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Abstract 

The crossing of a potential barrier by a classical nonrelativistic spinning particle is analyzed. Numerical simulations show 
that, because of the spin structure related to the zitterbewegung, crossing is possible for kinetic energies below the top of 
the potential barrier. Experiments to check the spin dependence of this effect and a modification of the Schradinger-Pauli 
equation to include an electric dipole term, are suggested. @ 1998 Published by Elsevier Science B.V. 

PACS: 03.2O.+i; 03.65.Sq 

1. Introduction 

Let us consider the following simple experiment. 

We accelerate from rest a particle of mass m and elec- 
tric charge e with an acceleration potential V,. This 

particle is sent into some electrostatic potential bar- 

rier of top VO > V,. From the quantum mechanical 

point of view there is a nonvanishing probability of 

crossing this barrier. In non-relativistic quantum me- 
chanics the wave function of the particle satisfies ei- 

ther Schrodinger’s equation in the spinless case, or 

the Schrodinger-Pauli equation if s = l/2 or a higher 

spin equation, depending of the value of its spin. But, 

because there is no magnetic field in the experiment 
there are no spin-magnetic terms in the above equa- 
tions and therefore each component of the wave func- 

tion satisfies the same spinless Schrijdinger equation. 
This means that the probability of crossing of this ex- 
periment is spin independent. 

’ E-mail: wtpripem@lg.ehu.es. 

From the classical point of view if the particle is 

spinless, it simply never crosses the barrier. But it does 
under some conditions if the particle has a classical 

spin structure related to the zitterbewegung, as we shall 

show below. 

To produce the corresponding classical analysis we 
need first a classical model of a spinning particle. In 

Refs. [ I,21 a classical elementary particle is defined 

as a Lagrangian system whose kinematical space is a 

homogeneous space of the kinematical group G. The 

kinematical space is the manifold spanned by the ini- 

tial (or final) variables that are held fixed as end points 
of the corresponding variational principle. 

To describe a spinning particle we have to consider 
larger kinematical spaces than the four-dimensional 
space-time manifold that describes point particles. The 

largest homogeneous space of a kinematical group is 
the group itself. For the Galilei and Poincare groups, 

the largest homogeneous space is a ten-dimensional 
manifold whose variables have the same dimensions 
as the corresponding group parameters. With this man- 
ifold we describe a spinning particle in terms of ten 
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kinematical variables (t, r, u, a), that are identified 

with the time, position, velocity and orientation of the 
particle. Since the Lagrangian depends also on the 

derivatives of these variables, it will depend on the 

acceleration and angular velocity. It is because the de- 

pendence of the Lagrangian on the angular velocity 

and acceleration that the particle has a spin structure. 

One of the salient features of a general spinning 

particle, when the Lagrangian depends on the acceler- 
ation, is the existence of the zitterbewegung. The cen- 

ter of charge moves around the center of mass with an 
isotropic harmonic motion, and because of this mo- 

tion a classical charged spinning particle has a dipole 

structure and can cross a potential barrier as will be 

shown in next section. 

In the relativistic case, a possible description is 

shown in [ 2,3] of the electron in such a way that the 

center of charge of the electron moves at the speed of 

light in a circle of radius R = li/2mc, contained in a 

plane orthogonal to the spin. Thus, the frequency of 

this internal motion is w = 2mc*/Ii. They are the ones 

suggested by Dirac in the analysis for the electron (see 

Ref. [4 J, p, 263. The same values for these parame- 

ters R and w will also be used in the nonrelativistic 

example. 

2. Classical crossing of a potential barrier 

To illustrate the spin structure and dynamics we 
will consider in the following a non-relativistic model 

that shares most of the features of the relativistic elec- 
tron described in [ 31, but has a simpler mathematical 

structure. 
Let us consider a particle whose kinematical space 

is X = G/S0(3), so that the kinematical variables 
are x =_ (t, r, u), with u = dr/dt, and are interpreted 

as the time, position and velocity of the particle re- 

spectively. Translation invariance implies that the La- 
grangian must be independent of t and r, and since it 
must depend on the next order derivatives of the kine- 
matical variables it should finally be a function of u = 
dr/dr and & = d*r/dt*. Rotation invariance leads to 

the conclusion that L must be a function of u2, u* and 
u - k, but because this last term is a total time deriva- 
tive it may be omitted. We therefore assume that our 
elementary system is described by the following free 

Lagrangian, 

(1) 

where m is the mass and the parameter o, represents 

the zitterbewegung frequency. In the case of internal 

circular motion with constant velocity u and radius R, 
it is related to the spin by w = mu*/& and in the case 

of the electron [3] it is mc2/S = 2mc*/h. If S = 0 

or o + CXI, Ihe last term in ( 1) cancels out and we 
recover the spinless point particle Lagrangian. 

Vector r represents the charge position, as can be 
seen by considering the interaction of the system with 

an external electromagnetic field. The interaction La- 

grangian is 

LI = -eV(t, r) + eA( t, r) - u. (2) 

From the total Lagrangian L+Lr we get the dynamical 

equations 

4 2 

3% + $ = :[E(t,r) +u x B(t,r)], (3) 

where the electric E and magnetic field BI are con- 
structed from the potentials in the usual way. The cen- 

ter of mass and spin are defined in Refs. [ 2,3 ] as 

1 d’r 
q=r+;;i. dt?, 

where it is shown that the dependence on the acceler- 

ation gives rise to the spin and to the separation be- 
tween r and q. The dynamical equations can thus be 

separated into the following equations, 

2 

ms =e[E(t,r) +u x B(t,r)], 

d*r 
s+o*(r-q) =0, 

where the center of mass q satisfies Newton’s equation 

under the action of the total external Lorentz force, 
while point r evolves in an isotropic harmonic motion 
of angular frequency w around the center of mass q. 
This zitterbewegung is independent of the external in- 
teraction and according to (4) this motion is orthogo- 
nal to the spin. The external force and fields are evalu- 
ated at r and it is the velocity of point r that enters into 
the expression of the Lorentz force. As a consequence, 
the vector r clearly represents the charge position. 
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Fig. I. Potential barrier to be crossed by spinning particles. 

We now turn to the analysis of the barrier crossing 

by particles governed by the dynamical equations (5) 
and (6). Discontinuous potential barriers produce in- 

finite forces that cannot be handled numerically. We 

consider instead, continuous potentials of the form de- 

picted in Fig. 1, for which the quantum solution is 

known. VO represents the top of the potential. 
In a static electric field, the total energy H = 

F2/2m + eV(r) - HO, is conserved. Here 

Ho = !$ (r-q)2+; (d(riq))2 (7) 

is the internal energy of the isotropic harmonic motion. 
For a spinless particle q = r and this internal energy 

vanishes: Ho = 0. A spinless particle with mechanical 

linear momentum P, can never cross the barrier if 
P2/2m < eV& but in the case of a spinning particle 

of the same mass and charge, the internal energy Ho 
can compensate the extra potential energy in such a 
manner that the crossing becomes possible. 

Let us assume for simplicity that the spin is pointing 
up or down in the z direction and the charge motion 

takes place in the XOY plane. Let qx, q,. and qz = 0, be 

the coordinates of the center of mass and x, _v and z = 
0, the position of the charge. To perform the numerical 
analysis we shall define the following dimensionless 
variables, 

4x = q,/R, 4.s = q?jR 2 = x/R, 

j = y/R, 2 = a/R, 6 = b/R, 

where we take for the average separation between the 
center of mass and center of charge the value R = 
hi/2mc, and for m the electron mass. The dimension- 

less time LY = wt is just the phase of the internal mo- 

tion, where we take for o = 2mc*/h. The dynamical 

equations (5) and (6) become 

d24x d2& 
-=A(.?), dn?=O, 
da* 

where A( 3) is given by 

A(P) = -eV’/iimw2R2, for .? E (-B,O), 

= eVi/bmw* R2, for 2 E (O,g), 

= 0, otherwise. 

For VI = 1 V, the dimensionless parameter 

eVo/mo2R2 = 1.9569 x 10v6. If we choose as ini- 

tial conditions for the center of mass Gy(0) = 0 and 

dg!.( O)/da = 0, then the center of mass is moving 

along the OX axis, and the problem reduces to the 

analysis of the evolution of & and P. We will suppress 

the carets from now on. The dynamical equations to 
be solved numerically are then 

d2q 2 

- = A(x), 
da2 

$+x-q=O. 

Numerical integration is performed by means of the 

computer package ODE Workbench [5]. All codes 
have adaptive step size control and we check that 

smaller tolerances do not change the results. 

Crossing is appreciable if one of the sides of the 

barrier is of the order of R. With a = b = 1, Vo = lo2 V 
and for the initial kinetic energy K = mQ( 0>*/2eVo = 
0.41, below the top of the potential, we obtain the 

numerical result depicted in Fig. 2 where the variation 

of the kinetic energy of the particle K(q) is shown 

against the center of mass position during the crossing. 

The particle always crosses the barrier for kinetic 
energies above this value. In Fig. 3 we show the results 
for a = 1 and b = 10, K = 0.91 and a potential of V, = 
lo3 V. If the initial kinetic energy is below 0.4 and 
0.9 in the previous two cases, respectively, the particle 
never crosses the barrier. It must be remarked that 
because of (5)) the kinetic energy starts decreasing 
when the charge r penetrates into the potential, even 
before the center of mass q reaches that region. This 

produces a variation of the kinetic energy when the 
center of mass is in the interval (-a - R, b + R) . The 
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Fig. 2. Evolution of the kinetic energy during the crossing of the 
barrier with n = b = 1, initial energy K = 0.41 and extraction 
potential v) = 100 V. 

Fig. 3. Evolution of the kinetic energy during the crossing of the 
barrier with N = 1, B = 10, initial energy K = 0.91 and extraction 
potential Vn = 1000 V. 

ladder aspect of the variation of the kinetic energy is 
produced when the charge leaves the field region and 
therefore the center of mass has a uniform motion. 

If in both examples the parameter a is varied from 

1 to 0.05, making the left slope higher, there is no 
appreciable change in the crossing energy. In conse- 

quence, we compute the minimum crossing energy for 
different b values, Kc(b), keeping a = 1. This func- 
tion K,(b) , which will be used in the next section, is 
independent of the value of the potential VO because 
the problem is dimensionless. 

3. Quantum tunnel effect 

In the quantization of generalized Lagrangians [ 31 

the wave function for this system is a squared- 

integrable function (I, ( t, r, u), of the seven kinemati- 
cal variables and the generators of the Galilei group 

when acting on this function have the form [ 31 

H = i/i;, P = -iW, 

K=mr-tP+ihV,, J=rx P+S, (9) 

where V, is the gradient operator with respect to the 

u variables. These generators satisfy the commutation 

relations of the extended Galilei group [ 61, and the 
spin is given by S = -ir% x V,. 

One Casimir operator of this extended Galilei 

group, is the Galilei invariant internal energy of the 

system, which in the presence of an external elec- 

tromagnetic field and with the minimal coupling 

prescription is written as 

E=H-eV- &(P--eA)‘, (10) 

where V and A are the external scalar and vector po- 

tentials, respectively. 
In our system A = 0, and V is only a function of 

the x variable. It turns out that because of the struc- 

ture of the above operators we can find simultane- 
ous eigenfunctions of the following observables: the 

Casimir operator ( IO), H, Py, Pz, S2 and SZ . The par- 

ticle moves along the OX axis, with the spin pointing 
in the 02 direction, and we look for solutions which 

are eigenfunctions of the above operators in the form 

H-eV(x) -&p 
> 

$=E@, 

HJ, = Ei++, PyJI = 0, PzJI = 0, (11) 

s2* = s(s + l)zi$&, s,tl, = A@, (12) 

so that Cc, is independent of y and z, and its time 
dependence is of the form exp( -iEt/h). Since the 
spin operators have derivatives only with respect to 
the velocity variables, we can look for solutions with 
the variables separated in the form 

$(t,x,u) =e -‘E”fi&x>X(u), 

and thus 
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Fig. 4. Classical probability of crossing P(b) and quantum tun- 
neling for four different potentials Vi,. 

( E$+E-e”(x) -E 
> 

&x)=0, (13) 

S2x(u) = 4s + I)h2~(U), 

%t3u) = ~skdu), (14) 

where the spatial part 9 (x) is uncoupled with the spin 

part x(u), and E - eV(x) - E represents the kinetic 

energy of the system. The spatial part satisfies the one- 
dimensional Schrodinger equation, and the spin part is 

independent of the interaction, so that the probability 
of quantum tunneling is contained in the spatial part 

and does not depend of the particular value of the spin. 
If the particle is initially on the left hand side of the 

barrier, with an initial kinetic energy EO = E - E, then 
we can determine the quantum probability for crossing 
for a = 1 and different values of the width 6. For ener- 

gies below the top of the barrier eVi we show in Fig. 4 
the average probability for quantum tunneling for four 
different potentials: VO = lo*, 103, lo4 and lo” V. This 

average probability has been computed by assuming 
that on the left hand side of the barrier there is a uni- 

form distribution of particles of energies below eV& 
If we consider for the classical spinning particle the 

same uniform distribution of particles, then the func- 
tion P(b) = 1 - K,(b) , where K,(b) is the dimen- 
sionless minimum kinetic energy for crossing com- 
puted before, represents the ratio of the particles that 
with kinetic energy below the top of the potential cross 

the barrier because of the spin contribution. This func- 

tion P(b) is also depicted in Fig. 4. We see that for 

the different potentials shown in that figure the clas- 
sical average probability of crossing is smaller than 
the quantum one, but for stronger potentials this clas- 
sical probability, coming from the spin contribution, 

becomes relatively important. 

4. Discussion 

From (13) and (14) it is clear that the quantum 

probability of tunneling is independent of the spin. 
However, from the classical point of view there is 

a nonvanishing crossing which is related to the spin 

structure. 
To test experimentally if there is a spin contribution, 

it will be necessary to perform separate experiments 

with spinning and spinless particles of the same mass 

and charge. Thus, the difference in the outcome will 

be related to the spin contribution. No elementary par- 

ticles of the same mass and charge and different spins 
are known. A possibility is to use electrons polarized 

perpendicular or along the direction of motion. Those 
polarized in the direction of motion will have the zit- 

terbewegung, according to the classical model, in a 

plane orthogonal to the linear momentum with no in- 

fluence in the crossing, and therefore the probability 
will be smaller than in the other case. Is this a possi- 

ble interpretation of the quoted spin-polarized tunnel- 

ing in magnetoresistive materials [ 7]? The colossal 

magnetoresistance of polycrystalline thin films at cer- 

tain temperature is decreased when there is applied a 

magnetic field in the direction of the thin layers, and 
therefore the conduction electrons are polarized in that 

direction. This effect is interpreted by the increase of 

the mobility of electrons that cross adjacent layers by 
spin-polarized tunneling. 

Another experiment that can be performed is to use 

ions of the type A ++ that could be in a singlet or 
triplet state either. In this kind of experiment it can 

be argued that ions are not elementary objects and the 
dipole structure of the atom might therefore contribute 
with another energy term, not included in the previ- 
ous quantum analysis. If this is the case and there is 
some difference in the outcome it will be related to 
the different dipole structure for the different atomic 
spin states. 
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Then, what is the quantum analog of this additional 
contribution to tunneling? When considered from the 
classical point of view, and for the center of mass ob- 
server, the spin structure of our model suggests that 
the elementary particle can be interpreted as a point 
charge at the center of mass plus a magnetic moment 
p in the spin direction produced by the charge motion, 
but also an oscillating electric dipole d = e( r - q), 
orthogonal to the spin. This produces two additional 
energy terms -p. B - d - E, that were already found 
by Dirac (see Ref. [4], p. 267) in his analysis of 
the electron structure, but only the magnetic moment 
term survived in the non-relativistic approach to give 
rise the magnetic term of the Schrodinger-Pauli equa- 
tion. It is clear that the oscillating electric dipole has a 
vanishing time-average value and probably in low en- 
ergy processes it can be neglected. But in high inten- 
sity fields and high energy processes, or in condensed 
matter physics where there are sharp variations of the 
fields in short distances of the order R, it has to be 
taken into account. In the case of atoms the addition 
of an electric dipole term leads to the usual interpre- 
tation of the Stark effect, and in the case of elemen- 
tary particles, we need it because of the electric dipole 
structure associated to the spin. 

Therefore, to be consistent with the above analysis, 
the Schrodinger-Pauli equation should be modified to 
include an additional electric dipole term. A term of 
the form -eER cos wt, where E is the external electric 
field, should be considered to solve the corresponding 
quantum wave function. This term is of the order of 
magnitude of the separation R between the center of 
mass and center of charge, which is responsible for 

the classical crossing. This makes the quantum prob- 
lem time dependent and its analysis more difficult and 
whether or not it is equivalent to the classical contri- 
bution, is left to a subsequent paper. 
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