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Abstract. We discuss the phenomenon of pre-acceleration in the light of a method of successive
approximations used to construct the physical order reduction of a large class of singular
equations. A simple but illustrative physical example is analysed to gain more insight into
the convergence properties of the method.

1. Introduction

In a recent paper [1] one of the present authors has proposed a numerical implementation
of a method of successive approximations that allows automatic construction of the order
reduction that contains the physical, non-runaway, solutions of a large class of singular
differential equations, including the classical equation of motion of charged particles with
radiation reaction [2] and fourth-order equations appearing in theories of gravitation with a
quadratic Lagrangian [3] and in the study of quantum corrections to Einstein equations [4].
Apart from its practical interest, the convergence of the numerical method provides indirect
but convincing evidence of the convergence of the analytic method.

The goal of this letter is twofold: we want to discuss the phenomenon of pre-acceleration
in the frame of the method of successive approximations and to produce a more physical
exact example in which the method can be analysed in full detail.

2. Pre-acceleration

Among the puzzling properties of the Lorentz–Dirac equation [2], which describes the
motion of a radiating point charge, the pre-acceleration is one of the consequences of its
singular structure. Let us consider the non-relativistic approximation to the Lorentz–Dirac
equation (the so-called Abraham–Lorentz equation) in the case of a chargee that moves in
a straight line under the action of an external force per unit massf (t):

ẍ = f (t)+ τ0˙ẍ (1)

where

τ0 ≡ 2e2

3mc3
. (2)

It is well known that if one eliminates the runaway solutions, the physical motion is described
by the integrodifferential equation [1, 2, 5]

ẍ =
∫ ∞

0
e−uf (t + τ0u) du. (3)
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If the external force isf (t) = f0δ(t) it is enough to insert this expression in equation (3)
to obtain the order reduction

ẍ(t) =

f0

τ0
et/τ0 if t < 0

0 if t > 0.
(4)

According to this the charge would start accelerating before the pulse reaches it.
This phenomenon has been widely discussed in connection with the smallness ofτ0 and

taking into account the limitations of the classical theory, but we want to analyse it here
from the point of view of the method of successive approximations [1], which starts from
the approximation that neglects completely the radiation reaction

ẍ = 20(t) ≡ f (t) (5)

and iteratively constructs approximate reductions by substituting the previous approximation
on the right-hand side of (1)

ẍ = 2n+1(t) ≡ f (t)+ τ02
′
n(t) =

n+1∑
k=0

τ k0f
(k)(t). (6)

Under the appropriate mathematical conditions, this method will converge to the exact
reduction

ẍ = 2(t) =
∞∑
k=0

τ k0f
(k)(t) (7)

which is precisely the Taylor expansion of (3).
Now, one of the main hypotheses in the method of successive approximations is

Bhabha’s remark [6] that the physical solutions are precisely those that are regular in the
limit τ0→ 0, where according to (3) and (7) one recovers the second-order equation

ẍ = f (t). (8)

However, we can see that the pre-accelerated solution (4) is divergent in the limitτ0→ 0,
exactly as the remaining pathological solutions. In consequence, it cannot be constructed
by the (analytical or numerical) method of successive approximations. One might see
this as a limitation of the latter method, but we think that it is rather a limitation of the
Abraham–Lorentz and similar equations.

To make clear our point of view, we will consider a pulse of small but non-null width.
For simplicity we will take a Gaussian pulse,

f (t) = f0

ε
√
π

e−(t/ε)
2

(9)

but one could also consider any other pulse that recovers the valuef0δ(t) in the limit
ε→ 0. After inserting (9) in (3) one gets the Newtonian equation of motion that contains
the physical solutions:

ẍ = f0

2τ0
et/τ0 eε

2/4τ 2
0 erfc

(
t

ε
+ ε

2τ0

)
. (10)

This would be precisely the reduction constructed by the method of successive
approximations. By using the properties of the complementary error function, it is easy
to see that in the limitτ0→ 0 one recovers the radiationless result (8), while forε→ 0 one
obtains the pre-accelerated solution (4). We see, thus, that these two limits do not commute.
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In our opinion the delta function obtained in the limitε → 0 is beyond the field of
applicability of the Lorentz–Dirac and Abraham–Lorentz equations, for which one has to
assume that the applied force and acceleration do not change too much across a time interval
of length τ0, i.e. the radiation reaction cannot be too important along such a tiny interval.
Since this assumption is not met by the delta function, this often useful limit is not applicable
here and one has necessarily to consider pulses of width larger thanτ0. This opinion is
in agreement with the point of view of the authors of [6–8] that stress that the analyticity
with respect toτ0 is a fundamental hypothesis, which is used in standard derivations of the
Lorentz–Dirac equation.

3. An exact example

In [1] we discussed a linear one-dimensional exact example in the frame of the method of
successive approximations. We now want to analyse a three-dimensional exact example that,
though still linear, has a clearer physical meaning and will contribute to our confidence on
the convergence of the method of successive approximations under appropriate conditions.
Let us consider a chargee that moves in an external magnetic fieldB, as happens in
some astrophysical contexts [9] or in particle accelerators [10]. In the non-relativistic
approximation the equation of motion is

ẍ = Ω× ẋ+ τ0˙ẍ (11)

where we have introduced the cyclotron frequency

Ω = −eB
m

(12)

which we will assume to be uniform and constant. Starting from the lowest-order
approximation

ẍ = Θ0 ≡ Ω× ẋ (13)

we can construct successive approximations by using repeatedly

ẍ = Θn+1 ≡ Ω× ẋ+ τ0

[
∂Θn

∂t
+ (ẋ · ∇x)Θn + (Θn · ∇ẋ)Θn

]
. (14)

It is straightforward to check that the successive approximations are

Θn = αnΩ× ẋ− βnẋ⊥ (15)

where

ẋ⊥ ≡ ẋ− Ω · ẋ
�2

Ω (16)

is the component of the velocity perpendicular to the magnetic field and the constant
coefficients are given by the recurrence

αn+1 = 1− 2τ0αnβn (17)

βn+1 = τ0(�
2α2
n − β2

n) (18)

and the initial conditionsα0 = 1 andβ0 = 0.
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Recurrence (18) has two fixed pointsP± = (α±, β±) with

α± = ±

√
1
2

(√
1+ 16τ 2

0�
2− 1

)
2τ0�

(19)

β± =
±
√

1
2

(√
1+ 16τ 2

0�
2+ 1

)
− 1

2τ0
(20)

but a linear stability analysis proves thatP− is always unstable and thatP+ is asymptotically
stable for

τ0� <

√
3+ 2

√
3

4
≈ 0.64. (21)

Furthermore, a simple bifurcation diagram in the dimensionless variables(αn, τ0βn) shows
that the initial condition(1, 0) is in the basin of attraction ofP+ and, as a consequence,
that the method of successive approximations will in fact converge in the range (21) to the
Newtonian equation

ẍ = α+Ω× ẋ− β+ẋ⊥ (22)

which contains precisely the physical (non-runaway) solutions forx found by Plass [5].
Notice that all the approximations (15), as well as the exact order reduction (22), are
orthogonal to the magnetic field, and that the exact reduction exists even when the method
fails. This is not surprising because most approximation methods have limited ranges of
applicability. Moreover, in this case the method will converge in all practical situations
because the cyclotron frequency is always very small compared to 1/τ0. This simple but
illustrative exact example reinforces our conviction that the numerical approximation method
[1] will converge in many cases of interest.

This work has been supported by The University of the Basque Country under contract
UPV/EHU 172.310-EB036/95.
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