appendix). 

One of the constants of the motion, obtained from invariance of the Lagrangian under pure 
Lorentz transformations,2 is the Poincare momentum (6), such that its time derivative and the 
scalar product with u leads to the Poincare invariant operator (Dirac’s operator) 

(34) 

When Dirac’s operator D acts on a general wave function, we know that H and P have the 
differential representation given by Eq. (16) and the spin the differential representation (25), or the 
equivalent matrix representation (31), but we do not know how to represent the action of the 
velocity u and the (duldr) Xu observable. However, we know that for this particle u and du/dr are 
orthogonal vectors and together with vector uxduldr they form an orthogonal right handed 
system, and in the center of mass frame the particle describes a circle of radius R,= h/2mc for 
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el 

es 

ei e2 du/dt 

FIG. 2. Identification of observables leading to the Pauli-Dirac representation. 

spin-l/2 particles in the plane spanned by u and duldr (see Fig. 1). Since they are translationally 
invariant observables they will be elements of Dirac’s algebra, and it turns out that if we relate 
these three vectors with the orthogonal left handed system formed by vectors Gt, i2, and 6s 
as shown in part (a) of Fig. 2 we have u=a& and du/drXu=bi,, where a and b are positive real A 
numbers. Then the third term in the D operator is - (b/c2)i$,.S= -(blc2)Z3 and the D operator 
becomes 

(35) 

while if we identify with the orthonormal system of part (b) of Fig. 2, we get 

D=H+aP.c + 1 $i,=o. 

Multiplying Eq. (36) by Eq. (35) we obtain 

a2 b2h2 
H2-9 P21-= l=O 

and identification of this expression with the Klein-Gordon operator (20), leads to a= 3c and 
b=2mc41fi =c3/Ro and we obtain Dirac’s operator 

H-cP.cu-pmc2=0, 

where Dirac’s matrices (Y and p are represented by 

a=(: ;), P=(; “J 
i.e., the Pauli-Dirac representation. 

This representation is compatible with the vector duldr lying along the third vector s2. In fact, 
in the center of mass frame, Dirac’s Hamiltonian is H=Pmc2, and the time derivative of any 
observable A is obtained as 

dA 
-4 [H, A] dt -n 
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eT1 fL& 
e2 

du/dt 

FE. 3. Identification of observables leading to Weyl’s representation. 

such that for the velocity operator u= c (Y 

with c2/R,, being the constant modulus of the acceleration. 
The time derivative of this Cartesian system is 

G2]= -5 &, R. 

di$ i 
- =n [pmc2, C3]=0 
dt 

since e3 is orthogonal to the trajectory plane and does not change, and where clRo=ws is the 
angular velocity of the internal orbital motion. This time evolution of the observables ei is the 
correct one if it is assumed to be a rotating left handed system of vectors as shown in Fig. 2(a). 

Similarly 

dg i 
dt =n [pmc2, Q=O 

since the spin is constant for the center of mass observer. Only the Z, spin component on the body 
axis remains constant while the other two, Z, and Z2, change because of the rotation of the 
corresponding axis 

dS?3 i 
- =h [pmc2, i,]=O. dt 

When analyzed from the point of view of an arbitrary observer, the classical motion is a helix 
of elliptic cross section and the acceleration is not of constant modulus c2/Ro, and the spin, that 
remains orthogonal to both u and duldt, is no longer a constant of the motion, because it is the 
total angular momentum J=rxP+S that is conserved. 

Identification of the internal variables with different real linear combinations of the ii matrices 
lead to different equivalent representations of Dirac’s matrices, because Dirac’s operator D is 
rotationally invariant. 

For instance, if we make the identification suggested by Fig. 3, u= -ac3 and the observable 
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duldtXu=b& , we obtain by the same method 

P=(; (g, ff=( -(y i) 
and thus the gamma matrices 

0 1 
yO=P= 1 o 9 y= you= -u o , 

i i 

0 u 

( i 

i.e., Weyl’s representation. 
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APPENDIX: DIRAC’S ALGEBRA 

The three spatial spin components Si, the three body spin projections Zj, and the nine 
components of the body frame unit vectors (ei)j , i,j = 1,2,3, whose matrix representations are 
given in Eqs. (31)-(33), together with the 4X4 unit matrix 1, form a set of 16 linearly independent 
Hermitian matrices. They are a linear basis of Dirac’s algebra, and satisfy the following commu- 
tation relations: 

[ Si  9 Sj] = i.fi Eij/+Sk 7 rzi 9 Zj]’ -ifieijkZ, 9 [Si 7 Zj]=O* 

Csi 7 (ej)kl=ihEik,(ej), , [Zi, (ej)J’ -ihEijSe,)k, 

(Al) 

642) 

643) 

showing that the ei operators transform like vectors under rotations but they are not commuting 
observables. 

If we fix the couple of indices i, andj, then the set of four operators S2, Si , Zj , and (ej)i form 
a complete commuting set since the algebra of 4X4 matrices admits four diagonal and linearly 
independent matrices. In fact, the wave functions given in Eq. (30) are simultaneous eigenfunc- 
tions of S2, S3 , Z3 , and (e3)3 with eigenvalues s = l/2 and for s3, z3, and e33 the following ones: 

@1=11/2,1/2,1/3), @2=1-l/2,1/2,-1/3), 

Q3=11/2,-l/2,-1/3), @ ,=1-l/2,-1/2,1/3). 

The basic observables satisfy the following anticommutation relations: 

(Si ,Sj)=(Zi ,Zj~=~ ~~jijp, 

(Si ,Zj)=F (ej)i, 

{Si ,(ej)k>’ gSikZj 9 {zi ,(ej>k}' +sijS, 3 

644) 

645) 

646) 
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(A7) 

If we define the dimensionless normalized matrices 

Uij=3(ei)j, Sj=i Sj, 
2 

Zj=h Zi 

together with the 4X4 unit matrix I, they form a set of 16 matrices rX, X=1,...,16, that are 
Hermitian, unitary, linearly independent, and of unit determinant. 

The set of 64 unitary matrices of determinant + 1, +r,, +ir, , X=1,...,16 form a finite 
subgroup of SU(4). Its composition law can be obtained from 

aijak[= sikajll+ iSikEjlrSr- i8j&krzrf Eik$jlsars f (A% 

(4412) 

(A13) 

(A14) 

(A15) 

zizj=-iEijkZk+ sijl (‘416) 

and similarly we can use these expressions to derive the commutation and anticommutation rela- 
tions (Al)-(A7). 

Dirac’s algebra is generated by the four Dirac’s gamma matrices f, /.,~=0,1,2,3 that satisfy the 
anticommutation relations 

{~~,y”}=277~Y (A17) 

with $‘” being Minkowski’s metric tensor. 
Similarly it can be generated by the following four observables, for instance, S, , S2, Z, , and 

Z,. In fact by Eqs. (A13) and (A16) we obtain S, and Z,, respectively, and by Eq. (A14) the 
remaining elements. 

Classically, the internal orientation of an electron is characterized by the knowledge of the 
components of the body frame (ei)j, ij= 1,2,3 that altogether constitute an orthogonal matrix. To 
completely characterize in a unique way this orthogonal matrix we need at least four of these 
components. In the quantum version, the knowledge of four (ei)j matrices and by making use of 
Eqs. (A9)-(A16) allows us to recover the remaining elements of the complete Dirac’s algebra. It 
is in this sense that internal orientation of the electron completely characterizes its internal struc- 
ture. 
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