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Abstract

By analysing the structure of the spin operator, we give a pure kinematical explanation of the origin of the gyromagnetic
ratio of elementary particles. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 03.65.Sq; 11.10.Ef

w xJackiw 1 has given recently another dynamical
argument confirming that the gyromagnetic ratio of
spin-1 fields is gs2, provided a nonelectromag-
netic gauge invariance is accepted. He also gives
some ad hoc argument for ss2 fields, consistent
with the gs2 prescription.

The gs2 gyromagnetic ratio of the electron was
considered for years a success of Dirac’s electron

w x w xtheory 2 . Later, Levy-Leblond 3 obtained simi-
larly gs2 but from a ss1r2 non-relativistic wave

w xequation. Proca 4 found gs1 for spin 1 particles
w xand this lead Belinfante 5 to conjecture that the

gyromagnetic ratio for elementary systems is gs
1rs, irrespective of the value s of its spin. He
showed this to be true for quantum systems of spin
3r2, and few years later the conjecture was analysed

1 E-mail: wtpripem@lg.ehu.es
2 E-mail: wtpagagj@lg.ehu.es
3 E-mail: wtphemaa@lg.ehu.es

and checked to be right for any half-integer spin by
w x w xMoldauer and Case 6 , and by Tumanov 7 for the

value ss2. In all these cases a minimal electromag-
netic coupling was assumed.

w xWeinberg 8 made the prediction gs2 for the
intermediate boson of the weak interactions when
analyzing the interaction of W bosons with the
electromagnetic field by requiring a good high-en-
ergy behavior of the scattering amplitude. The dis-
covery of the charged W " bosons with gs2,
contradictory with Belinfante’s conjecture, corrob-
orated Weinberg’s prediction and raised the question
as to whether gs2 for any elementary particle of
arbitrary spin.

w xFerrara et al. 9 in a Lagrangian approach for
massive bosonic and fermionic strings, by the re-
quirement of a smooth fixed-charge M™0 limit, get
gs2 as the most natural value for particles of
arbitrary spin. However the only known particles
which fulfill this condition are leptons and charged
W bosons, i.e., charged fermions and bosons of the
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lowest admissible values of spin. No other higher
spin charged elementary particles have been found.

The aim of this work, instead of using dynamical
arguments as in the previous attempts, is to give a
kinematical description of the gyromagnetic ratio of
elementary particles which is based upon the double
content of their spin operator structure, as derived by
quantizing a classical formalism of elementary spin-

w xning particles, developed by one of us 10,11 .
This approach is based on the assumption that the

kinematical space of an elementary classical particle
is a homogeneous space of the kinematical group of
space-time transformations. The kinematical space of
a Lagrangian system is defined as the manifold

Ž .spanned by the initial or final variables that are
held fixed in the corresponding variational problem,
and in terms of which the Feynman path integral
approach is worked out. Feynman’s quantisation of

w xthese classical particles is done in Ref. 12 , where,
among other things, Dirac’s equation is obtained.

The main highlights of the mentioned approach
are the following: The definition of classical elemen-
tary particle is kinematical. It depends on the struc-
ture of the kinematical group of space-time transfor-
mations that defines the relativity principle. When

Ž .restricted to the Galilei GG or Poincare PP group,´
the largest kinematical space of an elementary parti-
cle is the group itself, i.e., a 10-dimensional mani-

Ž .fold spanned by the variables x' t,r,z,a with the
same domains and physical dimensions as the corre-
sponding group parameters, and they are interpreted
respectively as the time, position, velocity and orien-
tation of the particle. In the relativistic approach and
in a covariant notation, this amounts to characterise
the end points of the action integral by the space-time

m Ž .point x ' t,r and a tetrad or Lorentz matrix
m Ž .L ' z,a , as in the Hanson and Regge spinningn

w xtop 13 .
The variational formalism when written in terms

of the kinematical variables implies that the La-
grangian is necessarily a homogeneous function of
first degree of the derivatives of these kinematical
variables. Therefore, Lagrangians for describing ele-
mentary particles also depend on the acceleration
and angular velocity of the particle. About the de-
pendence of Lagrangians on the acceleration, Feyn-

w xman and Hibbs 14 already quoted the possibility
that the end points of the path integral could depend

on the velocity and, perhaps, higher-order deriva-
tives. Therefore Lagrangians for free elementary
spinning particles have the general form

˙LsTtqRPrqVPzqZPv , 1Ž .˙ ˙

˙where TsE LrE t, R sE LrE r , V sE LrE Õ , and˙ ˙i i i i

Z sE LrEv , v is the angular velocity of the parti-i i

cle, and a dot means derivation with respect to some
arbitrary evolution parameter.

It is the presence of the last two terms that
distinguishes this kind of systems from spinless point
particles and thus giving rise to the spin structure of
the particle. It should be emphasised that in the

w xquantised relativistic version of this formalism 12 ,
the structure of the total spin observable, related to
the analytical structure of the generator of rotations,
has exactly the same form as in the non-relativistic
case. Nevertheless, in the Galilei approach the dis-
cussion that follows to show the Zitterbewegung
structure of the particle is simpler.

The total linear momentum does not lie along the
velocity of point r even for a free spinning particle,
as it happens to Dirac’s electron, but is expressed as

dV
Psmzy dt . 2Ž .

g

The total Galilei momentum, i.e., the constant of the
motion associated to the invariance of dynamical
equations under the Galilei boosts, has the form

KsmryPtyV , 3Ž .
and the total angular momentum of the system is
given by

Jsr=Pqz=VqZ. 4Ž .
The center-of-mass frame is defined as that refer-

ence system for which Ps0 and Ks0, and there
the total angular momentum reduces to the spin of
the system that is defined as

Ssz=VqZsS qS . 5Ž .Õ a

Ž .It is composed of two parts, one S 'z=V thatÕ

depends on V and, therefore, is a direct consequence
of the dependence of the Lagrangian on the accelera-

Ž .tion, and another S 'Z that comes from thea

dependence on the angular velocity and related to the
angular variables.
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Feynman’s quantisation of this system requires
the wave function to be a squared integrable com-

Ž .plex function of the kinematical variables c t,r,z,a
w xand the total angular momentum takes the form 12

"
Jsr= =qSsr=PqS, 6Ž .

i

where the spin operator is

"
Ssz= = qD sS qS , 7Ž .Õ a Õ ai

and = is the gradient operator with respect to theÕ

velocity variables and D is a linear differentiala

operator that operates only on the orientation vari-
ables a and therefore commutes with the other. For
instance, if we parameterise every rotation of angle u

by the three-vector asntanur2, where n repre-
sents a unit vector along the rotation axis, D isa

written as

"
D s = qa== qa aP= . 8Ž . Ž .a a a a2 i

Ž .The first part in 7 , S , has integer eigenvaluesÕ

because it has the form of an orbital angular momen-
tum in terms of the z variables. Half-integer eigen-

Ž .values come only from the operator 8 . The first
term is related to the Zitterbewegung while the sec-
ond, S , takes into account the change of orienta-a

tion, i.e., the rotation of the particle.
If we define the vector ksVrm, then vector

qsryk represents the position of the center of
˙Ž .mass, because in 3 , Ks0 leads to Psm dqrdt.

The nonvanishing function V is therefore related to
the separation between the center of mass and the
position vector r. It turns out that this function
implies the existence of a relative motion between
these two points. Vector r may be interpreted as the
position of the charge and its motion as the Zitterbe-
wegung, as can be seen by considering next a partic-
ular Lagrangian system where the spin only contains
the Zitterbewegung part z=V. In our general kine-
matical formalism this corresponds to an elementary

Ž .particle with a smaller kinematical space, GGrSO 3 ,
Ž .spanned by the variables t,r,z .

In this model, translation invariance implies that
the Lagrangian will be independent of t and r, so

that it will depend only on the velocity z and
acceleration dzrdt. Rotation invariance implies de-

2 Ž .2pendence on z , dzrdt and zPdzrdt, but this
last term is a total derivative and can be withdrawn.
Then, let us consider the following Lagrangian for a
free non-relativistic particle

22 2m dr m d r
L s y . 9Ž .0 2 2ž / ž /2 dt 2v dt

This Lagrangian that arises naturally from the for-
w xmalism was already used by Riewe 15 to describe a

spinning particle. Recently, it has been used to com-
pute a classical contribution to the tunnel effect and
a plausible interpretation of Dirac’s electric dipole
term and the so called spin polarised tunneling of

w xmagnetoresistive materials 16 .
If we consider the usual interaction with an exter-

nal electromagnetic field

L syef t ,r qezPA t ,r , 10Ž . Ž . Ž .I

then, taking into account the definition of the center
of mass q, dynamical equations can be written as

d2q
m se E t ,r qz=B t ,r ,Ž . Ž .Ž .2dt

d2 r
2qv ryq s0, 11Ž . Ž .2dt

and we see that the center of mass satisfies Newton’s
equations with an external Lorentz force that is
defined at point r and not at point q. In the same
way, it is the velocity z of point r which enters into
the magnetic force term. Point r, that clearly repre-
sents the position of the charge, has an isotropic
harmonic motion of frequency v around the center
of mass q. The origin of the spin of the particle and
its magnetic moment is related to this separation and
its relative motion as we show in the sequel.

In the center-of-mass frame, the spin takes the
form

dk
S sz=Vsymk= , 12Ž .Õ dt

Ž .as the anti -orbital angular momentum of the charge
motion around the center of mass.
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Let us consider the particular case in which the
external magnetic field is uniform, as described by
the vector potential AsB=rr2. In this case the
variation of the angular momentum is found to be

dJ e
s r=z =B. 13Ž . Ž .

dt 2

Similarly, the interaction term of the Lagrangian can
be written

e
ezPAs r=z PB. 14Ž . Ž .

2

When considered in the center-of-mass frame, qs0,
Ž .rsk and Eq. 13 becomes

dS e dkÕ
s k= =Bsm=B , 15Ž .ž /dt 2 dt

Ž .the interaction term 14 can be written as mPB and
the particle will therefore behave as though it has a
magnetic moment

e dk e
ms k= sy S . 16Ž .Õž /2 dt 2m

This magnetic moment is the one produced by the
Ž3.Ž X .particle current jsezd r yr , associated to the

motion of a charge e at point r, according to the
usual definition.

Coming back to the most general elementary spin-
ning particle, one must remember that in the context
of our formalism the spin also contains a S part.a

But this part is related to the angular variables that
describe orientation and does not contribute to the
separation k between the center of charge and the
center of mass. It turns out that the magnetic moment
of a general particle is still related to the motion of

Ž .the charge by the expression 16 , i.e., in terms of
the S part but not to the total spin S. It is preciselyÕ

when we try to express the magnetic moment in
terms of the total spin that the concept of gyromag-
netic ratio arises.

Now, let us assume that both S and S termsÕ a

contribute to the total spin S with their lowest
admissible values.

The classical particles that when quantised have
spin ss1r2 and satisfy Dirac’s equation have a
classical Zitterbewegung that is a circular motion at
the speed of light of radius Rssrmc and angular
frequency vsmc2rs, in a plane orthogonal to the

w xtotal spin 11,12 . The total spin S and the S part,Õ

are both orthogonal to this plane. Then, let us define
the gyromagnetic ratio by S sgS. For the lowestÕ

admissible values of the quantised spins s s1 andÕ

s s1r2 in the opposite direction this gives rise to aa

total ss1r2 along S and then gs2.Õ

For ss1 particles the lowest possible values
compatible with the above relative orientations are
s s2 and s s1 in the opposite direction, thusÕ a

obtaining again gs2. The possibility s s1 andÕ

s s0 is forbidden in the relativistic case becausea

necessarily s /0 to describe vector bosons with aa

multicomponent wave-function.
No higher spin charged elementary particles are

known. The predictions of this formalism for hypo-
thetical particles of ss3r2 are s s1 and s s1r2Õ a

in the same direction, and thus gs2r3, or s s2Õ

and s s1r2 in the opposite direction, and thereforea

gs4r3. Similarly, for ss2 particles the lowest
values are s s1 and s s1 in the same direction,Õ a

and thus gs1r2, compatible with Belinfante’s con-
jecture.

In summary, according to the proposed formalism
of classical and quantal spinning particles, while
restricted to the Galilei or Poincare groups as kine-´
matical groups, the spin consists of two parts: one Sa

related to the rotational motion of the body and
another S linked to the Zitterbewegung, or motionÕ

of the point charge around the center of mass. This
interpretation is independent of whether the formal-
ism is either relativistic or non-relativistic. The mag-
netic moment is produced by the current and there-
fore is only related to the Zitterbewegung part of
spin with a normal, up to a sign, relation. It should
be noticed that it is this double structure of the spin
which, when expressing the magnetic moment in
terms of the total spin, leads to a kinematical defini-
tion of the gyromagnetic ratio. The additional condi-
tion of minimum spin contribution of both compo-
nents leads to gs2 for ss1r2 and ss1 charged
particles, and therefore it is only the difference gy2
that should be justified on dynamical grounds, i.e.,
by means of electroweak corrections and thus by
relativistic methods.

Acknowledgements

This work has been partially supported by the
Universidad del Paıs VascorEuskal Herriko Unibert-´



( )M. RiÕas et al.rPhysics Letters A 257 1999 21–25 25

sitatea under contract UPVrEHU 172.310 EB150r
98 and by DGICYT project PB96-0250.

References

w x Ž .1 R. Jackiw, Phys. Rev. D 57 1998 2635.
w x Ž . Ž .2 P.A.M. Dirac, Proc. Roy. Soc. London A 117 1928 610.
w x Ž .3 J.M. Levy-Leblond, Commun. Math. Phys. 6 1967 286.
w x Ž .4 A. Proca, Compt. Rend. 202 1936 1420; J. Phys. Radium

Ž .49 1938 245.
w x Ž .5 F.J. Belinfante, Phys. Rev. 92 1953 997.
w x Ž .6 P.A. Moldauer, K.M. Case, Phys. Rev. 102 1956 279.

w x Ž .7 V.S. Tumanov, Sov. Phys. JETP 19 1964 1182.
w x Ž .8 S. Weinberg, in: S. Deser, M. Grisaru, H. Pendleton Eds. ,

Lectures on Elementary Particles and Quantum Field Theory,
MIT press, Cambridge, MA, 1970, p. 283.

w x Ž .9 S. Ferrara, M. Porrati, V.L. Telegdi, Phys. Rev. D 46 1992
3529.

w x Ž .10 M. Rivas, J. Phys. A 18 1985 1971.
w x Ž .11 M. Rivas, J. Math. Phys. 30 1989 318.
w x Ž .12 M. Rivas, J. Math. Phys. 35 1994 3380.
w x Ž .13 A.J. Hanson, T. Regge, Ann. Phys. 87 1974 498.
w x14 R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path

Integrals, MacGraw Hill, NY, 1965, p. 36.
w x Ž .15 F. Riewe, Lett. Nuovo Cimento 1 1971 807; Nuovo Ci-

Ž .mento B 8 1972 271.
w x Ž .16 M. Rivas, Phys. Lett. A 248 1998 279.


