1. Does what follows hold for all $n = 0, \pm 1, \pm 2, ...$?

$$\int_0^{2\pi} \cos(x) \cos(nx) dx = \frac{1}{2} \int_0^{2\pi} \left[\cos(n+1)x + \cos(n-1)x \right] dx$$
$$= \frac{1}{2} \left[\frac{\sin(n+1)x}{n+1} + \frac{\sin(n-1)x}{n-1} \right]_0^{2\pi} = 0.$$

2. Let us assume that $y_1(x)$ and $y_2(x)$ are both solutions of the same boundary-conditions problem, namely that given by the second order ordinary linear differential equation Ly = 0 and the boundary conditions y(0) = 1, y(1) = 0

True or false: The sum $y(x) = 3y_1(x) + 2y_2(x)$ is a solution of the problem.

- **3.** If only the derivatives with respect to a single variable appear in a partial differential equation (PDE), it can be directly solved as if it were an ordinary differential equation (ODE), with the integration constants substituted by functions of the other variables.
 - a) Find the general solution of the equation

$$\frac{\partial^2 u}{\partial y^2} + 4x^4 u = xe^y.$$

- b) What if the function u were dependent on the three variables x, y and z?
- c) Compute the general solution of the equation $u_{xy} = 0$.
- 4. True or false:

$$\int_{-1}^{1} \frac{dt}{t^2} = -\frac{1}{t} \bigg|_{-1}^{1} = -2$$

- **5.** Find a function ϕ such that its gradient is $\nabla \phi = y^2 z \ \hat{\imath} + (2xyz+3) \ \hat{\jmath} + (xy^2-2z) \ \hat{k}$ Is there any relation between the surfaces defined by the equation $\phi(x,y,z) = \text{cons.}$ and the vector field $\nabla \phi(x,y,z)$?
- **6.** Use the expression $\int_0^\infty dx \, e^{-ax^2} = \frac{1}{2} \sqrt{\pi/a}$ to compute

$$I_{2n}(a) := \int_0^\infty \mathrm{d}x \, x^{2n} e^{-ax^2} = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}} \,,$$
$$I_{2n+1}(a) := \int_0^\infty \mathrm{d}x \, x^{2n+1} e^{-ax^2} = \frac{n!}{2a^{n+1}} \,.$$

- 7. Even function are those such that f(-x) = f(x); odd functions, on the other hand, fulfill f(-x) = -f(x).
- a) Show that any function defined on an interval (-l,l) can be expressed as the sum of two functions, one even and the other one odd. (Therefore, the function e^x can be expressed as the sum of an even and an odd function. Which is the name of these functions?
 - b) Show that $\int_{-l}^{l} f(x)dx = 0$ holds if f is odd.
 - c) Which of the functions in the following relation are even and which ones odd?

2008-2009 **UPV-EHU**

i)
$$f(x) = (2x - x^3)^4$$
; ii) $f(x) = \ln|\sin x|$; iii) $f(x) = x^3 - 2x + 1$.

d) Show that the derivative of an odd function is even, and reciprocally. What can be said about the function $F(x) = \int_0^x f(t)dt$?

8. Investigate the periodicity of the following set of functions. If any of them is periodic, which is its period? [Except in case d), let $n = 0, \pm 1, \pm 2, ...$; in case d) let n = 1, 2, ...].

a)
$$f(x) = \begin{cases} 0 & 2n-1 \le x < 2n \\ 1 & 2n \le x \le 2n+1 \end{cases}$$

a)
$$f(x) = \begin{cases} 0 & 2n - 1 \le x < 2n \\ 1 & 2n \le x < 2n + 1 \end{cases}$$

b)
$$f(x) = \begin{cases} (-1)^n & 2n - 1 \le x < 2n \\ 1 & 2n \le x < 2n + 1 \end{cases}$$

$$c) f(x) = \tan(\pi x)$$

d)
$$f(x) = \begin{cases} 1 & \frac{1}{2n+1} \le x < \frac{1}{2n} \\ 0 & \frac{1}{2n} \le x < \frac{1}{2n-1} \end{cases}$$

9. Compute the following integrals, using derivation with respect to a parameter:

$$\int_0^\infty dx \, \frac{e^{-ax} - e^{-bx}}{x} \,, \qquad \int_0^\infty dx \, \frac{1 - e^{-ax^2}}{x^2} \,.$$

Investigate the behaviour of the integrand at the origin and close to the point at infinity (that is, $x \approx 0$ and $x \to +\infty$). Could you compute the following integrals?

$$\int_0^\infty dx \, \frac{e^{-ax}}{x} \, ; \qquad \int_0^\infty dx \, \frac{e^{-ax^2}}{x^2} \, .$$

10. True or false: Adding a further term to a Taylor expansion always improves the approximation.

Consider the first terms of the Taylor expansion of the cosine function around the point x=0and use them to compute the function at the point $x=2\pi$. What is going on?

11. Sum the series, and discuss its convergence region:

$$\sum_{n=0}^{\infty} (n+1)x^{n+4} \, .$$

12. Consider the following system of ODEs:

$$\dot{x} = yz$$
, $\dot{y} = xz$, $\dot{z} = -2xy$.

Which are the first integrals of this system? Can they be given a geometrical interpretation? Which is the geometrical interpretation of the system's solutions? Write down the general solution of the system.

13. Consider the ODE $y'' + \lambda^2 y = 0$. Among all solutions, select and write those that fulfill y(0) = 0. Is it possible for $y(\pi)$ to be zero as well for some solution of the equation?