1. Dada una ecuación diferencial lineal homogénea de segundo orden

$$P(x)y'' + Q(x)y' + R(x)y = 0$$
 (i)

buscamos un factor integrante $\mu(x)$ tal que, al multiplicar la ecuacion (i) por $\mu(x)$, resulte

$$[\mu(x)P(x)y']' + \mu(x)R(x)y = 0.$$
 (ii)

a) Demuestre que μ debe ser solución de la ecuación $P\mu' = (Q - P')\mu$, y obtenga

$$\mu(x) = C \frac{1}{P(x)} \exp \int dx \, \frac{Q(x)}{P(x)} \,,$$

donde C es una constante arbitraria.

b) Transforme las siguientes ecuaciones diferenciales en ecuaciones de la forma (ii):

$$y''-2xy'+\lambda y=0\,,\qquad \text{ec. de Hermite}\,,$$

$$x^2y''+xy'+(x^2-\nu^2)y=0\,,\qquad \text{ec. de Bessel}\,,$$

$$xy''+(1-x)y'+\lambda y=0\,,\qquad \text{ec. de Laguerre}\,,$$

$$(1-x^2)y''-xy'+\alpha^2y=0\qquad \text{ec. de Tchebyschev}\,.$$

¿Por qué es interesante esta transformación?

2. Calcule el producto escalar en $L_2(0,\infty)_w$ de las funciones f(x)=2 y g(x)=3x con una función peso $w(x)=e^{-x^2}$. Encuentre una combinación lineal $\alpha f+\beta g$ que sea ortogonal a f y de norma unidad. Repita el problema en $L_2(-\infty,\infty)_w$.

Nota:
$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}.$$

3. El método de ortogonalización de Gram-Schmidt transforma un conjunto de vectores $\{v_1, v_2...v_n\}$ linealmente independientes en un conjunto ortogonal $\{e_1, e_2...e_n\}$ mediante el proceso inductivo

$$\begin{aligned} e_1 &= v_1 \,, \\ e_2 &= v_2 - \frac{\langle e_1, v_2 \rangle}{\langle e_1, e_1 \rangle} \, e_1 \,, \\ \vdots & \vdots \\ e_n &= v_n - \sum_{i=1}^{n-1} \frac{\langle e_i, v_n \rangle}{\langle e_i, e_i \rangle} \, e_i \,. \end{aligned}$$

- a) Compruebe gráficamente que el método funciona para n=3.
- b) Las funciones $f_k(x) = x^k$, k = 0, 1, 2... forman una base no ortogonal en $L_2[-1, 1]$. Utilizando Gram-Schmidt encuentre los primeros cuatro términos de la correspondiente base ortogonal.
- c) Los polinomios de Legendre $\{P_0(x), P_1(x), \dots \}$ se obtienen a partir de dicha base ortogonal imponiendo la condición de normalización $P_i(1) = 1$. Calcule $P_0(x), P_1(x), P_2(x)$ y $P_3(x)$. (¿En que problema físico aparecen estos polinomios?)

2008-2009 UPV-EHU

4. Encuentre **gráficamente** las autofunciones del problema regular homogéneo de Sturm Liouville $y'' + \lambda y = 0$ con las condiciones de contorno i) y(0) = y'(1) = 0; ii) y'(3) = y'(7) = 0; iii) $y(-\frac{\pi}{2}) = y(\frac{\pi}{2}) = 0$; iv) y'(-5.2) = y(-3.4) = 0.

5.* Demuestre que las autofunciones del sistema de Sturm-Liouville

$$y'' + \lambda y = 0,$$
 $y(0) = 0,$ $y(1) - 2y'(1) = 0$

son $\{\sin\sqrt{\lambda_n}x\}$, siendo los autovalores soluciones de la ecuación transcendental $\tan\sqrt{\lambda} = 2\sqrt{\lambda}$ excepto para $\lambda = 0$. Examinando gráficamente la ecuación transcendental, compruebe que $\lambda_n \approx ((2n-1)^2\pi^2/4$ cuando $n \to \infty$. Desarrolle f(x) = x en términos de las autofunciones (el desarrollo difiere del las series de Fourier "normales" en que no es armónica, es decir, las frecuencias no son múltiplos de una frecuencia fundamental).

- **6.** Estudie la ecuación $y'' + 2y' + y + \lambda y = 0$, en el intervalo $(0, \pi)$, bajo las condiciones $y(0) = y(\pi)$ e $y'(0) = e^{2\pi}y'(\pi)$. Hay degeneración?
- 7. Compruebe que la ecuación

$$y'' + a\delta(x)y + \lambda y = 0,$$

en el intervalo $(-\pi, \pi)$ y bajo la condición $y(\pm \pi) = 0$, siendo a real, da lugar a valores propios positivos, que satisfacen la igualdad

$$\tan(\pi\sqrt{\lambda}) = \frac{2\sqrt{\lambda}}{a}.$$

[Además de estos tiene otra familia de valores propios, dados por $\lambda_n^{(e)} = n^2$] ¿Qué se requiere para que haya valores propios negativos? Compare con la ecuación de Schrödinger, proporcione una explicación física.

8. Estudiemos el operador

$$Ly = \frac{1}{4}(1+x^2)^2y'' + \frac{1}{2}x(1+x^2)y' + ay,$$

en el intervalo (-1,1). a es una constante. El dominio de definición de L lo componen las funciones que se anulan en los puntos -1 y 1. ¿Cuál es el peso útil? Haciendo el cambio de variable $x = \tan(\theta/2)$, calcule los valores propios y las funciones propias.

9.* (Propiedades de las funciones de Bessel) Las funciones $J_n(x)$, es decir, las funciones de Bessel de primera especie, cumplen la siguiente ecuación diferencial ordinaria:

$$y'' + \frac{1}{x}y' + \left(1 - \frac{n^2}{x^2}\right)y = 0.$$

Para n entero se cumple

$$J_n(0) = \delta_{n0} \,,$$

donde δ_{nm} es la delta de Kronecker, y

$$J'_n(x) = \frac{1}{2} \left(J_{n-1}(x) - J_{n+1}(x) \right) .$$

Demuestre que la función

$$g(x,t) = e^{x(t-1/t)/2}$$

es la función generatriz de las funciones de Bessel, esto es, que satisface la siguiente igualdad

$$e^{x(t-1/t)/2} = \sum_{n=-\infty}^{\infty} J_n(x)t^n.$$

(Sugerencia: Demuestre que ambos lados de la igualdad cumplen la misma ecuación diferencial en derivadas parciales. A continuación demuestre que g(0,t) y $\sum_{n=-\infty}^{\infty} J_n(0)t^n$ coinciden. Asimismo, demuestre que $\partial_x g(0,t)$ y $\sum_{n=-\infty}^{\infty} J_n'(0)t^n$ son iguales. De estos tres hechos concluya el resultado

Por derivación de la función generatriz, obtenga las siguientes relaciones

a)
$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x);$$

b)
$$J_{n-1}(x) - J_{n+1}(x) = 2J'_n(x)$$
.

Haciendo uso de ellas, consiga las que se expresan a continuación:

c)
$$\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x);$$

d) $\frac{d}{dx} [x^{-n} J_n(x)] = -x^{-n} J_{n+1}(x).$

Compruebe, usando la propiedad $J_{-n}(x) = (-1)^n J_n(x)$, que la relación d) es consecuencia de la c).

10. Sin usar el teorema de Sturm-Liouville, demuestre directamente que las funciones $J_{\nu}(\lambda_n^{(\nu)}x)$ y $J_{\nu}(\lambda_m^{(\nu)}x)$ son ortogonales en el intervalo (0,1) con respecto al peso x, en el caso $m \neq n$, y siendo $J_{\nu}(\lambda_n^{(\nu)}) = J_{\nu}(\lambda_m^{(\nu)}) = 0$. (Sugerencia: use la propia ecuación de Bessel e integración por partes para estudiar el wronskiano de esas dos funciones).

11.* (Propiedades de los polinomios de Legendre) Usando la función generatriz de los polinomios de Legendre

$$F(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, \quad |t| < 1,$$

obtenga la siguiente expresión para la distancia entre dos puntos:

$$\frac{1}{|\vec{r}_1 - \vec{r}_2|} = \sum_{l=0}^{\infty} \frac{r_<^l}{r_>^{l+1}} P_l(\cos \theta) , \quad \begin{cases} r_< = \min(r_1, r_2) & y \\ r_> = \max(r_1, r_2) & , \end{cases}$$

siendo $\cos \theta = \vec{r}_1 \cdot \vec{r}_2/(r_1 r_2)$.

Por derivación de la función generatriz, obtenga las siguientes relaciones:

- a) $(n+1)P_{n+1}(x) (2n+1)xP_n(x) + nP_{n-1}(x) = 0;$
- b) $P'_n(x) 2xP'_{n-1}(x) + P'_{n-2}(x) = P_{n-1}(x);$ c) $P'_{n+1}(x) xP'_n(x) = (n+1)P_n(x);$

2008-2009 **UPV-EHU**

- d) $xP'_n(x) P'_{n-1}(x) = nP_n(x);$
- e) $P'_{n+1}(x) P'_{n-1}(x) = (2n+1)P_n(x);$ f) $(x^2 1)P'_n(x) = nxP_n(x) nP_{n-1}(x).$

Compruebe que los polinomios de Legendre, $P_n(x)$, son soluciones de la ecuación

$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0.$$

Verifique, usando la función generatriz, que $P_n(1) = 1$. Sea la expresión diferencial Ly = -(1 - 1) $(x^2)y'' + 2xy'$. ¿De qué tipo es? ¿Bajo qué condiciones tendremos un operador de Sturm-Liouville "aprovechable"? ¿Existe alguna relación entre los polinomios de Legendre y este operador? ¿Con respecto a qué producto escalar serán ortogonales los polinomios de Legendre?

- 12.* ¡Difícil! Considere el problema determinado por la ecuación $u'' + \omega^2 (1 + a\delta(x)) u = 0$ y las condiciones de contorno u(l) = u(-l) y u'(l) = u'(-l). ¿Para qué valores de ω existe solución no trivial? (Advertencia: no olvide examinar la posibilidad de valores complejos).
- 13.* Considere el espacio de funciones definidas en la recta real, normalizables con función peso unidad (dese cuenta de que su representante continuo tiende a cero al menos tan rápidamente como x^{-1} cuando $|x| \to \infty$). Alguno de los siguientes operadores es hermítico, definidos sobre ese
 - i) $\frac{\mathrm{d}}{\mathrm{d}x} + x;$ ii) $-i\frac{\mathrm{d}}{\mathrm{d}x} + x^2;$ iii) $ix\frac{\mathrm{d}}{\mathrm{d}x};$ iv) $i\frac{\mathrm{d}^3}{\mathrm{d}x^3}.$