1. Consider the following ordinary and homogeneous second order differential equation,

$$P(x)y'' + Q(x)y' + R(x)y = 0.$$
 (i)

Let us find an integrating factor $\mu(x)$, such that multiplying the equation by $\mu(x)$ we obtain

$$[\mu(x)P(x)y']' + \mu(x)R(x)y = 0.$$
 (ii)

a) Show that function μ has to be a solution of the equation $P\mu' = (Q - P')\mu$ and therefore that

$$\mu(x) = C \frac{1}{P(x)} \exp \int dx \frac{Q(x)}{P(x)}$$

holds, with some parameter C.

b) Transform the following equations to form (ii):

$$y'' - 2xy' + \lambda y = 0 \qquad \qquad \text{Hermite's eqn.}$$

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0 \qquad \qquad \text{Bessel's eqn.}$$

$$xy'' + (1 - x)y' + \lambda y = 0 \qquad \qquad \text{Laguerre's eqn.}$$

$$(1 - x^2)y'' - xy' + \alpha^2 y = 0 \qquad \qquad \text{Tchebyschev's eqn.}$$

What is the point of this transformation?

2. Compute the scalar product in the space $L_2(0,\infty)_w$ of the functions f(x)=2 and g(x)=3x, with weight $w(x)=e^{-x^2}$. Compute the sum $\alpha f+\beta g$, such that it is orthogonal to the function f, and such that it is of unit norm. Follow the same process in the space $L_2(-\infty,\infty)_w$.

$$\text{Remember}: \qquad \int_{-\infty}^{\infty} \mathrm{d}x \, e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}} \, .$$

3. By the orthogonalization method of Gram-Schmidt one transforms a set of linearly independent vectors $\{v_1, v_2...v_n\}$ into an orthogonal set $\{e_1, e_2...e_n\}$, by induction:

$$e_{1} = v_{1}$$

$$e_{2} = v_{2} - \frac{\langle e_{1}, v_{2} \rangle}{\langle e_{1}, e_{1} \rangle} e_{1}$$

$$\vdots \qquad \vdots$$

$$e_{n} = v_{n} - \sum_{i=1}^{n-1} \frac{\langle e_{i}, v_{n} \rangle}{\langle e_{i}, e_{i} \rangle} e_{i}$$

- a) Check (**graphically**) the method for the case n = 3.
- b) The functions $f_k(x) = x^k$, k = 0, 1, 2... form a non-orthogonal basis of the space $L_2[-1, 1]$. Compute the first four orthogonal vectors given the Gram-Schmidt procedure. c) We can obtain the Legendre polinomicals, $\{P_0(x), P_1(x), ...\}$, from that orthogonal basis, by imposing the normalization condition $P_i(1) = 1$. Compute $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$. (In which physical problem do these functions appear?)

2008-2009 UPV-EHU

4. Compute **graphically** the eigenfunctions of the Sturm-Liouville problems in which the equation is $y'' + \lambda y = 0$ and the boundary conditions i) y(0) = y'(1) = 0, ii) y'(3) = y'(7) = 0, iii) $y(-\frac{\pi}{2}) = y(\frac{\pi}{2}) = 0$ and iv) y'(-5.2) = y(-3.4) = 0.

5.* Show that the eigenfunctions of the Sturm-Liouville system

$$y'' + \lambda y = 0,$$
 $y(0) = 0,$ $y(1) - 2y'(1) = 0$

are $\{\sin\sqrt{\lambda_n}x\}$. Except for the eigenvalue $\lambda=0$, all the eigenvalues are solutions of the equation $\tan\sqrt{\lambda}=2\sqrt{\lambda}$. By analysing that trascendental equation, check that in the limit $n\to\infty$ the eigenvalues tend to $\lambda_n\approx (2n-1)^2\pi^2/4$. Expand the function f(x)=x in the eigenbasis (notice that this expansion is not harmonic, that is to say, the frequencies that do turn up are not simply multiples of a basic frequency; therefore, the usual Fourier expansion and this one are rather different).

- **6.** Consider the equation $y'' + 2y' + y + \lambda y = 0$ in the interval $(0, \pi)$, under the condition that $y(0) = y(\pi)$ and $y'(0) = e^{2\pi}y'(\pi)$. Is there degeneracy?
- 7. Show that the eigenvalues associated to the problem given by the equation

$$y'' + a\delta(x)y + \lambda y = 0,$$

with boundary conditions $y(\pm \pi) = 0$, and a being real, are also real, and defined by the equation

$$\tan(\pi\sqrt{\lambda}) = \frac{2\sqrt{\lambda}}{a}.$$

[Actually, on top of this family there is another one, given by $\lambda_n^{(e)} = n^2$] What would be needed for negative eigenvalues to appear? By comparing to Schrödinger's equation, give a physical description.

8. Consider the following differential operator,

$$Ly = \frac{1}{4}(1+x^2)^2y'' + \frac{1}{2}x(1+x^2)y' + ay,$$

in the interval (-1,1). a is a constant, and the domain of L is given by functions that are zero both at -1 and 1. What would be an adequate weight? By using the change of variables $x = \tan(\theta/2)$, compute the eigenvalues and eigenfunctions of the operator.

9.* (**Properties of Bessel functions**) The Bessel functions of the first kind $J_n(x)$ are solutions of the following ordinary differential equation:

$$y'' + \frac{1}{x}y' + \left(1 - \frac{n^2}{x^2}\right)y = 0.$$

For n an entire number, we have

$$J_n(0) = \delta_{n0} \,,$$

where δ_{nm} is Kronecker's delta, and, furthermore,

$$J'_n(x) = \frac{1}{2} \left(J_{n-1}(x) - J_{n+1}(x) \right) .$$

Show that

$$g(x,t) = e^{x(t-1/t)/2}$$

is the generating function of Bessel functions, that is, that

$$e^{x(t-1/t)/2} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$$

holds true. (*Hint:* Show the following:

- 1) both sides are solutions of the same partial derivative equation;
- 2) g(0,t) and $\sum_{n=-\infty}^{\infty} J_n(0)t^n$ coincide; 3) $\partial_x g(0,t)$ and $\sum_{n=-\infty}^{\infty} J'_n(0)t^n$ are identical)

By derivation of the generating function, obtain the following set of equalities:

a)
$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{r} J_n(x);$$

b)
$$J_{n-1}(x) - J_{n+1}(x) = 2J'_n(x)$$
.

Using these, obtain the next set:

c)
$$\frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x);$$

d)
$$\frac{d}{dx} [x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$$
.

Show that equality d) is a consequence of c) and $J_{-n}(x) = (-1)^n J_n(x)$.

- 10. Show directly (not using the Sturm-Liouville theorem) that $J_{\nu}(\lambda_n^{(\nu)}x)$ and $J_{\nu}(\lambda_m^{(\nu)}x)$ are orthogonal with respect to the weight x in the interval (0,1), whenever $m \neq n$ and $J_{\nu}(\lambda_n^{(\nu)}) = J_{\nu}(\lambda_m^{(\nu)}) = 0$ holds. (Hint: use Bessel's equation itself and integration by parts to compute the Wronskian of the two functions)
- 11.* (Properties of Legendre polynomials) Using the generating function of Legendre,

$$F(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, \quad |t| < 1,$$

derive the following expression for the distance between two points:

$$\frac{1}{|\vec{r}_1 - \vec{r}_2|} = \sum_{l=0}^{\infty} \frac{r_<^l}{r_>^{l+1}} P_l(\cos \theta) , \quad \begin{cases} r_< = \min(r_1, r_2) & \text{and} \\ r_> = \max(r_1, r_2) & , \end{cases}$$

with $\cos \theta = \vec{r}_1 \cdot \vec{r}_2 / (r_1 r_2)$.

By derivation of the generating function, obtain the following set of equalities:

- a) $(n+1)P_{n+1}(x) (2n+1)xP_n(x) + nP_{n-1}(x) = 0;$
- b) $P'_n(x) 2xP'_{n-1}(x) + P'_{n-2}(x) = P_{n-1}(x);$

and from those,

- c) $P'_{n+1}(x) xP'_n(x) = (n+1)P_n(x);$ d) $xP'_n(x) P'_{n-1}(x) = nP_n(x);$

2008-2009 **UPV-EHU**

- e) $P'_{n+1}(x) P'_{n-1}(x) = (2n+1)P_n(x);$ f) $(x^2 1)P'_n(x) = nxP_n(x) nP_{n-1}(x).$

Show the Legendre polynomials $P_n(x)$ are solutions of the equations

$$(1 - x2)y'' - 2xy' + n(n+1)y = 0.$$

Check (it is advisable to use the generating function yet again) that $P_n(1) = 1$ holds true. Let us define the differential expression $Ly = -(1-x^2)y'' + 2xy'$. How would you classify it? How would you describe Legendre polynomials in regard to it? Will there be an inner product with respect to which they are orthogonal?

- 12.* Tough one! Consider the problem given by the equation $u'' + \omega^2 (1 + a\delta(x)) u = 0$ and the boundary conditions u(l) = u(-l) and u'(l) = u'(-l). For which values of ω does a non-trivial solution exist? (Warning: check also for the existence of complex values).
- 13. Consider the space of functions on the real line normalizable with unit weight function (notice that their continuous representative tends to zero at least as quickly as x^{-1} as $|x| \to \infty$). Determine whether any of the following operators is hermitian when defined over that space:

$$i)$$
 $\frac{\mathrm{d}}{\mathrm{d}x} + x;$ $ii)$ $-i\frac{\mathrm{d}}{\mathrm{d}x} + x^2;$ $iii)$ $ix\frac{\mathrm{d}}{\mathrm{d}x};$ $iv)$ $i\frac{\mathrm{d}^3}{\mathrm{d}x^3}.$