Partial Differential Equations Separation of variables

1. Investigate whether the method of separation of variables can be applied to problems in which the
following partial differential equations turn up, ignoring the possible difficulties derived of boundary

conditions:
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2. A sphere of radius R behaves according to the heat equation; that is, temperature T'(r,t) obeys
the equation

ot \orz ror
where c is a constant. Compute the function T' for all points of the sphere for all instants ¢ > 0,
under the following set of conditions:
a) temperature on the surface of the sphere is 0 at all times;

b) temperature is finite at all points of the sphere, including its center r = 0;
c¢) the initial value of temperature is

o _ , (62T 26T>

T(r,0) = IEH—Rsin (WT) .

(Hint: Check that the function S(r,t) = rT(r,t) must obey S; = ¢2S,,.. What should the
value of S be at the center of the sphere?

3. Use the results of a previous example sheet to check that

% (22 (J2 () = T () Jm1 (2))] = 222 (x).

Using this obtain an expression for the scalar product fol dx xJp (kiv)Jm (kjz), with k; =

What are the numbers )\gm)? (Hint: Sturm-Liouville operators ring a bell? Why is there an z
in the scalar product.)

4. The transversal vibrations of an elastic membrane are well described by the wave equation
ugy = a®V>2u, where u(t, r, ) stands for the transversal displacement. Consider a circular membrane
of fixed rim of unit radius. Assume that at instant ¢ = 0 the displacement does not depend on the
polar angle 0, and the membrane is let go with no initial velocity, i.e.

u(t,1,0) =0, t>0 uw(0,r,0) = f(r), w(0,r,0)=0 0<r<1,
where f(r) is the initial configuration , and satisfies the condition f(1) = 0. Additionally, u must

always be bounded. Show that the function u is correctly written as

u(t,r) = Z cnJo(VAnr) cos(avAnt) .
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Obtain closed expressions for the coefficients ¢,,. Compute them fully in the case f(r) = (1 —r?)2.

5. Compute the function wu(t,r,0) that describes the transversal displacement of a circular mem-

brane of unit radius under the initial conditions u(0,7,6) = Ji( )\gl)r) cosf and u:(0,r,0) = 0.
Draw an approximate depiction of the initial conditions.

6. Compute the solution of the equation uy —c?uy, = F(z) coswt in the interval 0 < = < « for t > 0,
subject to the initial and boundary conditions u(0,t) = u, (7, t) = 0 and u(z,0) = us(z,0) = 0, in
the following situations:

a) w differs from all natural frequencies, {wy, } 72 ;.

b) w is very close to the natural frequency w,, of a normal mode.

¢) w and w,, are the same (how do we call this phenomenon?)

7. Further extending the previous problem, consider the equation uy — cuz, = F(z,t) in the
interval 0 < x < 7 for ¢t > 0, subject to the initial and boundary conditions u(0,t) = u,(7,t) =0
and u(z,0) = us(z,0) = 0. Write the solution in terms of a series.

8." Paradoz. In the previous problem the series can be decomposed as a sum of a finite num-
ber of series of the form g(x) = Y., sin((2k + 1)x/2) /(2k + 1). Define the function f(z) =
S0 0 22 /(2K + 1); differentiate it, sum the derivative, and, using the fact that f(0) = 0, ob-
tain a compact expression for f(z) in the region |z| < 1. Use this result to compute g(x) (hint:
sin(¢) = Slexp(i€)]): jit is a constant! As a consequence, the series in the previous problem seems
to be identically zero. What is going on here?

9.* Solve the problem of heat conduction in an isolated sphere (the normal derivative of the tem-
perature - normal to the surface of the sphere, that is - must be zero), with initial condition
T(r,0,¢0,t =0) = f(r,0,¢) (Hint: It might be advisable at some point to make a change of de-
pendent variable R(r) = r~/25(r), and hence use the properties of Bessel functions of semientire
order.)

10. Compute the function u(z,t) that is a solution of the equation u,, = wug + sinz under the
boundary conditions w(0,t) = 7(1 — t), u.(m,t) =0, u(z,0) =7, u(z,0) = 0.

11. Obtain the solution u(x,y) of Laplace’s equation on the rectangle 0 < z < a, 0 <y < b, under
the following boundary conditions:

u<07y):07 u(a,y):f(y), 0<y<b,
u(z,0) =0, u(z,b) = g(z), 0<z<a.

12. The temperature at the ends of a thin rod is fixed, i.e. u(0,t) =0, u(l,t) = 0. Let us assume
that at all instants ¢ < 0 the temperature at all points of the rot is zero, and that at instant

= 0 the system is perturbed in such a way that the initial temperature (for instant ¢ = 0) is
u(z,0) = upd(x — 2’) . The point z’ is not one of the ends of the rod. Compute the temperature
distribution for the instants ¢ > 0. How would you use the previous result to compute the evolution
of more general temperature distributions, keeping the boundary conditions fixed?

13. The Laplacian in spherical coordinates (7,6, ¢) is written as follows:

1 1
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True or false? V?2(1/r) =0. (Reflect on a corresponding physical situation)

14. The two-dimensional Laplacian in polar coordinates (r,¢) is written as follows:
1 1
2 _ 2
V= ;&(r&«) + 3 95, -

True or false? VZ2Inr =0.

15. Consider a spherical planet with a surface distribution of temperatures that is only latitude
dependent, and such that its internal temperature distribution does not depend on the angle phi
either. Compute the temperature u(r,#) in the stationary state under the condition that the surface
temperature be u(R, ) = sin? 6.

16.* (The method of images) In this problem we shall solve the problem of heat conduction on
the half-line x > 0:

0 0?
%—TZ:O; r20; t=0;
X

u(z,0) = f(z); w(0,t) =0, y u acotada .

Here the Fourier transform cannot be directly used, and we shall go a different route: write the
solution in the form

u(z,t) = /000 ds [G(s — z,t) — G(s + z,t)] f(s),

and compute G.
An alternative would be solve the following problem:

ou  9%*u
- —=0- . >0-
5 52 =0i  wER;i t20;
_ @), x> 0;
u(z,0) = { ~f(-a), z <0 eta u acotada.

Are this two methods in fact different?

17.* Consider the following family of problems:

2 2
c c
2
Ut =C Ugg — lum+ 2 U

w(L,t) = e u(0,t),  ug(L,t) = e g (0,1);
U(I,O) :f(x), ut((E,O) :g(m).

L is the length of the interval, and [, on the other hand, a characteristic diffusion length. Both
parameters p and 7y are adimensional. When v takes the value 1/2 the method of separation of
variables is directly applicable; for other values of 7, however, it becomes rather involved. Why?
Compute the solution in the case v = 1/2. Propose a physical interpretation.

18.* In the study of the time evolution of a qubit (spin) under the influence of a classical white
noise driving term, the probability density of finding a given pure state characterized by the Bloch
angles obeys the following Fokker-Planck equation:

2

_ 1,292 n 2 W
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7 is a parameter denoting the strength of the coupling of the external field and the qubit (it is zero
when the evolution of the qubit is free); w is the frequency for the free evolution (the free qubit
evolves according to the Hamiltonian hwo,/2); ¢ and 6 are the angles parameterising the Bloch
sphere (the state of a qubit can be written as [1)) = cos0]+) + €!? sin §]—), and ¢ and 6 range from
0 to 27 and 7 respectively). Describe the evolution of P(6, ¢,t) for a generic initial distribution
and the for the initial density P(6,¢,0) = 6(0 — 0p)d(¢ — ¢g). What is the limit towards which
the density function P tends as time goes to infinity? (In other words, is there something akin
to a stationary density?) [ref: M. Schulz and S. Trimper, Persistence of Quantum Information,
quant-ph/0609221]

Additional material:
Some problems from the latest exams

19. (February 2004) A homogeneous cylinder, of height h and radius a, conducts heat. The surface
of the cylinder is kept at a fixed temperature, except for its lower end, which has temperature
Ty 4+ 100 K. Obtain the stationary temperature distribution inside the cylinder.

20. (February 2004) Which is the smallest normal frequency of a drum shaped as a semicircle?
(Hint: consider the modes of a circular drum.)

21. (September 2004) Which is the smallest normal frequency of the cavity shown in the figure?

22. (September 2002) Solve the following initial and boundary value problem (Hint: do not forget
about orthogonality):
Ot = Pz + 204, 0<z<m, t>0;

&(z,0) =2z /7.

23. (September 2003) The temperature of a cylindrical body of infinite height and radius R with
an inner heat source which is homogeneous and constant follows the equation
or 292 2
— =a*V*T+5b
o VY

with b and a real numbers. The initial temperature is zero everywhere inside the cylinder. Addi-
tionally, the cylinder radiates through its surface, according to the relation

T—i—Ra—T:O en r=R
or

for all instant and angle. Compute the temperature distribution for all times after the initial one.
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24. (February 2005) Solve the following problem:

U = gy, xel0,L], t>0,
w(0,t) =1, u(L,t)=2e"", wu(x,0)=3z+1.

25. (September 2005) Solve the following boundary value problem,
0% n 109 18%

— 4+ -—-——4+—=—=0

or2  x0x 2% Oy? ’

with ¢ a function of xz and y, over the region = > a, which obeys the conditions d¢/0z = 0 at
r = a, and

6——>Ac0sy, l%—>—Asiny

ox x 0y

as r — +00.

26. (February 2006) A gymnast jumps on a jump mat of a 5 m radius. As the mat again goes
through the initial position (which was the stationary one), the upward speed is given by the
formula (5 m — r) x 10/s, where 7 is the distance to the centre. Compute the shape of the mat for
all later instants.

27. (February 2006) Consider a circular sector with angle 7/6. If you were to use it as a drum,
what would be its smallest natural frequency? Let us now assume that the sector conducts heat and
that the radius is a. What would be the stationary temperature distribution under the following
conditions? (The temperature is described by a function u with variables radius r and angle ¢.)

u(r,0)=0, w(rnz)=0, 0<r<a; u@a@)=¢, 0<H<z.
Classify the equation you just solved.

28. (September 2006) Consider a thin rod of length 2 m and insulated laterally (heat only flows
inside the rod). Initially the temperature w is

[(4/7%) sin(72/2 m) + 500] K.

The left and the right ends are both attached to a thermostat, and the temperature at the left
side is fixed to 500 K, while the right end is maintained at 100 K. There is also a heater attached
to the rod adding a constant heat flow ¢(x) = @ sin(wz/2 m). Find the temperature field u(x,t) of
the rod at any time. What happens when t — oco?

29. (September 2006) Hannibal Chew, the eye designer for the Tyrell Corporation (Blade Runner),
has a number of eyes submerged to three parts of four in a liquid with a temperature close to
the human body, while the other fourth is in contact with the air at room temperature of 20 °C.
Compute the temperature distribution inside one of those eyes. If your answer is a series, compute
numerically the first two terms.

30. (February 2007) An infinite conducting cylinder presents constant temperature throughout
when, suddenly, it is immersed in a fluid which acts as a thermal reservoir with a different temper-
ature. Describe the time evolution of the temperature at each point of the cylinder. In which way
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would your result be different if the cylinder were of finite height? Give the temperature at each
point of the cylinder for all times after the immersion in this latter case as well.

31. (February 2007) A thermally conducting solid bounded by two concentric spheres is such
that the internal boundary is kept at a constant temperature identical over that surface while the
outer boundary is fixed with a distribution proportional to 1 — cosf. Compute the steady state
temperature of the solid.

32. (September 2007) Find the potential inside a infinite cylinder of dielectric material, for which
one outer half-circumference is kept at potential V' while the other outer half is kept at potential
-V.

33. (September 2007) An infinite plate with a measured thickness is inserted in a heat bath.
Before doing so, the temperature distribution inside the plate was only a function of the transversal
coordinate, was symmetric with respect to the central plane of the plate, and had a single maximum.
Under these conditions, describe the evolution of the temperature distribution. To complete the
problem, choose a definite model for the initial temperature distribution and carry out fully all
computations for it.

34. (February 2008) An uncharged infinite conducting cylinder is introduced in a constant electric
field, perpendicular to its axis. What is the electric potential after the introduction of the cylinder?

35. (February 2008) In the expanding Universe the equation of wave propagation is

C%utt =a*(t)V?u,
where V? is the Laplacian, ¢ the speed of light and a(t) a function of time, called “scale factor”.
Assume a physical situation in which the distance from a plane does not impinge on wave
propagation, and the plane is given by (say) a spiral galaxy. Let it be the case that the waves are
zero at the edge of the galaxy. Use separation of variables, as well as the WKBJ method for the
temporal part, to obtain the mathematical description of such a situation. Under which conditions
is the approximation a good one? Among all the different modes, point out those for which the
approximation is best, given the following data: the radius of the galaxy is 10° light-years, Hubble’s
constant (H = a/a) has the value (1.3 x 10 year)~!, and the scale factor is of the form Ct?/3.

36. (September 2008) Two concentric spheres, the outer one’s radius double the inner one’s, are
each cut in two hemispheres by the same non-conducting plate. The upper inner hemisphere and
the lower exterior one are both kept at the same potential —V', whereas the other two hemispheres
(upper outer and lower inner) are found to be at V' potential. Compute the electrostatic potential
in the region between spheres.

37. (September 2008) Solve the equation
1
’LLpp + ;’LLP — Ut = 0

under the following conditions: 1) the solution is regular in the p = 0 axis; 2) the solution behaves
asymptotically (p — o0) as /5/mp(cos 5p + sin 5p) cos 5t.



