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Abstract. This is the first of a series of papers concerning the group theoretical approach 
to the classical particle systems, related to a definite special relativity principle and which 
are explicitly expressed in a Lagrangian formalism. In the Galilei case, the free classical 
particle can be characterised by its mass, internal energy and spin, similarly in the quantal 
version. The spin appears as a derived observable related to the orientation and to the 
internal motion of the system and has in general three parts: one of intrinsic nature, one, 
like a spherically symmetric body, related to the angular velocity and a third which is the 
(anti)orbital part of the relative motion of the system around its centre of mass. Galilei 
photons are massless particles, with spin and linear momentum lying along the direction 
of motion, travelling at infinite speed and carrying no energy. The Lagrangian of a free 
particle with intrinsic spin is no longer time-reversal invariant. 

1. Introduction 

Since Wigner’s work on the inhomogeneous Lorentz group (Wigner 1939) an elementary 
particle is defined as that quantum system whose Hilbert space of states carries a 
unitary irreducible representation of the PoincarC group. 

After Bargmann’s definition of projective unitary representations of a group, i.e. 
unitary up to a phase (Bargmann 1954), the concept of elementarity has to be redefined 
if various possible relativity principles are going to be considered. 

By a principle of special relativity we shall understand the existence of a 
class of equivalent observers, called inertial observers, for which the laws of physics 
have the same form, and such that for any two of them, their relative spacetime 
coordinate measurements y’” and y” of the same spacetime event, are related by an 
element g of a group G, y’” =fp(g;y”), called a kinematical group (Bacry and 
Levy-Leblond 1968), which acts transitively on the spacetime universe Y, as a transfor- 
mation group. 

Then given the group G, a quantum elementary particle is that system whose Hilbert 
space of states is the representation space of a projective unitary irreducible representa- 
tion of G. 

Projective unitary representations are equivalent to true unitary representations if 
the group G has no non-trivial central extensions (Bargmann 1954). This is so for the 
PoincarC group, but not for the Galilei group for which its projective unitary representa- 
tions are precisely interpreted as the ‘physical representations’ (Inonu and Wigner 
1952, Levy-Leblond 1963), while the unitary ones are, in some sense, related to massless 
systems. 
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In the present work we are concerned with Galilei systems, for which in the quantum 
version the projective unitary irreducible representations are characterised by the three 
observables m, U and s. These observables are interpreted as the mass, internal energy 
and absolute value of the spin respectively and correspond to three independent 
invariant operators of the extended Galilei Lie algebra (Inonu and Wigner 1952, 
Levy-Leblond 1963, 1971). 

However, this method of characterising the system by the three invariants (m, U, s)  
is not inherent in its quantum nature, but is also characteristic of other Galilei group 
realisations, such as the irreducible canonical realisations (Pauri and Prosperi 1968, 
Levy-Leblond 1971) which are interpreted as representing elementary particles when 
the canonical coordinates are considered as centre-of-mass position coordinates. What 
is actually of quantum nature is that observables such as spin or energy have a discrete 
spectrum. 

In order to characterise the particle systems by means of a Lagrangian which 
depends on the group invariants of the system, we shall follow the Lagrangian formalism 
developed by Levy-Leblond (Levy-Leblond 1969) which is outlined in § 2. A concept 
of a classical particle is defined, based upon the condition that the corresponding 
Lagrangian is necessarily free. If a classical system is characterised by its Lagrangian, 
quantisation can be obtained, without passing to the canonical formalism, by means 
of the path integral approach (Feynman and Hibbs 1965). This will be treated in a 
subsequent paper. 

In 0 3 different kinds of Galilei particles are considered, according to their possible 
degrees of freedom and to the nature of their basic kinematical observables, which 
are defined by their transformation properties under the Galilei group. 

We shall see that the appearance of the observable spin is associated with increasing 
number of degrees of freedom, from three for the point particle to nine in the case of 
the more general Galilei particle, and is directly related to the orientation of the system 
and to the non-coincidence of the position of the system with its centre of mass. 

Invariance properties of the different Lagrangians are analysed in § 4 under the 
discrete transformations of space and time reversal, remarking that time-reversal 
invariance is violated if the system has a spin of a non-rotating nature. 

2. Lagrangian formalism 

We briefly outline and extend the main features, some of them without proofs, of the 
ideas developed by Levy-Leblond in his work (Levy-Leblond 1969). 

Let X be a n-dimensional differentiable manifold such that the action of the 
mechanical system is a real valued continuous and differentiable function A ( x , ,  x , )  
defined on X xX. This can be expressed in terms of a Lagrangian function as 

A ( x l ,  x , )  = 1; L ( x ( T ) ,  x(7), . . . ; T )  d7 

where L depends on the derivatives up to a finite order, such that the real trajectory 
followed by the system X ( T )  in X is obtained by the corresponding variational principle 
which makes extrema1 the action functional between the end points x1  = x ( T ~ )  and 
x , = x ( T , ) .  For A ( x l , x 2 )  we understand the value of the integral (1) when the real 
trajectory X ( T )  is considered, and is only a function of the 2 n  independent variables 
( x , ,  x2 ) .  The evolution is expressed in terms of a parameter 7, and i(~) = dx(T)/dT. 
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If the function A is known, the Lagrangian L can be obtained by the limiting process: 

Also from (1) by assuming a variable end point x(  T ~ )  and taking the derivative of both 
sides with respect to 72, 

We find from this, by taking the corresponding partial derivatives, that L is not an 
explicit function of T, it does not depend on the derivatives of order higher than one 
and is a first degree homogeneous function of the derivatives. Hence, it can be written 
as 

L =  (aL/ax') - 1' = F,(x(T), x(7)) . x ' (7)  (4) 

where the summation convention on index i is assumed. The observables F, are 
zeroth-degree homogeneous functions of the derivatives. Thus, the F, are functions 
of the n variables ~ ' ( 7 )  and of the n - 1 quotients X k ( r ) / X " ( 7 )  obtained by dividing 
the x k ( r )  by any one x"(7). 

We shall call the x ' (7)  the kinematical variables of the system and the manifold 
they span X ,  the kinematical space. The x k / x "  = dxk/dx" are called the velocities of 
the system, giving to the F, the generic name of momenta. The functions XI(.) have 
no specific name since we do not know at first the physical nature of the evolution 
parameter 7, so they are simply called the derivatives. 

We shall assume the existence of a relativity principle characterised by a group G, 
which has a realisation on X given by x' = gx, or in local coordinates 

X'I =f'(g"; x') ( 5 )  

x' and g" being the corresponding coordinates of x and g. 

transformation g, implies that the action must transform as follows 
The invariance of the dynamical equations for two inertial observers related by a 

A(gx1, gx*)=A(x1 ,xJ+a (g ;  x J - a ( g ; x , ) .  ( 6 )  

a (g ; x)  is a real-valued continuous and differentiable function defined on G x X ,  called 
a gauge function for the group G and the kinematical space X .  It is not uniquely 
defined but rather it obeys the identity, for all g', g E G, 

. ( g ' ; g x ) + a ( g ; x ) - a ( g ' g ; x ) = 5 ( g ' , g )  (7) 
where &(g', g )  is an exponent of G. 

can be written 
If we assume that the evolution parameter 7 is a group invariant parameter, ( 5 )  

X"(T)=fl(g;  X ( T ) )  (8) 

X " ( T )  = (d/dT)f'(g; x ( r ) )  ( 9 )  

%X(.r), (d/dT)gx(r)) = L(x(T), x(7)) + (d/dT)a(g;  ~ ( 7 ) ) .  (10) 

which leads for the derivatives x( T) to the transformation under the group 

and the Lagrangian, taking into account ( 2 ) ,  transforms as follows 
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Two gauge functions a ,  and a2 are said to be equivalent if their difference can be 
expressed as 

a , ( g ;  x )  - a , k ;  x )  = + ( X I  - 4 k X )  + X k )  (11) 

where + and x are some functions on X and G respectively. 
If the Lagrangian L satisfies (IO) for the gauge a, then the equivalent Lagrangian 

L+d+(x)/dT, satisfies (10) with the equivalent gauge a ( g ;  x )  - + ( x )  + + ( g x ) .  Then 
instead of considering all possible gauge function solutions of (7),  we shall consider 
from now on the set of equivalence classes of gauge functions. 

With G and X fixed, to every a ( g ;  x ) ,  up to an equivalence, there corresponds 
through (10) a family of Lagrangians. These are in general non-equivalent, representing 
consequently a family of different mechanical systems with the same kinematical space 
X ,  for which the dynamical equations satisfy the relativity principle. 

If L ,  and L2 are two Lagrangians which satisfy (10) for the same gauge a ( g ;  x )  
then Lo = L,  - L2 is an invariant Lagrangian. Thus the general solution of (10) is 
constructed by adding to a particular solution of (10) the general solution of 

Lo(gx, (d/dT)gx) = a ) .  (12) 

Then every a ( g  ; x )  characterises a particular mechanical system which properties 
are, in some sense, determined by the gauge function. It is in fact the gauge variance 
of the Lagrangians, and not its invariance, which will give information about the 
possible different relativistic mechanical systems. 

If we consider G as a group of active transformations on the spacetime Y, it contains 
what are called the inertial or free motions on Y. Y is a homogeneous space of G 
since G acts transitively on it. A point particle system is that system for which the 
kinematical space is X = Y. It has no internal structure and the only kinematical 
observables are position and time. Levy-Leblond checks (1969) that the relativity 
principle in its form (10) leads for that system, in the Galilei and Poincari case, to a 
free Lagrangian. There seems to exist an intimate connection between systems for 
which X is a homogeneous space of G and the fact of these systems being free. If X 
is a homogeneous space of G, then given two points x 1  and x2 of X ,  there always exists 
a g E G such that x2 = gx, .  This g, considered as an active transformation, is in fact 
the inertial motion which brings the system from x ,  to x2 .  Otherwise if X is not an 
homogeneous space of G, the equation x2 = gx ,  with x ,  and x2 fixed has not in general 
a solution, so that the motion from x, to x2 in X space will not be in general a free motion. 

If we go to a system for which its kinematical space X ,  still being a homogeneous 
space of G, is larger than the spacetime Y, then we increase their degrees of freedom 
by adding to it some other kinematical observables, which we interpret as internal 
degrees of freedom. Their physical interpretation will be guided by their transformation 
properties under the group G.  However this process of increasing X ends when we 
arrive at X = G .  

If X is a homogeneous space of G, then the possible gauge functions are 

a ( g ;  x )  = 5 ( g ,  h x )  (13) 
where hx E G is any element of the equivalence class x E X .  

We shall verify in what follows, for the Galilei group, that even in the case X = G, 
the relativity principle (10) implies that the system is free, with some internal structure 
that will be classically interpreted. Further, if we consider a system for which X is 
no longer a homogeneous space of G, for instance a two-point particle system, (10) 
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leads to a Lagrangian for which some interaction, depending on the relative distance, 
is present. 

All the above comments allow us to define a classical particle system as that 
mechanical system for which its kinematical space is a homogeneous space of the 
group G. 

3. Galilei particles 

3.1. The Galilei group 

Let G be the Galilei group 3 with elements g = (b ,  a, U, R )  where we follow Levy- 
Leblond's notation (1971). Rotations are parametrised in terms of a 3-vector p = 
tan(a/2)e, e being a unit vector along the rotation axis, and (Y E [0, 771 the clockwise 
rotated angle when looking along the direction given by e. The orthogonal rotation 
matrix R(p) is given by 

where p z  = pi, 8; is the Kroenecker delta and &:k is the completely antisymmetric 
symbol. 

Then an element g is parametrised by (b ,  a, U, p )  and its action on the spacetime 
Y is 

t ' = t + b  (15) 

r' = R ( p ) r  + ut + a. (16) 

The group law 

(b ' ,  a' ,  U', p"b, a, 0, P )  

= ( b ' i  b, a'+ u'b+ R ( p r ) a ,  o r +  R ( p ' ) u ,  

Some remarkable subgroups are 

Y =  { (b ,  0, O,O)/ b E W} 
Y = ((0, a, 0 , 0 ) / a  E [w3} 

V =  ((0, 0, U, o)/ U E [w3} 

9 = {(o,o, 0, p ) / p  E w:} 

time-translation group 

space-translation group 

pure Galilei transformation group 

rotation group. 

By W: we mead the compact W3 where compactification has been obtained by adding 
to W3 the end points, considered to be the same point, of every straight line passing 
through the origin. 

The homogeneous Galilei group is the semidirect product '?Cis. The Newtonian 
spacetime Y is just Y = %/('VU9). This homogeneous space corresponds to the 
kinematical space of a point particle of mass m (Levy-Leblond 1969). 

We shall consider next the following two examples: the case X = %/ V and the 
most general ease X = 3. 



1976 M Rivas 

3.2. Spinning particle 

Instead of considering first the general case, let us consider that mechanical system 
for which the kinematical space X = %/ 7'. An element of X is given by the seven real 
numbers x = ( t ,  r, p )  which under 3 transform as follows 

p ' =  P + P + l r  XP 
t ' =  t +  b, r '=  R ( p ) r + o t + a  

1 - P ' P  

The way these variables transform allows us to say that t ( T )  is the rime, r ( ~ )  the 
position and p ( ~ )  the orientation of the system. If T is assumed to be invariant under 
9, the derivatives transform: 

if( T )  = i (  T ) ,  i'( 7 )  = R ( p ) i (  T )  + Ui( T )  (19a, b )  

(19c) 
( P + P  x P ) ( 1  - - P *  P ) + t P + P + P  XP)P  . P  

( 1  - P  * P)' 
P ' (  7) = 

and we shall replace P ( T )  by the linear function of it 

w ( 7 )  = 2(P+  P x P ) / ( l  + p 2 )  (20) 

with inverse P = ;( w + w x p + p ( p  - w ) )  such that the Jacobian a(p, P ) / a ( p ,  w )  # 0. If 
T would be the time, p ( ~ )  would mean the total rotation undergone by the system 
since the instant T = 0, and U (  T )  would be the instantaneous angular velocity at time 
T. Instead of (19c) we have for ~ ( 7 ) :  

w ( T ) ' =  R ( ~ ) w ( T ) .  (19d)  

According to (4) the momenta will be functions of the seven variables t, r, p and 
of six possible quotients among the seven i, i, w.  

It is not possible to divide by the ti and the wj since by a pure Galilei transformation 
and a rotation respectively we can make them vanish, leaving the quotient undefined. 
So we are just left with i whenever possible, i.e. when i # O .  Let us consider this 
situation. 

If I is different from zero this will allow us to invert the function t ( T )  and obtain 
T ( t )  and the system evolution will be given in terms of r ( t )  and p ( t ) ,  establishing the 
dynamics constraint between the kinematical variables. If i ( T )  > 0 we say that the 
system goes forward in time, and backward in time when i( T )  < 0.  

We call the velocity to U = i /  i = dr /d t  and the angular velocity to fi = U /  i and 
they transform under 3 as 

We write for the momenta H = -aL/di, pi  = dL/ai.' and Si = a L / d w i  and they are 
functions of ( t ,  r, p, U, a), so that the most general form for the Lagrangian will be: 

L = p .  i + S *  w - Hi. (22)  

The Galilei group has only one family of equivalence classes of exponents tm (g ' ,  g) 
characterised by a real parameter m such that one of them is 

( , ( g ' ,  g ) =  m ( u t 2 b / 2 + o ' .  R ( p ' ) a )  (23)  
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so that the equivalence classes of gauge functions are 

am(g;  x )= tm(g ,  hx )=m(u2 t /2+u .  R ( p ) r )  

and 

(d/dT)a,(g; ~ ( 7 ) )  = m(u2i /2+ U *  R ( p ) i ) .  

Choosing a particular a,(g; x ) ,  the real parameter m that characterises it, is called 

The relativity principle in the form (10) with a ( g ;  x )  given in (24) ,  leads for the 
the mass of the system. 

momenta to the transformation properties under %: 

Under a general infinitesimal Galilei transformation with parameters Sg" we obtain: 

SA= F,Sg" (29) 

SX' = SxbGg" (30) 

and Noether's theorem defines the constants of the motion: 

C, = F, - (aL/ai ' )Sx:  (31) 
which are named as follows. 

Under time translation we get the energy 

H = -aL/ai 

under space translation the linear momentum 

p ,  = aL/ai' 

under a pure Galilei transformation the Galilei momentum 

gi = mr, - t aL/ai' 

or 

(33) 

g=mr-p t  (34) 

J, = (aL/Jik)Sr:+ (aL/apk)spF (35) 

and finally under a rotation around axis i, Sp, =$Sa, the angular momentum 

where 

Sr:= q J k r J ,  ~ p : = t ( ~ : + ~ ~ , p ~ + p ~ p , )  

and 

and thus 

J = r x p + S. 
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Since g = 0 = m i  - p i  this implies that p = mu and being p = 0, the system moves 
with constant velocity U. 

Because of (26) and (27) H -p2/2m = U is a group invariant and we call it the 
internal energy, which due  to (32) and (33 )  is also a constant of the motion, so that it 
does not depend on the variables t ,  r and U. When p = O ,  J = S  so we call S the 
spin which is also a constant of the motion and  from (28) we see that S2 is a group 
invariant and  S depends only on the variables p and a. 

The most general Lagrangian for the gauge function a,(g; x)  is of the form 

L = t m i 2 / i  - U(p ,  a ) i + S ( p ,  a)  o (38) 

and S and U verify the system of differential equations: 

2EZ[kak a u f d a ' + ( 8 , , + p J p l +  E l l k P k ) a u / a p J = o  (39) 

2EJlkakas,/dnJ +(6J[+pJp ,  -k EJrkPk)dS,/dpJ =2E,lkSk 

a U/dR, = RJ as,/aa' (41) 

(40) 

where (39) comes from the U group invariance, (40) is (28) in differential form and  
(41) is obtained from the spin definition. 

We see that the Lagrangian (38), similarly as in the quantum situation, depends 
on the three invariants m, U, S and U being a constant of the motion, the term 
U i = d ( U t ) / d r  is a total derivative and can be neglected to obtain the dynamical 
equations, which is equivalent to considering the particular case U = 0. This is to be 
compared with the irreducible unitary projective representations of '3 (Inonu and 
Wigner 1952, Levy-Leblond 1963) that are characterised by the invariants ( m ,  U, S) 
such that the representations with fixed m and S are all equivalent to the ( m ,  0, S) 
representation. The internal energy for a free particle has no dynamical influence. 

The difference between two Lagrangians (38) with the same gauge function Ly,(g; x)  
is the invariant Lagrangian: 

L , = S - w -  ui (42) 

where S and U are functions of p and fi and satisfy the system of differential equations 
(39)-(41). The gauge function characterises the mass of the particle but not its internal 
structure which is associated with the invariance of the Lagrangian. Two free particles 
with the same mass can differ by their spin and internal energy. 

The general solution of (39) is an  arbitrary function of R2 and P where 

P = R , R ( p ) i C k  (43 

and Ck,  k = 1 , 2 , 3  are three arbitrary real numbers. 

Dk(R2 ,  yk), Nk(a2, &), k = 1,2 ,3  in the form: 
The solution of (40) depends on the seven arbitrary invariant functions {(a2, A ) ,  

S' = I(R2, A)R'+ R(p)ZDk(R2 ,  Yk)+ E>rS1-"(p):Nk(a2, ( k )  (44) 

where the variables A ,  Yk, ( k ,  k = 1,2,3 are of the form (43) with, in general, different 
Ck's and such that the invariant observable S 2  must be just a function of Cl2 and 7, 
where this 

7 = a l R ( p ) ; G k  (45) 

depends only on the three arbitrary real numbers Gk.  
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Finally, equations (41) establish another relationship among the invariant functions 

Roughly speaking, the spin is of the form 
U, I,  D k  and Nk. 

S=In+Z+NnxZ (46) 

which enables us to define I as the moment of inertia and Z as the intrinsic spin, to 
distinguish it from the In term which reflects its spherically symmetric rotating nature. 
If I # 0 we can define a characteristic size of the system, the gyration radius ro by 

m r i =  I (47) 

which is not in general a constant of the motion. If ro( 7) is indeed a constant we shall 
say that the system is a rigid particle. 

A particular model of a Galilei particle consists of fixing the arbitrary functions 
U, I ,  D k  and N k  in a compatible way. For instance, if we take for I and Dk constant 
real numbers and N k  =0, we get from (39) and (41) 

U = ~ I R ~ + E  (48) 

where E is a real number that can be interpreted as the excitation energy, and the 
Lagrangian takes the form, in a time evolution description 

L = i m ( d r / d t ) 2 + i I R 2 + X  - n - E (49) 

X Z  and S being a constant 

(50) 

We see that the kinematical variable p (  t )  is just the actual orientation at time t ,  of 
the intrinsic spin Z ( t ) ,  if we have chosen as initial conditions p ( 0 )  = 0 and Z k ( 0 )  = Dkr 
and it rotates with angular velocity ll. The rotating term In precesses around S with 
angular velocity S /  I ,  such that the sum I + IR = S remains a constant vector. 

where 2' = R ( p )  Dk.  

of the motion 
In  this model d S / d r  = d I / d t +  I d l l l d t  and  d Z / d t  = 

d( I n ) / d t  = I- 'S X (  In). 

3.3. Photons 

Following with the same kinematical space X = Y/ V, and thus with the same class of 
gauge functions (24) let us consider the situation in which i = 0. Hence no velocities 
can be defined and the most general Lagrangian will be 

L = p *  + + S .  w (51 )  

where p and S are only functions of p ,  which transform under Y: 

p ' = R ( p ) p + m u  (52) 

S'= R ( p ) S .  (53) 

Since p ,  being only a function of p ,  must be invariant under a pure Galilei 
transformation this implies that m = 0. The particle is massless and the general solutions 
of ( 5 2 )  and (53) are: 

P ' b )  = R ( p ) L A k  (54) 
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S ' ( P )  = R ( P ) L C k  

where Ak, Ck, k = 1, 2 , 3  are arbitrary real numbers. 
Constants of the motion are 

Energy H = O  

Linear momentum P 

Galilei momentum g = P '  

( 5 5 )  

Angular momentum J = r x p  + S. 

Because fi = 0 = w x p ,  then w and p are parallel vectors and  similarly S = w x S, 
then S .  S = 0 = dS2/dT, the modulus of S is a constant of the motion. From J = 0 = 
i x p + S ,  by taking the dot product with S, we get S .  ( i x p ) = O ,  and S lies on the 
plane determined by i and p ,  with a constant projection on p since S rotates with o 
which is along p ;  then we can write S = a p + p i  with some constant a. Since S is only 
a function of p and not of i, then p = 0 and S and p lie along the same direction. 
Hence S is also another constant of the motion, and  then r x p  = 0 being consequently 
r and p parallel. 

We have no dynamical equation to determine r ( 7 )  but we know that i ( 7 )  has a 
constant direction and  evolves between the points r ( T 1 )  and r ( r 2 )  and thus a possible 
solution is: 

i.e. a straight line joining the end points at  constant time, and being f ( ~ )  unknown. 
Since the physical significance of 7 is unknown, we associate the motion of the 

particle with the direction of p .  If p is pointing from r ( T 1 )  to r ( ~ ~ )  we say that the 
particle travels from r ( T 1 )  to r ( ~ ~ )  at constant time, i.e. at infinite speed, carries no 
mass and energy, linear momentum p and spin S which has no transversal components 
to the direction of the motion, and  such that p and S are the same for every Galilei 
observer. We call such a particle a Galilei photon. 

We see that the kinematical space for the Galilei photon is the Euclidean group 
8 = YO%, which has no central extensions, and the gauge functions for it are zero, 
so that the most general Euclidean particle is this Galilei photon. 

3.4. General Galilei particle 

Let us consider that mechanical system for which X = 9. An element of X will be 
given by the ten real numbers ( t ,  r, U, p )  which under 9 transform as follows: 

t ' = t + b  ( 5 7 )  

r ' =  R ( p ) r + v t + a  ( 5 8 )  

U'= R ( p ) u + u  (59) 

and we interpret t ( r )  as the time, r ( 7 )  the posifion, u ( 7 )  the velocity and p ( 7 )  the 
orientation of the system. 
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Since we assume U to be definite, we interpret it as U = r/ i = dr/dt,  so we are faced 
in a i # 0 situation. 

The possible gauge functions are still the same as in (24) and we define the momenta 
H = -aL/ai, p i  = aL/aii,  mki = aL/ati‘, and Zi = aL/aw‘, where w is again given by 
(20). We also define the angular velocity a= w /  i, and the acceleration y = u /  i = du/d t  
which transform as 

.n(T)’= R ( p ) R ( . r )  (61) 

y ( 7 ) ’ =  R ( l l ) Y ( T )  (62) 

and the momenta are functions of the variables ( 2 ,  r, U,  p, y,  a) which under a general 
Galilei transformation transform as 

H ’ =  H + t m u 2 + u .  R ( p ) p  (63) 

p ’ =  R ( p ) p  + mu (64) 

k ’ =  R ( p ) k  (65) 

Z’= R ( p ) Z .  (66) 

The observable k has dimensions of a length but it does not transform like the 

The Lagrangian takes the form 
position of a point. It seems to be a relative position vector. 

L = - H i + p .  i + m k -  u + Z -  O. (67) 

By applying the generalised Noether’s theorem (3 1) we get the following constants 
of the motion: 

energy H (68) 

linear momentum P (69) 

Galilei momentum g = mr - pt - mk (70) 
angular momentum J = r x p + U x mk + Z. 

Since g = 0 we get that 

p =  m ( i - i ) / i  

and if we call q = r - k, it transforms as 

qi = R ( p ) q  + ut + a (73) 

so it is a position vector such that 

p = m q l i  = m dqld t  (74) 

and we say that q represents the centre-of-mass position, and being p a constant of 
the motion, d q l d t  is also a constant concluding that the centre of mass of the system 
moves with constant velocity. 

Because r = q + k, k is just the relative position of the system with respect to its 
centre of mass. 

In terms of q, the angular momentum takes the form: 

J =  q x p - k  x m  d k / d t + Z  (75) 
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and in the centre-of-mass frame, p = 0, J = S is the spin of the system 

S =  Z -  k x m d k l d t  (76) 

which is a constant of the motion and S a group invariant since S transforms as: 

S ' =  R ( p ) S .  (77)  

A non-vanishing spin is related to the existence of an  orientation p and to the fact 

We see from ( 6 3 )  and (64) that U = H -p2/2m is again a group invariant, and in 

L = i m  q 2 / i  - Ui + m(q.  k ) /  i +  mk.  [ U +  ( d k l d t )  x w ] + S *  w. (78) 

As U is a group invariant and S transforms as in ( 7 7 ) ,  they are only functions of 
( p ,  y, $2) and we find anew that L is a function of the three invariants (m, U, S ) .  

The term m(q .  k ) / i - -  Ui = (d /dT)(m(q/ i )  * k -  Ut) is a total derivative and can be 
eliminated from L in order to obtain the dynamical equations. If we withdraw the 
centre-of-mass motion, we get in a time evolution description, for the centre-of-mass 
observer 

(79)  

which is a Lagrangian of a system with six degrees of freedom p ( t )  and k( t ) ,  where 
S is a vector function of p ( t ) ,  y ( t )  = d2k/d t2  and $ 2 ( t ) .  The dynamical equations of 
this internal motion, usually called the zitterbewegung, are 

that the position of the system does not coincide with its centre of mass. 

terms of centre-of-mass variables L becomes 

L = S .  $2+ mk - [d2k/d t2+ ( d k l d t )  ~ $ 2 1  

a(s. $2) [( - )( - + m r , , , k ' C )  
ap' d t  1 + p 2  XI' d t  

and 

d2  a ( S .  $2) +- ~ ?), d r 2 (  ay ) = O  

which depend on the specific model of particle, determined by the explicit form of its 
spin. 

The solution of this system in the general case is a rather cumbersome task, and  
even in the almost trivial case of k = 0, S = IR with a constant moment of inertia I, 
equations (80) reduce to the spherically symmetric rigid body dynamical equations, 
which are solved for $ 2 ( t )  in terms of elliptic functions and a further (numerical) 
integration will yield the orientation p (  t ) .  

However, we can analyse this general Galilei particle, looking to its structure when 
increasing its degrees of freedom. 

I f  X = %/( ?'U9?) the particle has three degrees of freedom, its position coincides 
with its centre of mass, it moves with constant velocity and  we have a spinless massive 
point particle. 

If X = 91% which corresponds to ( 6 7 )  with 2 = 0, the particle has six degrees of 
freedom, the three of the centre-of-mass position q and the relative position k. From 
(76) we see that for the centre-of-mass observer S =  - k  x m ( d k / d t )  and S being a 
constant of the motion k X d2k/d t2  = 0. Thus we have a massive particle whose centre 
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of mass travels at constant velocity and its relative motion around its centre of mass 
is a central motion. The particle has a spin of orbital nature, but changed in sign, and 
we can think of a certain size associated to some average value of k. 

Finally if X = 3 we have a particle which has a certain directional property, such 
as an intrinsic spin P, whose change in orientation is described by the additional three 
degrees of freedom p. The particle can have a moment of inertia, and thus a certain 
size, and we can think in some way of a spin which is the addition of the intrinsic P, 
a rotating term In and the (anti)orbital part - k  x m dkldt ,  and,being this sum S a 
constant of the motion, the zitterbewegung will no longer be in general a central 
motion, but goes to it when Z tends to zero. 

4. Discrete symmetries 

Since space and time inversions are automorphisms of 3 

and assuming that the T parameter is invariant under the inversions, the derivatives 
for the homogeneous space X = 31 clr transform as: 

P : ( i , r , w ) + ( i , - + , w )  

T : ( i, r, w ) +D ( - i, i, 0 )  

and on X = % as: 

P : ( i ,  r, U, w ) +  (i, -r, -U, w )  

T : ( i ,  r, U, w ) - + ( - i ,  r, -U, w ) .  

The considered Lagrangians (38), (49), (51) and (78) are all invariant under space 
reversal but (49) and (78) are not longer time-reversal invariant because of the P term, 
in particular in the example (49) the term I; * a, i2 changes into -0 while P, being 
only a function of p, does not change. 
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